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Abstract: Technological advancements in health sciences have led to enormous developments in
artificial intelligence (AI) models designed for application in health sectors. This article aimed at
reporting on the application and performances of AI models that have been designed for application
in endodontics. Renowned online databases, primarily PubMed, Scopus, Web of Science, Embase,
and Cochrane and secondarily Google Scholar and the Saudi Digital Library, were accessed for articles
relevant to the research question that were published from 1 January 2000 to 30 November 2022. In
the last 5 years, there has been a significant increase in the number of articles reporting on AI models
applied for endodontics. AI models have been developed for determining working length, vertical
root fractures, root canal failures, root morphology, and thrust force and torque in canal preparation;
detecting pulpal diseases; detecting and diagnosing periapical lesions; predicting postoperative
pain, curative effect after treatment, and case difficulty; and segmenting pulp cavities. Most of the
included studies (n = 21) were developed using convolutional neural networks. Among the included
studies. datasets that were used were mostly cone-beam computed tomography images, followed
by periapical radiographs and panoramic radiographs. Thirty-seven original research articles that
fulfilled the eligibility criteria were critically assessed in accordance with QUADAS-2 guidelines,
which revealed a low risk of bias in the patient selection domain in most of the studies (risk of bias:
90%; applicability: 70%). The certainty of the evidence was assessed using the GRADE approach.
These models can be used as supplementary tools in clinical practice in order to expedite the clinical
decision-making process and enhance the treatment modality and clinical operation.

Keywords: machine learning; deep learning; artificial neural network; conventional neural network;
root canal treatment; apical lesions; diagnosis; detection; prediction

1. Introduction

The specialty of endodontics deals with the diseases and conditions that affect the
root canal complex and are developed due to untreated or incompletely treated dental
carious lesions [1,2]. Diseases related to the pulp and periapical tissues are most commonly
managed by nonsurgical root canal treatment (RCT). The basis of endodontic diagnosis
and treatment planning relies on an adequate and accurate understanding of the diseases
related to the pulp and periapical tissues. Inaccurate diagnosis may result in unanticipated
pain, which may have a negative impact on the therapeutic plan and eventually result in
unpleasant experiences among patients [3]. Preoperative assessment of the tooth, before
initiating RCT, is a very crucial step in determining the success of the endodontic treatment.
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Intraoral periapical radiographs, orthopantomograms, and cone-beam computed
tomography (CBCT) imaging are the most frequently adopted radiographic techniques
for diagnosing diseases related to pulp and periapical areas [2]. Periapical and panoramic
radiographs generate two-dimensional (2D) images of the maxillofacial structures, with
lesser exposure than CBCT imaging [4,5]. CBCT imaging is widely used among dentists as
it enables more radiological analysis. This technology provides three-dimensional images
with more precision [6]. The accuracy in detecting periapical lesions is significantly higher
with CBCT imaging in comparison to periapical radiography [7,8]. However, considering
its high cost and radiation dose, the use of CBCT imaging is restricted to special clinical
circumstances. In such cases, the benefits obtained from the imaging should outweigh any
potential risks resulting from radiographic exposure associated with this technology.

The ongoing rapid technological advancements have resulted in enormous development
in diagnostic models for medical imaging and diagnosis [9]. Advancements in computer-
assisted diagnosis have resulted in the development of AI models designed for application
in health sectors. AI technology, which is mainly based on mimicking the functioning of the
human brain, is a breakthrough in the technological world. Machine learning algorithms were
the first AI algorithms developed, the performance of which is dependent on the characteristics
and number of datasets used for training. These algorithms are utilized to learn the intrinsic
statistical patterns and structures in the data and are later applied for making predictions
when applied to unseen data [10]. Deep learning (DL) or convolutional neural networks
(CNNs) are developed to mimic the functioning of the human brain; they are designed to
solve equations by passing through a series of convolutional filters and are trained on a large
number of datasets [11]. These advanced neural networks are applied for processing large
and complex images, where they have demonstrated superior achievements in recognizing
objects, faces, and activity [12,13]. AI models have been widely applied in medical imaging
for systemic diseases such as cardiovascular diseases and respiratory diseases and have
displayed exceptional performances that are similar to those of experienced specialists [14–16].
Additionally, in dentistry, AI models are designed for diagnosing oral diseases such as dental
caries, periodontal diseases, and oral cancer as well as treatment planning for orthognathic
surgeries and predicting the treatment outcomes [17–19]. These models have demonstrated
excellent performances, with a major advantage of this being improved diagnostic efficiency
with a reduced image interpretation time [20]. Nagendrababu et al. [21] reported on AI models
designed for application in endodontics for performing tasks such as studying root canal
anatomy, detecting and diagnosing periapical lesions and root fractures, and determining the
working length for planning root canal treatment. The authors concluded that these AI models
can aid clinicians with precise diagnosis and treatment planning, ultimately resulting in better
treatment outcomes. Umer et al. [22] also reported on AI models designed for application
in endodontic diagnosis and treatment planning. The authors concluded that these models
demonstrated an accuracy greater than 90% in performing the tasks. However, the authors
also stated that the reporting of AI-related research is irregular. Hence this systematic review
aimed to report on the application and performances of AI models designed for application
in endodontics.

2. Materials and Methods

Ethical clearance was obtained from King Abdullah International Medical Research
Center (Institutional Review Board Approval No. 2439-22, 6 November 2002) before the
literature search process was initiated for this systematic review.

The updated Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines were considered for preparing this systematic review [23]. A search
of the literature was conducted systematically in various renowned electronic databases,
primarily Scopus, Web of Science, Embase, PubMed, and Cochrane and secondarily the
Saudi Digital Library and Google Scholar, for studies relevant to the research topic that
were published from 1 January 2000 to 30 November 2022.
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2.1. Search Strategy

The article search was performed based on the research question, which was devel-
oped in accordance with the PICO elements (P: problem/patient/population, I: interven-
tion/indicator, C: comparison, and O: outcome).

Research Question: What are the developments, applications, and performances of AI
models in endodontics?

Population: Patients who underwent investigation for endodontic diagnosis (den-
tal radiographs such as intraoral periapical, bitewing, occlusal, and panoramic radio-
graphs; cephalograms; cone-beam computed tomography (CBCT); digital photographs; 3D
CBCT images).

Intervention: Artificial intelligence applications that were designed for the detection,
diagnosis, and prediction of endodontic lesions.

Comparison: Various reference standards, testing models, expert/specialist interpretations.
Outcome: Predictable or measurable outcomes such as accuracy, specificity, sensitivity,

receiver operating characteristic curve (ROC), area under the curve (AUC), area under
the receiver operating characteristic (AUROC), intersection over union (IOU), intraclass
correlation coefficient (ICC), statistical significance, F1 scores, volumetric Dice similarity
coefficient (vDSC), surface Dice similarity coefficient (sDSC), positive predictive value
(PPV), negative predictive value (NPV), and Dice coefficient.

Medical Subject Headings (MeSH) included artificial intelligence, automatic learning,
supervised learning, unsupervised learning, deep learning, machine learning, neural net-
works, convolutional neural network, computer-assisted diagnosis, endodontic dentistry,
root canal treatment, apical lesions, periapical lesions, periapical pathology, periapical
diseases, deep caries detection, tooth segmentation, pulp cavity segmentation, root seg-
mentation, root morphology, canal shape, cracked tooth, tooth fractures, root fractures,
accuracy, prediction, and diagnosis. Boolean operators such as and/or were also used in
the advanced stage of the search for combining these MeSH terms, with predetermined
publication time range and language as filters (Table 1).

Table 1. Structured search strategy carried out in electronic databases.

Search/Filters Topic and Terms

“English” Language

“artificial intelligence” OR “automatic learning” OR “supervised learning” OR “unsupervised learning” OR “deep learning” OR “machine
learning” OR “neural networks” OR “convolutional neural network” OR “computer assisted diagnosis” “endodontic dentistry” OR “root
canal treatment” OR “apical lesions” OR “periapical lesions” OR “periapical pathology” OR “periapical diseases” OR “deep caries detection”
OR “tooth segmentation” OR “pulp cavity segmentation” OR “root segmentation” OR “root morphology” OR “canal shape” OR “cracked
tooth” OR “tooth fractures” OR “root fractures” OR “accuracy” OR “prediction” OR “diagnosis” OR ”expert systems” OR ” fuzzy networks”
OR ” AI networks” OR “ AI models”

“English” Language

“artificial intelligence” AND “automatic learning” AND “supervised learning” AND “unsupervised learning” AND “deep learning” AND
“machine learning” AND “neural networks” AND “convolutional neural network” AND “computer assisted diagnosis” “endodontic
dentistry” AND “root canal treatment” AND “apical lesions” AND “periapical lesions” AND “periapical pathology” AND “periapical
diseases” AND “deep caries detection” AND “tooth segmentation” AND “pulp cavity segmentation” AND “root segmentation” AND “root
morphology” AND “canal shape” AND “cracked tooth” AND “tooth fractures” AND “root fractures” AND “accuracy” AND “prediction”
AND “diagnosis” AND “expert systems” AND “fuzzy networks” AND “AI networks” AND “AI models”

Simultaneously, a manual search for articles was also performed by cross-referencing
and screening the bibliography list of the selected articles.

2.2. Study Selection

The article selection process was carried out in two phases. In the first stage, the
articles that were related to the research question were selected based on their title and
abstract. In this phase, two experienced authors (S.B.K. and A.O.J.) simultaneously carried
out the search process and 264 articles were selected. After screening, 124 articles were
eliminated due to duplication, and the rest of the articles (140 articles) were assessed for
meeting the eligibility criteria

2.3. Eligibility Criteria

The inclusion criteria were the following: (a) original research articles with a clear
statement on AI applications designed for endodontics; (b) articles published between
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1 January 2000 and 30 November 2022 in a scholarly peer-reviewed journal; (c) articles with
a clear mention of a type of study modality used for developing, training, validating, and
testing an AI model; (d) articles with a clear mention of quantifiable outcome measures for
assessing the performance of the AI model; (e) AI models applied for determining working
length, vertical root fractures, or root morphology or for detecting and diagnosing pulpal
diseases, periapical lesions, predicting prognosis, postoperative pain, or case difficulties.
The study design was not limited and hence did not affect the articles’ inclusion.

The determined exclusion criteria were as follows: (a) non-full-text articles with only
abstracts; (b) non-peer-reviewed publications (such as conference papers and unpublished
thesis projects); (c) review articles, letters to editors, and commentaries.

2.4. Data Extraction

After the preliminary evaluation of the selected papers based on the title and abstract
and the elimination of the duplicates, the authors further analyzed the full text of these articles
and assessed their eligibility, following which the total number of articles included in this
systematic review decreased to 38. Following that, in the second phase, the identifiers of
the journal and author details were removed, and the articles were distributed for critical
evaluation by two independent authors who did not contribute to the initial search (M.A.
and K.A.). The data from these included articles were further extracted and entered into a
Microsoft Excel sheet. This data comprised details of the authors; year of publication; objective
of the study; type of algorithm used for developing the AI model; data used for training,
validating, and testing the model; results; conclusions; and suggestions.

The quality assessment of the articles was conducted utilizing the Quality Assessment
and Diagnostic Accuracy Tool (QUADAS-2) guidelines [24]. This tool was developed to
assess the quality of studies that have reported on diagnostic tools. The assessment is based
on four domains (patient selection, index test, reference standard, and flow and timing),
each of which is evaluated for risk of bias and applicability. The inter-rater reliability
between the two authors was assessed on a sample of articles, where Cohen’s kappa
showed 86% agreement. The authors had a disagreement regarding the inclusion of one
article since the quantifiable outcome measures of performance were not clearly mentioned.
This was further resolved through a third opinion obtained (A.F.), after which the article
was excluded. Thirty-seven articles finally underwent qualitative synthesis (Figure 1).
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Figure 1. PRISMA 2020 flow diagram for new systematic reviews which included searches of
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3. Results

The qualitative data synthesis was performed on the 37 articles [25–61] that fulfilled
the inclusion criteria. The research trend shows there has been a gradual increase in the
number of research publications that have reported on the application of AI in endodontics.

3.1. Qualitative Synthesis of the Included Studies

In endodontics, AI models have been applied for determining working length (n = 3)
[25,26,38], determining VRFs (n = 6) [27,29,30,32,41,60], detecting pulpal diseases (n = 2) [28,42],
detecting and diagnosing periapical lesions (n = 13) [31,35–37,40,43,44,49,50,52,54,55,61], de-
termining root morphology (n = 4) [33,39,45,56], predicting postoperative pain (n = 1) [48],
determining root canal failures (n = 4) [51,57,58], predicting case difficulty (n = 1) [34], determin-
ing thrust force and torque in canal preparation(n = 1) [46], segmenting pulp cavities (n = 1) [47],
and predicting curative effect after treatment (n = 1) [53,59].

The data from these included articles were extracted. However, due to the heterogene-
ity in the data extracted from these articles, performing a meta-analysis was not possible.
The heterogeneity was mainly with respect to the different types of data samples applied
for assessing the performance of AI models. Hence, in this systematic review, only the
descriptive data of the included studies are presented (Table 2).

3.2. Study Characteristics

The study characteristics extracted from the included studies included details of the
authors; year of publication; objective of the study; type of algorithm used for developing
the AI model; data used for training, validating, and testing the model; results; conclusions;
and suggestions.

3.3. Outcome Measures

The outcome was measured in terms of task performance efficiency. The outcome
measures were reported in terms of accuracy, sensitivity, specificity, receiver operating
characteristic curve (ROC), area under the curve (AUC), area under the receiver operating
characteristic curve (AUROC), intraclass correlation coefficient (ICC), intersection over
union (IOU), precision–recall curve (PRC), statistical significance, F1 scores, volumetric Dice
similarity coefficient (vDSC), surface Dice similarity coefficient (sDSC), positive predictive
value (PPV), negative predictive value (NPV), mean decreased Gini (MDG) coefficient,
mean decreased accuracy (MDA) coefficient, and Dice coefficient.

3.4. Risk of Bias Assessment and Applicability Concerns

Assessment of the quality of the included studies through the risk of bias is essential
in order to understand and report the selection of the samples, reference standards, and
methods applied for validating and testing the models.

A low risk of bias was observed in the patient selection domain in most of the studies
(risk of bias: 90%; applicability: 70%). However, cadaver samples (Saghiri et al. [25]),
extracted teeth (Saghiri et al. [26], Kositbowornchai et al. [27], Johari et al. [29], Qiao
et al. [38]), and bone samples (Guo et al. [46]) had been utilized in six studies. Therefore,
the patient selection domain of the applicability arm of the tool for these above-mentioned
studies was reported to have a high risk of bias. Index tests were regarded as low risk in
both the arms of QUADAS-2 since all the studies had made use of a highly standardized
system of AI for training purposes. There was no clear mention of the reference standard
for interpreting index test results in four of the included studies, which raised concerns
regarding bias related to patient selection, reference standard, flow, and timing of these
studies in both arms. Overall, there was a low risk of bias in both arms, considering all
the categories across the included studies. Details about the risk of bias assessment using
QUADAS-2 are mentioned in the Supplementary Materials (Table S1) and Figure 2.
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Table 2. Details of the studies that have reported on the application of AI-based models in endodontics.

Serial
No. Authors Year of

Publication Study Design Algorithm
Architecture

Objective of
the Study

No. of Pa-
tients/Images/
Photographs
for Testing

Study Factor Modality Comparison If
Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results:
(+) Effective,

(−)
Non-Effective,

(N) Neutral

Outcomes Authors’ Sugges-
tions/Conclusions

1 Saghiri et al.
[25] 2011 Comparative

study ANNs

AI-based model
for locating the

minor apical
foramen

50 samples Apical foramen Intraoral
radiographs

Two
experienced
endodontists

For 93% of the
samples, the model

determined the
location of the apical

foramen correctly

(+) Effective

ANN-based model
demonstrated good

accuracy in detecting
the apical foramen

The AI model can be
useful for secondary
opinion in order to

achieve better clinical
decision-making

2 Saghiri et al.
[26] 2012 Comparative

study ANNs

AI-based model
for determining

the working
length

50 samples Working length Intraoral
radiographs Dentist

AI model
demonstrated 96%

accuracy in
comparison with the

experienced
endodontists whose
accuracy was 76%

(+) Effective

AI model
demonstrated more

accuracy in
determining the

working length in
comparison with

experienced
endodontists

This model was
efficient in

determining the
working length

3 Kositbowornchai
et al. [27] 2013 Comparative

study ANNs

AI-based model
for determining

vertical root
fracture (VRFs)

200 samples
(80 for training,
120 for testing)

Vertical root
fracture

Digital
radiographs Between groups

Sensitivity (98%),
specificity (90.5%), and

accuracy (95.7%)
(+) Effective

This AI model
displayed sufficient

sensitivity, specificity,
and accuracy

This model make can
be useful for making

correct interpretations
of root fractures

4 Tumbelaka
et al. [28] 2014 Observational

study PNNs
AI-based model
for identifying

pulpitis
20 samples Pulpitis Periapical

radiographs None Mean square error
around 0.0003 (+) Effective

This model precisely
diagnosed reversible

and irreversible
pulpitis

In order to obtain a
better diagnosis,

radiographs have to be
digitalized

5 Johari et al.
[29] 2017 Comparative

study

Probabilistic
neural

networks
(PNNs)

AI-based model
for diagnosing
VRFs in intact

and
endodontically

treated teeth

240 samples Vertical root
fracture CBCT images

Other
state-of-the-art

approaches

Accuracy of 96.6%,
sensitivity of 93.3%,

and specificity of 100%
(+) Effective

This model is efficient
in diagnosing VRFs
using CBCT images

Additional training of
AI-based models is

required before
clinical use

6 Shah
et al. [30] 2018 Comparative

study CNNs

AI model for
automatically

detecting cracks
in teeth

6 samples Cracked teeth CBCT images
Frangi’s vessel
enhancement

algorithm
Mean ROC was 0.97 (+) Effective

This model was
efficient in detecting

cracked teeth

The model can detect
cracked teeth in earlier

stages and prevent
pain and suffering

associated with them

7 Ekert
et al. [31] 2019 Comparative

study CNNs
AI model for

detecting apical
lesions

85 samples Apical lesions Panoramic
radiographs

6 independent
examiners

AUC was 0.85 (0.04).
Sensitivity was 0.65
(0.12) and specificity

was 0.87 (0.04)

(+) Effective
This model showed a
satisfying ability to
detect apical lesions

Sensitivity of the
model needs to be
improved before

application in clinics

8 Fukuda et al.
[32] 2019 Comparative

study CNNs

AI model for
detecting

vertical root
fractures (VRFs)

300 samples
(240 for training

and 60 for
testing)

Vertical root
fracture

Panoramic
radiographs

2 radiologists
and 1

endodontist

Recall was 0.75,
precision was 0.93, and

F measure was 0.83
(+) Effective

This model showed
promising results in

detecting VRFs

This model has to be
trained and applied on

datasets from other
hospitals

9 Hiraiwa et al.
[33] 2019 Comparative

study ANNs

AI model for
assessing the

root
morphology of
the mandibular

first molar

760 samples Root
morphology

Panoramic and
CBCT images Radiologist Accuracy of 86.9% (+) Effective

The model displayed
high accuracy in

diagnosing a single or
extra root in the distal
roots of mandibular

first molars

This model displayed
a high level of

diagnostic ability

10 Mallishery
et al. [34] 2019 Comparative

study ML

AI-based ML
model for

predicting the
difficulty level

of the case

500 samples Case difficulty Datasets 2 endodontists Sensitivity of 94.96% (+) Effective
This model displayed
an excellent prediction

of case difficulty

This model displayed
excellent prediction

ability which can
increase the speed of

decision-making
and referrals
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Table 2. Cont.

Serial
No. Authors Year of

Publication Study Design Algorithm
Architecture

Objective of
the Study

No. of Pa-
tients/Images/
Photographs
for Testing

Study Factor Modality Comparison If
Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results:
(+) Effective,

(−)
Non-Effective,

(N) Neutral

Outcomes Authors’ Sugges-
tions/Conclusions

11 Setzer et al.
[35] 2020 Comparative

study CNNs

A deep learning
model for
automated

segmentation of
CBCT images
and detecting

periapical
lesions

20 CBCT
images

(16 CBCT
images for
training, 4

CBCT images
for validation)

Apical lesions CBCT images

1 radiologist, 1
endodontist,
and 1 senior

graduate

Accuracy of 0.93 and
specificity of 0.88 (+) Effective

With a limited CBCT
training, this model
displayed excellent
results in detecting

the lesion

This model can aid
clinicians with

automated
lesion detection

12 Orhan et al.
[36] 2020 Comparative

study ANNs

AI model for
detecting
periapical
pathosis

153 samples Periapical
lesions CBCT images 1 maxillofacial

radiologist

Reliability of 92.8% in
correctly detecting
periapical lesions

(+) Effective

There was no
difference in the

accuracy of humans
and AI model in

detecting
apical lesions

This model will be
useful for detecting

periapical pathosis in
clinical scenarios

13 Endres et al.
[37] 2020 Comparative

study CNNs

Deep learning
model for
detecting
periapical

disease

197 samples
(95 images for
training and

102 images for
testing)

Periapical
disease

Panoramic
radiographs

24 oral and
maxillofacial

(OMF) surgeons

Average precision of
0.60 and an F1 score

of 0.58
(+) Effective

This deep learning
algorithm achieved a
better performance

than 14 of 24
OMF surgeons

The deep learning
model has potential to
assist OMF surgeons

in detecting periapical
lucencies

14 Qiao et al. [38] 2021 Comparative
study CNNs

Deep learning
models for root

canal length
measurement

21 samples Root canal
length Tooth

Dual-frequency
impedance ratio

method
Accuracy of 95% (+) Effective

This model
demonstrated better

accuracy in
comparison with

other models

The performance of
this model can be

enhanced by
increasing the number

of samples

15 Sherwood
et al. [39] 2021 Comparative

study CNNs

Deep learning
model for
classifying

C-shaped canal
anatomy in
mandibular

second molars

135 samples
(100 images for
training and 35

images for
testing)

Canal shapes CBCT images

U-Net, residual
U-Net, and

Xception U-Net
architectures

The mean Dice
coefficients were 0.768
± 0.0349 for Xception
U-Net, 0.736 ± 0.0297

for residual U-Net,
and 0.660 ± 0.0354 for

U-Net on the
test dataset

(+) Effective

Both Xception U-Net
and residual U-Net

performed
significantly better

than U-Net

Deep learning models
can aid clinicians in

detecting and
classifying C-shaped

canal anatomy

16 Li et al. [40] 2021 Comparative
study CNNs

Deep learning
model for

detecting apical
lesions

460 samples
(322 images for
training and 138

images for
testing)

Apical lesions Periapical
radiographs

3 experienced
dentists

Diagnostic accuracy of
the model was 92.5% (+) Effective

Deep neural models
demonstrated

excellent accuracy in
detecting the

periapical lesions

This automated model
allows dentists to

make the diagnosis
process shorter and

more efficient

17 Vicory et al.
[41] 2021 Comparative

study ML
AI model for

detecting tooth
microfractures

36 samples Tooth
microfractures

High-resolution
(hr) CBCT and
micro-CT scans

Direction–
projection–

permutation

Significant
separation result (+) Effective

The data suggest that
this approach can be
applied to hr-CBCT
(clinically) when the

images are not
over-processed

Early detection of
microfractures can
help in planning

appropriate treatment

18 Zheng et al.
[42] 2021 Comparative

study CNNs

Deep learning
model for

detecting deep
caries and

pulpitis

844 samples
(717 images for

training and
127 images for

testing)

Deep caries and
pulpitis

Periapical
radiographs

VGG19,
Inception V3,
ResNet18, 5
experienced

dentists

Accuracy of 0.86,
precision of 0.85,
sensitivity of 0.86,

specificity of 0.86, and
AUC of 0.94

(+) Effective

ResNet18
demonstrated the best

performance also in
comparison with

experienced dentists

The promising
potential of this model

can be applied for
clinical diagnosis

19 Moidu et al.
[42] 2021 Comparative

study CNNs

Deep learning
model for

categorization
of endodontic

lesions

1950
samples

Periapical
lesions

Periapical
radiographs 3 endodontists

Sensitivity/recall of
92.1%, 76% specificity,

86.4% positive
predictive value, and

86.1% negative
predictive value

(+) Effective

The model exhibited
excellent sensitivity,
positive predictive
value, and negative

predictive value

This AI model can be
beneficial for clinicians

and researchers
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Table 2. Cont.

Serial
No. Authors Year of

Publication Study Design Algorithm
Architecture

Objective of
the Study

No. of Pa-
tients/Images/
Photographs
for Testing

Study Factor Modality Comparison If
Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results:
(+) Effective,

(−)
Non-Effective,

(N) Neutral

Outcomes Authors’ Sugges-
tions/Conclusions

20 Pauwels et al.
[44] 2021 Comparative

study CNNs

Deep learning
model for
detecting
periapical

lesions

10
samples

Periapical
lesions

Periapical
radiographs

3 oral
radiologists

Mean sensitivity of
0.87, specificity of 0.98,
and ROC-AUC of 0.93

(+) Effective

This CNN model
displayed perfect
accuracy for the
validation data

This model showed
promising results in

detecting
periapical lesions

21 Jeon et al. [45] 2021 Comparative
study CNNs

Deep learning
model for
predicting
C-shaped
canals in

mandibular
second molars

2040
samples (1632

images for
training and 408

images for
testing)

C-shaped
canals

Panoramic
radiographs

1 experienced
radiologist and
1 experienced
endodontist

Accuracy of 95.1,
sensitivity of 92.7,

specificity of 97.0, and
precision of 95.9%

(+) Effective

This CNN model
displayed significant

accuracy in predicting
C-shaped

canals

This model can assist
clinicians with dental
image interpretation

22 Guo et al. [46] 2021 Comparative
study ANNs

Radial basis
function neural

network
(RBFN)-based
AI model for

predicting
thrust force and
torque for root

canal
preparation

2
samples

Thrust force
and torque CT scans Comparative

ANN model
Prediction error less

than 14% (+) Effective

This model displayed
an excellent prediction

of thrust force and
torque in canal

preparation

Can be useful for
instructing dentists
during root canal

preparations and also
for improving the

geometrical design of
nickel titanium files

23 Lin et al. [47] 2021 Comparative
study ANNs

AI model for
automatic and

accurate
segmentation of
the pulp cavity

and tooth

30 samples (25
sets for training

and 5 sets for
testing)

Segmentation of
the pulp cavity CBCT images 1 experienced

endodontist

Dice similarity
coefficient of 96.20% ±
0.58%, precision rate of
97.31% ± 0.38%, recall
rate of 95.11% ± 0.97%,

average symmetric
surface distance of 0.09

± 0.01 mm, and
Hausdorff distance of
1.54 ± 0.51 mm in the

tooth and Dice
similarity coefficient of

86.75% ± 2.42%,
precision rate of

84.45% ± 7.77%, recall
rate of 89.94% ± 4.56%,

average
symmetric surface

distance of 0.08 ± 0.02
mm, and

Hausdorff distance
1.99 ± 0.67 mm in the

pulp cavity

(+) Effective

The analysis
performed by the

model was better than
that of the experienced

endodontist

This model
demonstrated

excellent accuracy and
hence can be applied

in research and clinical
tasks in order to

achieve better
endodontic

diagnosis and therapy

24 Gao et al. [48] 2021 Observational
study ANNs

Backpropagation
(BP) AI model
for predicting
postoperative
pain following

root canal
treatment

300 samples
(210 for

training, 45 for
validating, and
45 for testing)

Postoperative
pain Datasets None Accuracy of prediction

was 95.60% (+) Effective

This model displayed
an excellent prediction
of postoperative pain

following RCT

The results displayed
by this model have

shown clinical
feasibility and clinical

application value

25 Ngoc
et al. [49] 2021 Comparative

study CNNs

AI-based model
for diagnosis of

periapical
lesions

130 samples Periapical
lesions

Bitewing
images Endodontists

Sensitivity of 89.5,
specificity of 97.9, and

accuracy of 95.6%
(+) Effective

This model displayed
excellent performance
and can be used as a
support tool in the

diagnosis of periapical
lesions

This model can be
used in teledentistry
for the diagnosis of
periapical diseases

where there is a lack of
dentists
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Table 2. Cont.

Serial
No. Authors Year of

Publication Study Design Algorithm
Architecture

Objective of
the Study

No. of Pa-
tients/Images/
Photographs
for Testing

Study Factor Modality Comparison If
Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results:
(+) Effective,

(−)
Non-Effective,

(N) Neutral

Outcomes Authors’ Sugges-
tions/Conclusions

26 Kirnbauer
et al. [50] 2022 Observational

study CNNs

AI model for
the automated

detection of
periapical

lesions

144 samples Periapical
lesions CBCT images None

Sensitivity of 97.1%
and specificity of
88.0% for lesion

detection

(+) Effective

This AI model
displayed excellent

results compared with
related literature

This model can be
applied for testing

under clinical
conditions

27 Herbst et al.
[51] 2022 Comparative

study ML

AI-based ML
model for
predicting

failure of root
canal treatment

591 samples Root canal
failure Datasets

Random forest,
gradient
boosting
machine,
extreme
gradient
boosting,

predictive
modeling

logR 0.63, gradient
boosting machine

(GBM) 0.59, random
forest (RF) 0.59,

extreme gradient
boosting (XGB) 0.60

(N) Neutral

This study found
tooth-level factors to
be associated with

failure

With this AI model,
predicting failure was
only limitedly possible

28 Bayrakdar
et al. [52] 2022 Observational

study CNNs

AI-based deep
convolutional

neural network
(D-CNN) model

for the
segmentation of

apical lesions

470 samples Apical lesions Panoramic
radiographs None

Sensitivity of 0.92,
precision of 0.84, and

F1-score of 0.88
(+) Effective

This AI model was
efficient in evaluating

periapical
pathology

This AI model may
facilitate clinicians in

the assessment of
periapical pathology

29 Zhao
et al. [53] 2022 Comparative

study CNNs

AI model for
evaluating the
curative effect
after treatment
of dental pulp
disease (DPD)

120 samples Dental pulp
disease

Radiographs
and CBCT

images

Control group
with

healthy teeth

Segmentation accuracy
was 85.5%; diagnostic
rate of X-ray was 43.7%
and diagnostic rate of

CBCT was 100%

(+) Effective

CBCT evaluation
using an AI model can
be an effective method

for evaluating the
curative effect of

dental pulp disease
treatment during and

after the surgery

This model has a
higher application

prospect in the
diagnosis and

treatment of DPD

30 Hamdan et al.
[54] 2022 Comparative

study CNNs
AI model for

detecting apical
radiolucencies

68 samples Apical
radiolucencies

Periapical
radiographs

Eight
experienced
specialists

Alternative
free-response receiver

operating
characteristic (AFROC)
of 0.892, specificity of
0.931, and sensitivity

of 0.733

(+) Effective

This model has the
potential to improve

the diagnostic efficacy
of clinicians

This AI model
enhances clinicians’

abilities to detect
apical radiolucencies

31 Calazans et al.
[55] 2022 Comparative

study CNNs

AI models for
classifying
periapical

lesions

1000 samples
(training 60%,

validation 20%,
testing 20%)

Periapical
lesions CBCT scans

Experienced
oral and

maxillofacial
radiologist

Accuracy of
70%, specificity of

92.39%
(+) Effective

DenseNet-121 network
was superior to

VGG-16 and
human experts

The proposed models
displayed a
satisfactory

classification
performance

32 Yang
et al. [56] 2022 Comparative

study CNNs

AI-based deep
learning model
for classifying

C-shaped
canals in

mandibular
second molars

1000 samples C-shaped
canals

Periapical and
panoramic

radiographs

Specialist and
general
clinician

AUC of 0.98 on
periapical and AUC of

0.95 on panoramic
(+) Effective

This model displayed
high accuracy in

predicting the
C-shaped canal in both

periapical and
panoramic images and

was similar to the
performance of a

specialist and better
than a general dentist

This model was
effective in diagnosing
C-shaped canals and

therefore can be a
valuable aid for

clinicians and also in
dental education
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Table 2. Cont.

Serial
No. Authors Year of

Publication Study Design Algorithm
Architecture

Objective of
the Study

No. of Pa-
tients/Images/
Photographs
for Testing

Study Factor Modality Comparison If
Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results:
(+) Effective,

(−)
Non-Effective,

(N) Neutral

Outcomes Authors’ Sugges-
tions/Conclusions

33 Xu et al. [57] 2022 Comparative
study ML

AI-based
models for

identifying the
history of root
canal therapy

920 samples
(736 for training

and 184 for
testing)

Root canal
therapy Datasets VGG16, VGG19,

and ResNet50
Accuracies were above

95% and AUC area
was 0.99

(+) Effective

This model displayed
excellent accuracy and

can aid in clinical
auxiliary diagnosis

based on
image display

This AI-assisted
diagnosis of oral

medical images can be
effectively promoted
for clinical practice

34 Qu et al. [58] 2022 Comparative
study ML

AI-based
machine

learning models
for predicting
prognosis of
endodontic

microsurgery

234 samples
(80% for the

training set and
20% for the test

set)

Predicting
prognosis Datasets

Gradient
boosting

machine (GBM)
and random
forest (RF)

models

Accuracy of 0.80,
sensitivity of 0.92,
specificity of 0.71,

positive predictive
value (PPV) of 0.71,
negative predictive

value (NPV) of 0.92, F1
score of 0.80, and area
under the curve (AUC)

of 0.88

(+) Effective

The GBM model
outperformed the RF

model slightly on
the dataset

The models can
improve efficiency and

assist clinicians in
decision-making

35 Li et al. [59] 2022 Comparative
study ANNs

AI-based
anatomy-
guided

multibranch
transformer

(AGMB-
Transformer)
network for

assessing the
result of root
canal therapy

245 samples
Root canal

therapy
evaluation

Datasets

2 experienced
specialists and
other models

(ResNet50,
ResNeXt50,
GCNet50,

BoTNet50)

Accuracy ranged from
57.96% to 90.20%,
AUC of 95.63%,

sensitivity of 91.39%,
specificity of 95.09%,

F1 score of 90.48%

(+) Effective
This model achieved a

highly accurate
evaluation

The performance of
this model has

important clinical
value in reducing the

workload of
endodontists

36 Hu et al. [60] 2022 Comparative
study CNNs

AI-based deep
learning models
for diagnosing

vertical root
fracture

276 samples Vertical root
fracture CBCT images

2 experienced
radiologists,
ResNet50,

VGG19, and
DenseNet169

The accuracy,
sensitivity, specificity,
and AUC were 97.8%,
97.0%, 98.5%, and 0.99

(+) Effective

ResNet50 presented
the highest accuracy
and sensitivity for

diagnosing VRF teeth

ResNet50 presented
the highest diagnostic

efficiency in
comparison with other

models. Hence, this
model can be used as

an auxiliary diagnostic
technique to screen for

VRF teeth

37 Vasdev
et al. [61] 2022 Comparative

study CNNs

AI-based deep
learning model

for detecting
healthy and
non-healthy
periapical

images

16,000 samples Periapical
lesions

Periapical
radiographs

ResNet-18,
ResNet-34, and

AlexNet

Accuracy of 0.852,
precision and F1 score

of 0.850
(+) Effective

This AlexNet model
outperformed the

other models

This model generalizes
effectively to

previously unseen
data and can aid

clinicians in
diagnosing a variety of

dental diseases

Footnotes: ML = machine learning, ANNs = artificial neural networks, CNNs = convolutional neural networks, DCNNs = deep neural networks, c-index = concordance index,
CT = computed tomography, CBCT = cone-beam computed tomography, OCT = optical coherence tomography.
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3.5. Assessment of Strength of Evidence

The certainty of the selected studies in the systematic review was assessed using
the Grading of Recommendations Assessment Development and Evaluation (GRADE)
approach [62]. Risk of bias, inconsistency, indirectness, imprecision, and publication bias
are major domains under which the certainty of the evidence is rated and categorized as
very low, low, moderate, or high. Overall, the studies included in this systematic review
showed moderate evidence (Table 3).

Table 3. Assessment of Strength of Evidence.

Outcome Inconsistency Indirectness Imprecision Risk of Bias Publication Bias Strength of
Evidence

Application of AI for determining
working length [25,26,38] Not Present Not Present Not Present Present Not Present ⊕⊕⊕#

Application of AI for determining
vertical root fracture

[27,29,30,32,41,60]
Not Present Not Present Not Present Present Not Present ⊕⊕⊕#

Application of AI for detecting pulpal
diseases [28,42] Not Present Not Present Not Present Present Not Present ⊕⊕⊕#

Application of AI for, detecting and
diagnosing periapical lesions

[31,35–37,40,43,44,49,50,52,54,55,61]
Not Present Not Present Not Present Present Not Present ⊕⊕⊕#

Application of AI for determining root
morphology [33,39,45,56] Not Present Not Present Not Present Not Present Not Present ⊕⊕⊕⊕

Application of AI for determining root
canal failures [51,57,58] Not Present Not Present Not Present Not Present Not Present ⊕⊕⊕⊕

Application of AI for predicting
postoperative pain [42] Not Present Not Present Not Present Present Not Present ⊕⊕⊕#

Application of AI for predicting case
difficulty [34] Not Present Not Present Not Present Not present Not Present ⊕⊕⊕⊕

Application of AI for determining
thrust force and torque in canal

preparation [46]
Not Present Not Present Not Present Present Not Present ⊕⊕⊕#

Application of AI for segmenting pulp
cavities [47] Not Present Not Present Not Present Not Present Not Present ⊕⊕⊕⊕

Application of AI in curative effect
after treatment [53,59] Not Present Not Present Not Present Not Present Not Present ⊕⊕⊕⊕

⊕⊕⊕⊕ = high evidence; ⊕⊕⊕# = moderate evidence.

4. Discussion

Technological advancements in health sciences have led to enormous developments
in the AI models that have been designed for application in health sectors. In recent
developments, CNN-based AI models have demonstrated excellent efficiency in diagnosing
diseases in comparison with experienced specialists [63,64].

AI has been applied in endodontics for detecting pulpal diseases. Tumbelaka et al. [28]
published details of an AI model for identifying pulpitis. This model was very efficient in
precisely diagnosing reversible and irreversible pulpitis. However, the authors suggested
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using digital radiographs in order to achieve better validation. Zheng et al. [44] investigated
a DL model designed for detecting deep caries and pulpitis, and the model demonstrated
excellent performance. The ResNet18 model displayed outstanding performance when
compared with reference models and experienced clinicians. However, this study focused
only on teeth with single carious lesions and not on multiple carious lesions. Hence, further
clinical validation is required before application in clinical practice.

Untreated dental caries progresses into periapical diseases, which are a result of
the inflammatory lesions affecting the pulpal and periapical tissues, 90% of which are
classified as apical granulomas, apical cysts, or abscesses [65]. The prevalence of apical
periodontitis ranges between 34 and 61%, followed by periapical cysts and granulomas
which range from 6 to 55% and from 46 to 94%, respectively [66–68]. Periapical pathosis
can be detected radiographically as periapical radiolucencies, which are also termed apical
lesions. Detecting apical lesions using radiographs is a daily task of clinicians; however,
regardless of their discriminatory ability, radiographic examinations are influenced by inter-
and intra-examiner reliability [69,70]. Ekert et al. [31] described the application of an AI
model for detecting apical lesions; this model displayed satisfactory ability in detecting
apical lesions, with an AUC of 0.85 and a sensitivity of 0.65. However, the sensitivity of
the model was limited and needs to be improved by using a larger number of datasets to
avoid the under-detection of the lesions before the model can be applied in clinics. Setzer
et al. [35] described an AI model designed for segmenting CBCT images and detecting
periapical lesions. The model displayed excellent accuracy and specificity. However, the
limitation of this study was the comparison of the performance of the CNN model with
clinicians’ segmentation, which can be subject to human error. Another limitation was the
lower Dice index ratios for segmentation of the label lesions, which need to be addressed by
increasing the training size. Orhan et al. [36] described an AI model designed for detecting
periapical pathosis; the model displayed outstanding reliability in correctly detecting
periapical lesions, which was equivalent to the performance of human experts. However,
the presence of endo-perio lesions and periodontal defects can alter the performance of
the model. In addition, anatomical structures such as the mental foramen and nasal fossa
need segmentation, which can impact the analysis of the models’ measurements, and
therefore, further programming will be required to address these issues. Endres et al. [37]
reported the performance of an AI model designed for detecting periapical disease which
displayed an acceptable precision and F1 score. The model achieved a better performance
than experienced specialists. However, the model was trained using datasets labeled by
the surgeons, which can be subject to human bias and be reflected in a degradation of the
model performance. Another limitation was with the data used for training and evaluating
the model, which were from a single center. Hence, further tests may be required with data
from multiple centers to demonstrate generalizability. Li et al. [38]. studied the performance
of a DL model designed for detecting apical lesions. The model demonstrated an excellent
diagnostic accuracy of 92.5%. This model displayed a performance superior to that of a
previous model [36]. However, the limitation of this model was with datasets that were
obtained from a single hospital. Again, in order to demonstrate the generalizability of these
results, further research is required with data from multiple sources [40].

Pauwels et al. [44] described the performance of a DL model designed for detecting
periapical lesions. The results of this study were very promising, with a mean sensitivity of
0.87, specificity of 0.98, and ROC-AUC of 0.93. This model outperformed in comparison
with experienced oral radiologists. This model further needs to be trained and validated on
large samples/clinical radiographs before implementation in clinical scenarios, since this
study used bovine ribs and simulated lesions. Ngoc et al. [49] detailed the performance of an
AI model for diagnosing periapical lesions. This model displayed exceptional performance
in comparison with endodontists’ diagnoses. However, this model was developed with a
limited number of datasets using periapical radiographs.

Kirnbauer et al. [50] described the performance of an AI model for automatically
detecting periapical lesions; the model displayed a sensitivity of 97.1% and a specificity
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of 88.0% for lesion detection. Bayrakdar et al. [52] reported on an AI model designed for
segmenting apical lesions. This model was efficient in evaluating the periapical pathology
and displayed a remarkable performance. However, there were a few limitations with
the radiographic data used for this study, as they were obtained from a single piece of
equipment and the number of samples used was very limited. Calazans et al. [55] reported
on AI models for classifying periapical lesions and compared their performance with that
of experienced oral and maxillofacial radiologists. The model displayed an accuracy of
70% and specificity of 92.39%, which were superior to those of the AI model VGG-16 and
human experts.

Determining the working length is one of the crucial clinical steps that influence the
outcome of root canal treatment. This will reduce the chances of insufficient cleaning
of the canal and help in confining the root canal filling material into the canal and not
invading the periapical tissues, ultimately resulting in a successful treatment outcome [70].
Saghiri et al. [25] described the performance of an AI-based model for locating the minor
apical foramen. This model demonstrated good accuracy in detecting the apical foramen.
Saghiri et al. [26] also described the performance of an AI model for determining the
working length. The AI model demonstrated 96% accuracy in comparison with experienced
endodontists. However, the quality of patient selection in these studies was low since the
samples used were extracted teeth and cadavers. Qiao et al. [38] described the performance
of an AI model designed for root canal length measurement. The accuracy of the model
was exceptional and was better than the accuracy of the dual-frequency impedance ratio
method, which demonstrated an accuracy of 85%. However, very limited samples were
used, and increasing the sample size in future studies can further enhance the performance.

VRFs are crack types that can be complete or incomplete fractures of the root in
the longitudinal plane and can be seen in teeth that are either endodontically treated or
untreated [71,72]. These fractures are often unnoticed by clinicians and in most cases
are only thought of when significant periapical changes occur, ultimately resulting in a
delay in diagnosis and treatment [73]. To increase the diagnostic efficiency of clinicians, AI
models have been applied for assisting clinicians in the early diagnosis of tooth cracks and
fractures. Kositbowornchai et al. [27] described the performance of an AI model designed
for detecting VRFs, and the model displayed an outstanding performance. However, the
limitation of this study was with the samples, since they only used single-rooted premolar
teeth; thus, these results cannot be generalized unless applied to different tooth types. Johari
et al. [29] described the performance of an AI model for determining VRFs; the model
displayed exceptional performance. However, in this study, only single-rooted premolar
teeth were used. These findings were similar to the findings of the study conducted by
Fukuda et al. [32] in which the AI model displayed a precision of 0.93 and an F measure of
0.83. However, the limitation of this study was with the datasets used, which were only
from a single center, and only the radiographs with clear VRF lines were included [32]. Hu
et al. [60] described the performance of AI models for diagnosing VRFs; the ResNet50 model
presented the highest accuracy and sensitivity for diagnosing VRF teeth. Shah et al. [30]
described the application of an AI model for automatically detecting cracks in teeth; this
model displayed a mean ROC of 0.97 in detecting cracked teeth.

Assessing the shape of the roots and canals of a tooth can be very important in success-
fully treating a carious tooth. However, the variations in the root canal morphology pose a
difficulty in canal preparation, irrigation, and obturation. C-shaped canals are the most
difficult variation in the performance of a root canal treatment [74,75]. Hiraiwa et al. [32]
described the application of an AI model designed for assessing the root morphology of
the mandibular first molar; this model displayed an accuracy of 86.9%. Sherwood et al. [39]
also described the performance of a DL model for classifying C-shaped canal anatomy
in mandibular second molars. Both Xception U-Net and residual U-Net performed sig-
nificantly better than the U-Net model. However, the limited sample used in this study
and the focus on only C-shaped root canal anatomy were limitations of the study. Jeon
et al. [45] reported on a DL model designed for predicting C-shaped canals in mandibular
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second molars; the model displayed outstanding performance in predicting C-shaped
canals. Yang et al. [58] described the performance of a DL model for classifying C-shaped
canals in mandibular second molars; the model displayed excellent performance in predict-
ing C-shaped canals in both periapical and panoramic images. However, in this study, the
number of samples used was insufficient, and the samples were from a single center.

AI has also been applied in predicting the prognosis of RCT. Herbst et al. [51] reported
on an AI model for predicting factors associated with the failure of root canal treatments.
This model was efficient in predicting tooth-level factors. Qu et al. [58] described the
application of machine learning models for the prognosis prediction of endodontic micro-
surgery. The gradient boosting machine (GBM) model displayed excellent performance.
These findings were similar to the finding of the study conducted by Li et al. [59] in which
the model displayed an accuracy of 57.96–90.20%, an AUC of 95.63%, and a sensitivity of
91.39%. These automated models can be of great value to clinicians by assisting them in
decision-making, providing quick and accurate results, overcoming the requirement of
high-level clinical experience, and avoiding inter-observer variability.

The findings of this systematic review show that the majority of the AI models are
designed for automated digital diagnosis and treatment planning. These findings are in
accordance with the systematic reviews that have previously reported on various disciplines
of dentistry. Mohammad-Rahimi et al. [76] reported on the performance of deep learning
models in periodontology and oral implantology, where the authors concluded that the
performance of the models is generally high. Albalawi et al. [77] reported on a wide range of
AI models applied in orthodontics and concluded that these AI models are reliable and can
automatically complete tasks with an enhanced speed and an efficiency equivalent to that
of experienced specialists. Junaid et al. [78] reported on the application and performance of
AI models designed for cephalometric landmark identification. The authors concluded that
these models are of great benefit to orthodontists as they can perform tasks very efficiently.
Carrillo-Perez et al. [79] reported on the application of AI models in dentistry; the authors
concluded that the AI models display outstanding performance in performing the tasks.
Thurzo et al. [80] reported on a wide range of AI models that have been designed for
application in dentistry. The authors reported that there has been extraordinary growth in
the development of AI models designed for application in dentistry. In the last few years,
significant growth has been witnessed in the application of AI in dentistry.

This systematic review might have a few limitations. Even though we performed a
comprehensive search for articles that have reported on the application of AI models in
endodontics, we might have missed a few. Another limitation could be with the assessment
of the risk of bias, which might vary between subjective judgments. However, considering
the potential of AI applications in improving the diagnosis and treatment outcomes in
endodontics, regulatory bodies should expedite the process of policy-making, approval,
and marketing of these products for application in clinical scenarios.

5. Conclusions

In endodontics, AI models have been applied for determining working length, vertical
root fractures, and root morphology; detecting and diagnosing pulpal diseases and periapi-
cal lesions; and predicting prognosis, postoperative pain, and case difficulties. Most of the
included studies (n = 21) were developed using convolutional neural networks. Among the
included studies, datasets that were used were mostly cone-beam computed tomography
images, followed by periapical radiographs and panoramic radiographs. QUADAS-2, used
to assess the quality of the included articles, revealed a low risk of bias in the patient
selection domain in most of the studies (risk of bias: 90%; applicability: 70%). These models
can be used as supplementary tools in clinical practice in order to expedite the clinical
decision-making process and enhance the treatment modality and clinical operation. How-
ever, in most of the studies, the models were developed using a limited number of datasets
for training and evaluation. The data samples collected were from a single clinic/center
and from a single radiographic instrument. Hence, the results obtained from these studies
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cannot be generalized due to the lack of heterogeneity in the samples. In order to overcome
these limitations, future studies should focus on considering a large number of datasets for
training and testing the models. Samples need to be collected from multiple centers and
from different radiographic instruments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13030414/s1, Table S1: Assessment of risk of bias
domains and applicability concerns.
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