Skip to main content
. 2023 Jan 29;15(3):837. doi: 10.3390/cancers15030837

Table 4.

Evaluation metric and outcome performance of the method with either the best or featured model.

Articles Model and Approach Evaluation Metrics and Outcomes
Acc (%) Sn/Rc (%) Sp (%) PPV/Pc (%) NPV (%) AUC (%)
Hu et al. [44] B-mode + SWE (1.0 mm offset) ResNet18 86.45 85.15 91.93 82.12 73.54 93
Pereira et al. [45] SWE Pretrained CNN18 83 - - - - 80
Qin et al. [46] Pretrained VGG16 Ex-reFus with SPP 94.7 92.77 97.96 - - 98.77
Săftoiu et al. [47] MLP (3-layer) 89.7 91.4 87.9 88.9 90.6 95
Săftoiu et al. [48] MLP (2-layer) 84.27 87.59 82.94 96.25 57.22 94
Sun et al. [49] Hybridized model with voting system (compromise approach) 86.5 82 89.7 - - 92.1
Udriștoiu et al. [50] CNN-LSTM 98.26 98.6 97.4 98.7 97.4 98
Zhang et al. [51] Random forest 85.7 89.1 85.3 - - 93.8
Zhao et al. [52] 2020 Random forest 86.0 86.6 85.5 - - 93.4
Zhao et al. [53] 2021 Machine-learning-assisted approach (B-mode + SWE) using KNN-based bagging model 93.4 93.9 93.2 86.1 97.1 95.3
Zhou et al. [54] RBM + Bayesian (UE) - 90.21 78.45 - - -

Acc: accuracy; AUC: area under receiver operator characteristic curve; CNN: convolutional neural network; KNN: k-nearest neighbor; LSTM: long short-term memory; MLP: multilayer perceptron; NPV: negative predictive value; Pc: precision; PPV: positive predictive value; RBM: restricted Boltzmann machine; Rc: recall; Sn: sensitivity; Sp: specificity; SWE: shear-wave elastography. Bold typeface indicates the best performance among the methods.