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Abstract: Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein with an N-
terminal domain that resides in the lumen of the ER and a C-terminal domain that extends into the
cytosol. Calnexin is commonly referred to as a molecular chaperone involved in the folding and
quality control of membrane-associated and secreted proteins, a function that is attributed to its ER-
localized domain with a structure that bears a strong resemblance to another luminal ER chaperone
and Ca2+-binding protein known as calreticulin. Studies have discovered that the cytosolic C-terminal
domain of calnexin undergoes distinct post-translational modifications and interacts with a variety of
proteins. Here, we discuss recent findings and hypothesize that the post-translational modifications
of the calnexin C-terminal domain and its interaction with specific cytosolic proteins play a role in
coordinating ER functions with events taking place in the cytosol and other cellular compartments.

Keywords: calcium binding protein; cell signaling; endoplasmic reticulum; molecular chaperone;
protein–protein interactions

1. Introduction

The endoplasmic reticulum (ER) is organized as a continuous membrane network
of branching tubules and flattened sacs that envelop a single lumen. The ER performs a
plethora of functions in cells, including lipid and steroid synthesis, Ca2+ storage and signal-
ing, protein synthesis and maturation involving protein folding and post-translational mod-
ification [1–3]. Human cells express approximately 10,000 different proteins at any given
moment [4]. More than a third of all of these proteins are synthesized on ER membrane-
bound ribosomes where proteins are either destined for residence in the ER, plasma mem-
brane, Golgi apparatus, lysosomes or secreted from the cell [5]. Even though the native
structure and conformation of a given protein is largely determined by its amino acid
sequence [6], many newly synthesized proteins require assistance by molecular chaperones
to reach their native fold at a biologically relevant time scale [7]. To help facilitate proper
folding and quality control, the ER employs two major folding systems: the general path-
way that is mediated by BiP (the ER homolog of the 70-kDa heat shock protein, Hsp70)
together with protein disulfide isomerase PDIA1, and the N-linked glycoprotein pathway
which is governed by lectin chaperones calnexin and calreticulin, commonly referred to as
the calnexin/calreticulin cycle [8]. Both calreticulin and calnexin share structural similarity
with respect to their lectin-like domains with calreticulin being an ER lumen-resident pro-
tein while calnexin is a type I integral ER membrane protein with a transmembrane helix
and cytosol-exposed C-terminal domain. This review is focused on the role of calnexin not
only as an ER chaperone involved in the protein quality control pathway but also on the
emerging view on its importance in coordinating ER and cytosolic events via the unique
interactions of calnexin with a variety of proteins at the ER–cytosol interface [9–14].

2. Discovery of Calnexin

In 1982 a novel ER-associated protein with an apparent mass of 90 kDa was detected
using polyclonal antiserum raised against membrane fractions of rough ER [15]. Cell
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culture immunofluorescence analysis using these anti-rough ER antibodies revealed an
extensive, reticular network of membrane occupying the entire cytoplasm and extending
to the nuclear membrane [15]. However, it was not until a decade later when the 90 kDa
phosphoprotein (referred to as pp90) was identified as being associated with ER signal
sequence receptor complexes in canine pancreatic microsomes [16]. Two other research
groups simultaneously reported the identification of p88 (reported as an 88 kDa protein) in
transient association with partially assembled class I major histocompatibility molecules
in murine lymphoma cell lines [17] and IP90 (reported as a 90 kDa intracellular protein)
interacting with T-cell antigen and B-cell antigen receptor complexes [18]. Molecular
cloning and characterization of the canine IP90 cDNA revealed that its encoded protein
was a type I ER membrane protein [16]. Due to its Ca2+-binding properties [16] and a high
degree of amino acid sequence similarity with calreticulin [19], a major Ca2+-binding ER
resident protein, the pp90 protein was named calnexin [16,20–22]. Since then, calnexin has
been observed to interact transiently with a wide array of nascent membrane or soluble
N-linked glycoproteins.

Calnexin, together with calreticulin and ERp57 (also known as PDIA3) [23], forms
the core components of a pathway that facilitates the folding and quality control of newly
synthesized proteins with N-linked carbohydrate side chains [24,25]. This folding pathway
has been widely studied and therefore well characterized and described in several excellent
review articles [26–31]. Today it is well established that calnexin is ubiquitously expressed
in all cells containing the ER membrane. It is highly conserved among different species
(Figure 1), with its intraluminal domain responsible for chaperone function displaying the
highest level of conservation and indicating the evolutionary importance of the chaperone
domain of calnexin. Calnexin can be found distributed within different ER membrane sub-
domains, including a variety of ER membrane contact sites [32] such as perinuclear rough
ER contacts with the ribosome–translocon complex [33,34], smooth ER, nuclear envelope
and the mitochondria/ER contact sites (also referred to as the mitochondria-associated
membrane [12,35]. The characteristic distribution of calnexin molecules within ER mem-
branes is controlled by the post-translational modifications including palmitoylation and
phosphorylation at its C-terminal domain, which are discussed later. Moreover, it was
initially reported that calnexin is present on the cell surface of immature thymocytes in
a complex with the CD3 antigen due to incomplete ER retention [36,37]. Other studies
have detected small amounts of calnexin on the cell surface of various cell types [38]; the
redistribution of calnexin between ER and plasma membranes was proposed to be con-
trolled by the state of calnexin C-terminal domain phosphorylation and association with
phosphofurin acidic cluster sorting protein 2 (PACS-2) [39]. Moreover, plasma membrane
localization of calnexin has been detected in cancerous tumors such as oral squamous cell
carcinoma and melanoma [40] while another study reported calnexin as being secreted in
the serum of lung cancer patients, making calnexin a possible sero-diagnostic marker [41].

2.1. Calnexin-Deficient Animal Models

Much of the early work on calnexin focused on biochemical and cellular aspects. Thus,
animal models lacking calnexin were created to gain insight into its physiological impor-
tance. D. melanogaster has three genes encoding calnexin among which calnexin99A has
the highest similarity with mammalian calnexin [44]. Mutations in calnexin99A affected
the maturation and function of rhodopsin, which in turn led to age-dependent retinal
degeneration [44]. Additionally, calnexin99A mutants displayed impaired Ca2+ buffering,
which contributed to the development of the retinal degeneration possibly due to Ca2+

toxicity [44]. Inactivation of the calnexin gene in C. elegans resulted in developmental and
reproductive defects that were temperature sensitive [45]. These mutant worms also exhib-
ited growth impairment under calcium insufficiency [45]. Furthermore, RNAi-mediated
silencing of the calnexin gene resulted in suppressed necrotic-like cell death [46]. In D.
rerio (zebrafish), calnexin is required for the development of the mechanosensory system
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called the lateral line [47]. Upon the knockdown of calnexin, zebrafish exhibited reduced
posterior lateral line cell proliferation and increased ER stress-dependent apoptosis [47].

Figure 1. Amino acid sequence alignment of calnexin from different species. The default Clustal
X color scheme was used for similar/identical amino acid residues [42]: blue for hydrophobic, red
for positively charged, magenta for negatively charged, green for polar, cyan for aromatic, pink for
cysteine, orange for glycine, yellow for proline and no color for amino acid residues that are not
conserved. Dashes represent gaps in the amino acid sequence. The N-terminal signal sequence,
intraluminal domain, transmembrane domain and C-terminal domain are indicated based on human
calnexin protein topology. The numbering of amino acid residues referred to in the figure as well
as the text corresponds to the mature human calnexin protein. Alignment was performed using
Multiple Alignment using Fast Fourier Transform (MAFFT) high speed multiple sequence alignment
program (https://toolkit.tuebingen.mpg.de/tools/mafft; accessed 31 August 2022). Jalview [43] was
used to visualize amino acid alignment. Additional calnexin sequences from different species are
shown in Supplementary Figure S1.

https://toolkit.tuebingen.mpg.de/tools/mafft
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Two independent calnexin-deficient mouse strains have been generated [48,49]. Unlike
calreticulin deficiency which is embryonic lethal due to impaired Ca2+-dependent transcrip-
tional regulation resulting in defective cardiac development [50], calnexin-deficient mice
were born live but exhibited a high degree of neonatal lethality [48,49]. Calnexin-deficient
mice were born with neurological disorders that included severe ataxia [48,49]; however,
one functional calnexin allele is sufficient to prevent this defect [48]. The first study de-
scribed the high early postnatal mortality of calnexin-deficient mice [49] and surviving
mice exhibited ataxia due to the substantial loss of motor nerve fibers. The subsequent
study by Kraus et al. [48] found however that surviving calnexin-deficient mice were fertile,
had a normal life span, but were 30–50% smaller than their wild-type littermates. These
mice developed peripheral neuropathy abnormalities manifesting as gait disturbance with
instability, splaying of the hind limbs, tremors and a rolling walk but no reduction in the
numbers of neuronal fibers was apparent [48]. Additionally, another mouse strain express-
ing a mutant form of calnexin-lacking amino acid residues 103–242 (encoded by exons
4–6), which deleted the regions involved in disulfide bond formation (Cys141 and Cys175)
and carbohydrate binding (Tyr145 and Lys147), exhibited features that were identical to the
calnexin-deficient mice, suggesting that the loss of chaperone function was responsible for
the observed neurological defect [48,49]. Consistent with this idea, mice that only express
the truncated version of calnexin lacking the C-terminal domain do not have apparent
disturbances in motor function and display normal motor and sensory nerve conduction
velocities [51]. Surprisingly, calnexin-deficient mice display no apparent aberrations in
immune system development and function [48].

It is interesting to note that despite the ubiquitous presence of calnexin in all cells that
possess an ER network, the loss of calnexin in the whole organism does not produce a
common phenotype but rather manifests in a variety of phenotypes.

2.2. Calnexin as a Molecular Chaperone

It is predicted that more than 30% of all eukaryotic proteins are glycoproteins with
more than 90% of these containing N-linked sugars [52]. The folding and maturation of
newly synthesized glycoproteins in the ER is assisted by calnexin and its soluble ER lumen-
resident homolog, calreticulin. Whereas calnexin binds to glycans in protein domains that
are close to membranes, calreticulin interacts with glycans that extend deeper into the ER
lumen [31]. Immediately after the nascent polypeptide exits the translocon and enters the
ER lumen, oligosaccharyltransferase transfers dolichol-pyrophosphate-bound branched
core glycan to the sidechain nitrogen of the asparagine residue of the N-glycosylation con-
sensus sequence motif (Asn-X-Ser/Thr, where X is any amino acid except for proline) [53].
The branched core oligosaccharide is comprised of three terminal glucoses, nine mannoses,
and two N-acetyl-glucosamines (Glc3Man9GlcNAc2). After the glycosylation, N-linked
glycans are then processed by the subsequent action of endoplasmic reticulum (ER) glu-
cosidases I (GI) and II (GII) removing the outer and middle glucose residues, respectively.
As a result, the processing intermediate containing the single terminal glucose moiety is
specifically recognized by calnexin and calreticulin [24,54,55]. Additionally, using their
extended arm-like P-domains, calnexin and calreticulin recruit ERp57, cyclophilin B and
ERp29 (also known as PDIA9) [56–60] to promote glycoprotein folding and maturation.
Subsequently, the remaining innermost glucose moiety is removed by GII releasing the
glycoprotein substrate from the calnexin–calreticulin complex. If the protein is correctly
folded at this point, it is released from the ER and transferred to the Golgi apparatus to
continue its journey along the secretory pathway. However, if the protein has not reached
its native three dimensional conformation, it is re-glucosylated by the ER-folding sensor
uridine diphosphate (UDP)-glucose:glycoprotein glucosyl transferase (UGGT) facilitating
the re-association with calnexin and calreticulin for an additional round of the folding
cycle [61]. Thus, the protein can re-enter the calnexin/calreticulin cycle multiple times until
the native conformation is reached.
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If numerous folding cycles fail to properly fold the protein, the misfolded protein is
marked for degradation. Terminally misfolded glycoproteins and unassembled oligomers
are retro-translocated to the cytosol and are degraded by the ubiquitin-proteasome system,
a process known as ER-associated degradation (ERAD) [62]. This process is regulated
by ER α-mannosidase I [63] and ER degradation-enhancing α-mannosidase-like protein
(EDEM) [64]. Proteins undergoing multiple calnexin/calreticulin cycles are eventually
subjected to mannose trimming by ER α-mannosidase I converting Man9GlcNAc2-glycans
to Man8GlcNAc2 [65]. The slow kinetics of this enzyme essentially act as a timer for
repeated glycoprotein folding cycles [66]. As a result, Man8GlcNAc2 becomes less efficient
UGGT substrate [27] and instead is recognized by EDEM which acts as a signal triggering
ERAD [67]. EDEM directly interacts with calnexin and accepts terminally misfolded
glycoproteins upon mannose trimming [68,69]. This is followed by retro-translocation into
the cytosol where the misfolded proteins are polyubiquitinated which are then degraded
by the cytosolic 26S proteasome [70].

In the event of persistent ER stress and the extensive accumulation and aggregation of
misfolded proteins, a selective form of autophagy named ER-phagy is used to ensure the
timely removal of damaged ER [71]. During this process excessive or damaged portions
of ER are fragmented and sequestered through ER-phagy receptors by double-membrane
autophagic vesicles that eventually fuse with lysosomes for degradation [71]. It has been
shown that calnexin makes a stable complex with the ER-phagy receptor FAM134B [72]. In
collagen-producing cells calnexin acts as a co-receptor recognizing misfolded procollagen
molecules in the ER lumen triggering FAM134B to recruit and bind the autophagosome
membrane-associated protein LC3. In turn, this ER-phagy complex delivers a targeted
portion of ER that contains both misfolded procollagen and calnexin to the lysosome for
degradation [72]. Additionally, it has been shown that calnexin-FAM134B can facilitate the
clearance of proteasome-resistant polymers of α1-antitrypsin Z in ER through a different
vesicular transport pathway [73]. This pathway is known as the ER-to-lysosome-associated
degradation (ERLAD), since ER-derived vesicles containing misfolded proteins are not
encapsulated by autophagosomes but instead fuse with endosomes for degradation [73].

It was initially proposed that calnexin was an important factor in the development of
the immune system, considering its importance in the folding and quality control of secreted
and membrane-bound glycoproteins. It has been suggested that calnexin is involved in
the folding and assembly of major histocompatibility complex (MHC) class I, although
one study using a cultured cell model showed that these proteins can fold properly in the
absence of calnexin [74–80]. Additionally, calnexin participates in MHC class II [81], T-cell
antigen receptor (TCR) [21,82–85] and B-cell antigen receptor (BCR) [86–88] assembly and
maturation. However, since mice with whole-body calnexin deficiency display normal
immune function, it is apparent that calnexin is not essential for the development of the
immune system in this species [48].

3. Structure of Calnexin

The gene for human calnexin (CANX) is located towards the distal end of the long
arm of chromosome 5 (5q35.3 locus) spanning ~33 kbp and comprised of 15 exons [89]
(Figure 2). It makes a mature transcript of 4915 bp that is translated into a 592 amino acid
residue polypeptide.

Meanwhile, the mouse calnexin gene (Canx) is located on a reverse strand of the long
arm of murine chromosome 11 and has a similar arrangement but with only 14 exons
that are transcribed into a 4281 bp transcript which encodes a polypeptide of 591 amino
acid residues. The human calnexin polypeptide is a 67 kDa type-I integral membrane
protein but is often mistakenly referred to as a 90 kDa protein due to its high content of
acidic residues which electrostatically repel SDS resulting in an insufficient electromotive
incentive and a lowered electrophoretic mobility on SDS-PAGE. The calnexin polypeptide
is composed of three topological domains (Figures 2 and 3): an N-terminal ER intraluminal
domain, a transmembrane segment and a cytosol-facing C-terminal domain [16]. The ER
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luminal domain is responsible for chaperone function and thus is often referred to as the
folding module [56,90]. The transmembrane segment anchors calnexin to the ER membrane
and possibly also contributes to its chaperone function [91]. Finally, the 90 amino acid
long C-terminal domain is oriented towards the cytosol and undergoes several distinct
post-translational modifications [12,33,35,92–97].

Figure 2. Schematic linear sequence of the calnexin gene and its encoded protein. The human calnexin
gene is located on a forward strand of distal end of the long arm of chromosome 5 and is comprised
of 15 exons (of which 14 are protein-coding exons) transcribed to a mature transcript of 4915 bp that is
translated into a 592 amino acid residue polypeptide. Linear schematic representation of the calnexin
protein and the corresponding exons encoding the specific protein domains of calnexin. The white
boxes in the gene schematic diagram correspond to the untranslated regions of the first and last exons.
The calnexin protein schematic diagram shows the signal peptide (red), the luminal domain (green for
the N-domain and blue for the P-domain), the transmembrane domain (TM, yellow) and the cytosolic
C-terminal domain (orange). The hatched box represents a portion of the ER membrane. Four repeats
of Motif 1 and four repeats of Motif 2 are labelled as “11112222” and depict the proline-rich amino
acid sequence repeats in the P-domain. The ER retention signal (RKPRRE) is shown as the most distal
C-terminal amino acid sequence.

3.1. The ER Lumen-Localized N-Terminal Domain

The ER luminal domain of calnexin is responsible for its lectin-like chaperone function
and is the site for interaction with cyclophilin B, ERp29 and ERp57 [56–60]. It also contains a
20 amino acid residue N-terminal signal sequence that is responsible for targeting calnexin
into the ER. The crystal structure of the intraluminal portion of canine calnexin was solved
by Schrag et al. [99] at 2.9 Å resolution and revealed the asymmetry featuring two distinct
structural components comprised of a compact globular domain towards the N-terminus
(referred to as the N-domain) and an elongated arm-like proline-rich domain (referred
to as the P-domain) towards the C-terminus (Figure 4) [99]. The N-domain is composed
of concave and convex antiparallel β sheets that have six and seven β strands, respec-
tively, which together form a β-sandwich structure [99]. The calnexin luminal domain
co-crystallized with α-D-glucose revealed the site for the carbohydrate binding within
N-domain on the concave β sheet, where Tyr144, Lys146, Tyr165, Glu196 and Glu405 (coordi-
nates refer to the human calnexin amino acid sequence) form hydrogen bonds with glucose
hydroxyl groups, while the Met168 sidechain interacts with the glucose ring via van der
Waals interactions [99].
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Figure 3. Schematic representation of full-length membrane-embedded calnexin. Calnexin (Protein
Data Bank DOI: 10.2210/pdb1JHN/pdb) has three domains: luminal domain (comprised of N
and P subdomains), transmembrane domain and C-terminal domain (no experimental structural
information available). The yellow circle depicts a bound Ca2+ ion. The numbering of amino acid
residues in the C-terminal domain is relative to the mature N-terminus. The transmembrane domain
was modelled based on molecular dynamics simulation performed by Lakkaraju et al. [34] and shows
that Pro494 introduces a kink in the helix located approximately at the midpoint of the domain. The
C-terminal domain was modelled using AlphaFold [98]. The calnexin C-terminal domain undergoes
distinct post-translational modifications including palmitoylation at Cys482 and Cys483 [35] (shown
in blue); sumoylation at Lys505 [96] (shown in green); and phosphorylation at Ser534, Ser544 and
Ser563 [97] (shown in red); Asp539 proteolytic cleavage site (shown in black). Known and potential
sites of post-translational modifications in the calnexin C-terminal domains of various species are
shown in Supplementary Figure S1.

The P-domain [100] extends 140 Å away from the N- domain and forms a large hairpin
loop (Figure 4). This loop consists of two types of motifs (Motif 1 and Motif 2) of proline-rich
sequence repeats bearing the consensus sequence of I-DP(D/E)A-KPEDWD(D/E) and G-
W-P-IN-P-Y, respectively. Each motif is repeated four times and arranged in a linear manner
‘11112222’ where four repeats of motif 1 extend away from the N-globular domain and then
fold back onto the strand with four repeats of motif 2. Every copy of motif 1 interacts with
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a copy of motif 2 in a head-to-tail fashion [99]. This hook-like arm is further stabilized via
hydrophobic interactions of conserved isoleucine residues [26]. In addition, there are three
regions of high amino acid sequence similarity, flanking the repeat motifs. Both N-globular
and P-domain harbors one disulfide bond: Cys140–Cys174 and Cys340–Cys346, respectively,
in the human calnexin sequence [99].

Figure 4. Crystal structure of the calnexin luminal domain and its characteristics. (A) Crystal structure
of the calnexin intraluminal domain. The globular N-globular domain is shown in green while the
P-domain is depicted in yellow. (B) Calnexin putative Ca2+-binding site, showing a Ca2+ ion (yellow
circle) coordinated by Asp416, Asp97, Ser54 and potentially Lys98. (C) Calnexin carbohydrate binding
site, showing the sidechains of Tyr144, Lys146, Tyr165, Glu196, Glu405 and Met168 involved in the
binding of carbohydrate moieties.

Early studies indicated that calnexin harbous multiple low affinity Ca2+ binding sites
in both the N- and C-terminal regions [16,89]. However, the three-dimensional structure
of the luminal domain revealed only a single putative Ca2+ binding site coordinated
by Asp416, Asp97 and Ser54 [99]. This Ca2+ binding site is highly conserved between
calnexin and calreticulin, as the P-domain of calreticulin also binds a single Ca2+ ion with
high affinity [101] through Asp328 (refers to human calreticulin; homologous to Asp416 in
calnexin), Gln26, Lys62, and Lys64, with two water molecules [99]. Moreover, the binding
of Ca2+ to the ER luminal portion of calnexin plays a structural role by triggering Ca2+-
dependent conformational changes [102]. In addition, the calnexin luminal domain was
shown to bind Zn2+ and ATP; both regulate conformational changes [102], while ATP alone
enhances the aggregation suppression abilities in vitro, even though no ATPase activity
has been reported [103], and Zn2+ facilitates the binding of ERp57 [104].

3.2. The Transmembrane Domain

Using a molecular dynamics simulation, a single transmembrane spanning domain
comprised on an α-helix was predicted for calnexin. The Pro494 (refers to the human
calnexin sequence) at approximately the midpoint of the α-helix introduces a tilt of ~30◦

with respect to the surface of the membrane (Figure 3) [34]. Replacement of the Pro494 with
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leucine to remove the kink in the transmembrane helix negatively affects the interaction
between calnexin and the ribosome–translocon complex [34]. It was proposed that the
anchoring of calnexin to the ER membrane facilitates its association with membrane-bound
substrates, enhancing its chaperone function [91].

3.3. The Cytosolic C-Terminal Domain

Much of the work characterizing the function of calnexin has focused on the intralu-
minal and transmembrane domain and consequently little is known about the C-terminal
domain. It is known that the C-terminal domain plays an important role in the retention of
calnexin in the ER as this domain contains the RKPRRE motif, which acts as an ER retention
sequence [105]. To date, no structural information about the calnexin C-terminal domain is
available. This highly acidic 90 amino acid long segment (theoretical pI of 4.52 for human
calnexin) faces the cytosol and is thought to be flexible and unstructured [16,26]. The acidic
nature of this domain contributes to the unusual electrophoretic mobility of the calnexin
in SDS-PAGE. Based on the number of amino acids encoded by the calnexin mRNA, the
predicted molecular mass of calnexin is 67 kDa. However, the apparent molecular mass
of calnexin on SDS-PAGE gels is dramatically increased to 90 kDa protein. The anionic
character of the calnexin C-terminal domain imparts this domain with multiple low affinity,
but high capacity Ca2+-binding sites [87].

4. Post-Translational Modifications of the Calnexin C-Terminal Domain

Unlike the compact luminal domain of calnexin, the cytosol-exposed C-terminal
domain appears to be unstructured which makes it easily accessible. Indeed, re-
cent studies have found that the cytosol-exposed C-terminal domain undergoes post-
translational modifications, which include palmitoylation [92–94], phosphorylation,
sumoylation [12,33,35,95–97] and proteolytic cleavage [10] (Figure 3).

4.1. Palmitoylation

Calnexin is palmitoylated at both juxtamembranous cysteines Cys502 and Cys503 (or
Cys482 and Cys483 counting from the mature N-terminus) by an ER palmitoyltransferase
DHHC6 [34]. Over 90% of calnexin molecules are S-acylated at a steady state suggesting
that the cell maintains constant pamitoylation-depalmitoylation cycles of calnexin [34].
Moreover, molecular dynamics simulations predicted that upon palmitoylation, the C-
terminal domain adopts different conformations with respect to the transmembrane helix
axis suggesting that palmitoylation might affect the capacity and/or selectivity of calnexin
to interact with additional proteins outside the ER via its cytosolic C-terminal domain.
Palmitoylation at Cys503 was predicted to have a more prominent effect on the conformation
of the C-terminal domain, suggesting possible functional/regulatory difference between
Cys502 and Cys503 state of palmitoylation. Using both computational and experimental
approaches, it has been shown that the calnexin half-life increases 9-fold upon palmitoyla-
tion [106]. As a functional consequence, the palmitoylation of both cysteines preferentially
localizes calnexin to the perinuclear rough ER while also facilitating the association with
the ribosome–translocon complex. This association was shown to be crucial for chaperone
function, as calnexin can capture its substrates as they emerge through translocon [34].
Other studies have also shown that palmitoylated calnexin is localized to the mitochondria-
ER contact sites [107,108], where it interacts and controls sarco-endoplasmic reticulum Ca2+

transport ATPase 2b (SERCA2b) [13], an interaction that modulates ER-mitochondria Ca2+

signaling [11,12,35]. It has been shown that upon short-term ER stress, the pool of palmi-
toylated calnexin is reduced, shifting non-palmitoylated calnexin localization to rough ER
where it interacts with ERp57 to facilitate protein folding and quality control [12]. Further
studies should help to clarify the impact of calnexin redistribution on the remodeling of
cellular processes and the regulation of cellular function.



Cells 2023, 12, 403 10 of 16

4.2. Phosphorylation

Calnexin harbors three phosphorylation sites in its C-terminal domain: Ser534, Ser544

and Ser563 (in the human calnexin sequence). These sites are known to be phosphory-
lated by casein kinase CK2 (at Ser534 and Ser544) [97,109] and extracellular signal-regulated
kinase-1 ERK-1 (at Ser563) [33]. ERK-1 is activated by mitogen-activated protein kinase 1
MEK1 under conditions that promote protein misfolding [110]; therefore, the phosphory-
lation state of Ser563 exemplifies calnexin function in ER quality control. Upon ER stress,
detection of misfolded protein accumulation leads to ERK-1 activation and enhanced cal-
nexin phosphorylation at Ser563 which in turn leads to the specific recruitment of calnexin
to ER-membrane bound ribosomes. This specific recruitment facilitates calnexin function
as a chaperone to enhance glycoprotein quality control at the ER ribosome–translocon
complex by prolonging its association with unfolded proteins [33,95]. In synergy with
the phosphorylation of Ser563, the phosphorylation of Ser534 and Ser544 by CK2 further
promotes calnexin–ribosome interaction [33]. Moreover, the phosphorylation of these two
residues disrupts calnexin interaction with phosphofurin acidic cluster sorting protein 2
(PACS-2), a key regulator of mitochondria/ER contact sites [111], thus shifting calnexin
distribution from these sites to rough ER [39]. Another study also showed that calcineurin,
a Ca2+-dependent phosphatase, dephosphorylates Ser563 [112] thereby controlling the phos-
phorylation status of Ser563 which was shown to also modulate calnexin interaction with
SERCA2b which in turn regulate intracellular Ca2+ oscillations [13]. Taken together, phos-
phorylation of calnexin in its C-terminal domain illustrates another level of complexity in
controlling calnexin distribution among different ER membrane subdomains and therefore
influences its function.

4.3. SUMOylation

Sumoylation is a type of post-translational modification involving the covalent at-
tachment of the small ubiquitin-related modifier (SUMO) protein (∼10 kDa) to certain
proteins [113]. Calnexin interacts with sumoylation E2 ligase UBC9 via its C-terminal
domain and undergoes sumoylation at Lys505 [96]. Sumoylated calnexin interacts with
protein tyrosine phosphatase 1B PTP1B [96], linking the protein quality control pathway
with insulin and leptin signaling [114].

4.4. Proteolytic Cleavage

It was previously reported that apoptotic stimuli caused calnexin to undergo prote-
olytic cleavage at its C-terminal domain by either caspase-3 or caspase-4 at a DXXD site
resulting in the attenuation of apoptosis [9]. Another study showed that cells stimulated
with epidermal growth factor (EGF) triggers caspase-8-dependent proteolytic cleavage of
the calnexin C-terminal domain at Asp519 yielding a 63 amino acid peptide [10] that translo-
cates to the nucleus where it makes a stable complex with Protein Inhibitor of Activated
STAT 3 (PIAS3) thus preventing PIAS3 from inhibiting Signal Transducer and Activator of
Transcription 3 (STAT3). Palmitoylation of calnexin, which targets it to mitochondria/ER
contact sites, is required for EGF-induced cleavage of calnexin whereas ER stress prevents
its proteolytic cleavage [10].

Despite some variation in the calnexin C-terminal primary structure (Figure S1), the
positions of Cys502, Cys503, Ser563, Ser534, Ser544, Lys505, which represent sites for post-
translational modifications (Figure 3), are moderately conserved (ranging from 44 to 65%)
suggesting similar modifications might also occur in different organisms.

5. The Calnexin C-Terminal Domain, a Cytosol-ER Regulatory Nexus

In addition to modifying enzymes, recent studies have found that the C-terminal
domain of calnexin interacts with a variety of proteins [14,96,115–118] which, depending
on the type of modifications introduced, have a substantial impact on cellular homeostasis
and function. Some of the cellular processes affected by the post-translational modification
of the C-terminal domain have already been described in the preceding section.
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Endocytosis is an example of a cellular process that is altered via the calnexin C-
terminal domain. It has been found that the binding of SGIP1 to the calnexin C-terminal
domain inhibits clathrin-dependent endocytosis in neuronal cells, and the absence of
calnexin in mice causes an increased endocytosis in the nervous system [15]. Cellular
efflux of substrate cholesterol is similarly altered via the calnexin C-terminal domain. The
binding of the human immunodeficiency virus (HIV) protein Nef to ABCA1, the main
cellular cholesterol transporter, disrupts the interaction of calnexin with ABCA1, leading
to its retention in the ER and eventual degradation, thereby inhibiting ABCA1-dependent
cholesterol efflux [119]. The accumulation of HIV-infected cells accumulate cholesterol in
HIV infected cells leads to the increased formation of plasma membrane lipid rafts which
serve as sites of HIV entry, assembly, and budding [120]. Moreover, Nef promotes the
interaction calnexin with the HIV glycoprotein protein gp160 enhancing HIV envelope
protein maturation [119].

Further insight into the pathophysiological relevance of the calnexin C-terminal do-
main was provided by recent studies on a complex formed by the calnexin C-terminal
domain and the cytosolic protein Fabp5 (also referred to as epidermal fatty acid binding
protein). This unexpected complex was detected during a search for calnexin interaction
partners using the yeast two-hybrid system [118]. While whole-body calnexin deficiency
leads to myelinopathy in mice [48], loss of calnexin also causes resistance to induction
of experimental autoimmune encephalomyelitis (EAE), a model of inflammatory central
nervous system demyelination, coincident with the phenotype of whole-body Fabp5 defi-
ciency [121,122]. In fact, deletion of the calnexin cytosolic C-terminal domain, the site for
Fabp5 interaction, is sufficient to impart resistance to EAE induction [51]. This resistance
due to the inhibition of circulating T-cell infiltration across endothelial cells of the blood–
brain barrier when the formation of the complex between calnexin C-terminal domain and
Fabp5 was prevented [51,121]. In contrast, experiments using a cell culture model of the
blood–brain barrier demonstrated that promoting the formation of the calnexin/Fabp5 com-
plex enabled T-cells to traverse the endothelial cells of the blood–brain barrier model [51].
It is possible that the stable interaction of Fabp5 with the calnexin C-terminal domain
prevents calnexin from interacting with other regulatory proteins or from redistributing to
subdomains of the ER membrane system.

The ability of the calnexin C-terminal domain to undergo distinct post-translational
modifications and interact with regulatory proteins suggests that the calnexin C-terminal
domain is a dynamically modifiable segment of a key ER-resident protein that acts as an
interface for facilitating communication between cytosolic and ER processes.

6. Summary

Calnexin was first characterized as a molecular chaperone in the ER. The structure of
calnexin resembles calreticulin, another ER-resident chaperone and Ca2+-binding protein.
Calnexin and calreticulin, along with additional accessory ER proteins that include ERp57,
participate in the calnexin/calreticulin cycle responsible for the folding and maturation
of glycosylated proteins synthesized in the ER some of which are destined for cellular
export. Unlike calreticulin however, calnexin is anchored to the ER membrane via its
transmembrane domain and its C-terminal domain that extends to the cytosol. Recent
studies have discovered that the calnexin C-terminal domain is subject to post-translational
modification featuring lipidation, sumoylation, phosphorylation and proteolytic cleavage.
These modifications result in the redistribution of calnexin within ER membranes and
are associated with the remodelling of cellular processes. Other cytosolic proteins have
also been found to interact with the calnexin C-terminal domain and influence cellular
function, indicating that these interactions are important in integrating cytosolic and ER
events. These findings help pave the way towards the identification and characterization
of new calnexin functions, in addition to its well-recognized role as a molecular chaperone.
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