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Abstract: Background. Although several studies have examined the association between chronic
kidney disease (CKD) and hyperuricemia (HUA), the direction of the association remains unclear.
We aimed to investigate whether there was a bidirectional association between them. Methods.
The present study was conducted in three analyses. Analysis I included 25,433 participants free of
HUA at baseline to evaluate the associations between CKD and estimated glomerular filtration rate
(eGFR) with incident HUA. Analysis II had 28,422 participants free of CKD at baseline to analyze
the relationships between HUA and serum uric acid (sUA) with new-onset CKD. Cox proportional
hazards regression models were applied to evaluate the association involved in Analysis I and II.
Analysis III included 31,028 participants with complete data and further dissected the bidirectional
association between sUA and eGFR using cross-lag models. Results. New-onset HUA and CKD were
observed in the first round of the follow-up study among 1597 and 1212 participants, respectively. A
significantly higher risk of HUA was observed in individuals with CKD compared to individuals
without CKD (HR = 1.58, 95% CI: 1.28–1.95). The adjusted HRs (95% CIs) of HUA were 3.56 (2.50–5.05)
for the participants in the group of eGFR less than 60 mL·min−1·1.73 m−2, 1.61 (1.42–1.83) for those in
the group of eGFR between 60 and 90 mL·min−1·1.73 m−2, and 1.74 (1.42–2.14) for those in the group
of eGFR more than 120 mL·min−1·1.73 m−2, compared with the group of eGFR between 90 and
120 mL·min−1·1.73 m−2. A higher risk of CKD was also observed in individuals with HUA compared
to individuals without HUA (HR = 1.28, 95% CI: 1.12–1.47). Compared with the first quintile of sUA,
the adjusted HR (95% CI) of CKD was 1.24 (1.01–1.51) for the participants in the fourth quantile.
There was a bidirectional relationship between sUA and eGFR, with the path coefficients (ρ1 = −0.024,
p < 0.001) from baseline eGFR to follow-up sUA and the path coefficients (ρ2 = −0.015, p = 0.002)
from baseline sUA to follow-up eGFR. Conclusions. The present study indicated that CKD and HUA
were closely associated, and there was a bidirectional relationship between sUA and eGFR.

Keywords: chronic kidney disease; hyperuricemia; estimated glomerular filtration rate; cross lag
panel model; cohort study

1. Introduction

Chronic kidney disease [1] (CKD) is defined as a glomerular filtration rate (GFR)
<60 mL·min−1·1.73 m−2 or the presence of one or more markers of renal injury for at least
3 months, which include albuminuria, abnormal urine sedimentation, and histological or
structural abnormalities of the kidney. Patients with CKD are often complicated with car-
diovascular disease (CVD) and progressing to end-stage kidney disease (ESKD). Therefore,
CKD has a high risk of death and a heavy disease burden, which has become an urgent
public health problem to be solved in China and even the world [2,3]. Over the past few
decades, the global prevalence of CKD and the number of deaths caused by CKD have
been increasing year by year. The overall global prevalence of CKD in 2017 was 9.10%.
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From 1990 to 2017, the global all-age CKD mortality rate increased 41.50%, and the ranking
of causes of death also rose from 17th in 1990 to 12th [4,5]. Although the etiology of CKD is
still unclear, it is significant to prevent the occurrence or delay of the progression of CKD
by identifying the risk factors of CKD and intervening, which can reduce the risk of death
and the disease burden of CKD [6].

Hyperuricemia (HUA) was not only found to predict the risk of cardiovascular
disease [7] and metabolic syndrome [8]. Still, it was also considered one of the inde-
pendent risk factors for the development of CKD, and the risk of CKD increased with the
increase of serum uric acid (sUA) [9,10]. Accordingly, several cross-sectional studies have
shown a significantly increased risk of HUA in people with CKD or reduced estimated
glomerular filtration rate (eGFR) [11–13]. However, limited by their research design, the
direction of their causal association cannot be determined, i.e., whether HUA is a cause
or a consequence of CKD remains unclear, and longitudinal studies on them are still
very limited.

Therefore, based on the above findings and the negative association between sUA
and eGFR [14,15], we hypothesized that there is a bidirectional relationship between HUA
and CKD, with HUA and CKD as follow-up outcomes in this cohort study, respectively.
To clarify the associations between CKD and eGFR at the baseline and dynamic change
of eGFR with incident HUA and the associations of HUA and sUA at the baseline and
the dynamic change of sUA with new-onset CKD. Then, based on eGFR and sUA at the
baseline and first-round follow-up, a cross-lagged panel model [16] was constructed to
demonstrate the causal association and verify the bidirectional relationship between them.

2. Materials and Methods
2.1. Study Design and Participants

The participants were all drawn from the Jinchang cohort [17], an ongoing prospective
cohort study in Jinchang City, Gansu Province, China, based on the biennial physical
examination of all employees of Jinchuan Nonferrous Metals Company (JNMC). From June
2011 to December 2013, a total of 48,001 participants completed the cohort baseline survey,
and 33,355 participants completed the first round of follow-up survey from January 2014 to
December 2015, with a median follow-up time of 2.2 years.

This study was conducted in three analyses. Analysis I included 25,433 participants
free of HUA at baseline to explore the associations between CKD, eGFR, and dynamic
change of eGFR with incident HUA. Analysis II included 28,422 participants without CKD
at baseline to analyze the relationships between HUA, sUA, and the dynamic change of
sUA with new-onset CKD. Analysis III included 31,028 participants with complete data
and further dissected the bidirectional association between sUA and eGFR. The specific
inclusion and exclusion criteria and process of the study were shown in Figure 1.

2.2. Data Collection

The research data used in this study were derived from the Jinchang cohort baseline
survey and the first round of follow-up surveys, including epidemiological questionnaires,
physical examinations, and clinical biochemical examinations. Our research team designed
the standardized and structured epidemiological questionnaires to collect basic sociodemo-
graphic information (age, gender, education, occupation, etc.), behavioral characteristics
(smoking, drinking, exercise, etc.), and medical history of the participants. Uniformly
trained interviewers conducted the questionnaire survey through one-on-one and face-to-
face interviews. During the survey, it was ensured that the respondents clearly understood
the content of the questionnaire, avoiding inducing questions, and cross-checking was
conducted after completing the survey.
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The physical examination and clinical biochemical examination were completed by
the clinical staff of the Workers’ Hospital of the Jinchuan Company, including height,
weight, blood pressure, and various clinical biochemical indexes. Height and weight were
measured by a computerized body scale (SK-X80/TCS-160D-W/H, Sonka, China) when
the participants took off their shoes and wore light clothes. Body mass index (BMI) was
calculated as weight in kilograms divided by height in meters squared (kg·m−2). The
blood pressure in a sitting position was measured by an electronic sphygmomanometer
(BP750, AMpall, Seoul, Korea) three times continuously after at least 10 min of rest, and
the average values were taken. Before venous blood collection, all participants were
instructed to fast for at least 8 h. The clinical biochemical examination was detected by an
automatic biochemical analyzer (Hitachi 7600-020, Kyoto, Japan), mainly including serum
creatinine (Scr), sUA, total cholesterol (TC), fasting plasma glucose (FPG), triglyceride
(TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol
(LDL-C).

2.3. Study Outcomes and Related Definitions

CKD [1] was defined in this study as the presence of abnormal glomerular filtration
rate (eGFR < 60 mL·min−1·1.73 m−2) or proteinuria (urine dipstick reading ≥ 1+), of which
eGFR was estimated according to the Chronic Kidney Disease Epidemiology Collaboration
equation (CKD-EPI), based on Scr, age, and gender [18]. Reduced eGFR was defined when
it was less than 60 mL·min−1·1.73 m−2, otherwise normal. The eGFR estimated at baseline
and the first round of follow-up were combined to define the type of dynamic changes in
eGFR level, with the N-N group representing normal eGFR at baseline and follow-up, the
N-R group representing normal eGFR at baseline and reduced eGFR at follow-up, the R-N
representing reduced eGFR at baseline and normal eGFR at follow-up, and the R-R group
representing reduced eGFR at both baseline and follow-up.
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According to the internationally accepted epidemiological diagnostic criteria, HUA [19]
in this study was defined as sUA >420 µmol/L in males and sUA >360 µmol/L in females,
otherwise normal. The sUA measured at baseline and the first round of follow-up were com-
bined to define the type of dynamic changes in sUA level, with the N-N group representing
normal sUA at the baseline and the follow-up, the N-H group representing normal sUA at
the baseline and hyperuricemia at the follow-up, the H-N representing hyperuricemia at
the baseline and normal sUA at the follow-up, and the H-H group representing elevated
sUA at both the baseline and the follow-up.

2.4. Covariates

Smokers were those who smoked at least one cigarette a day for more than 6 months,
and non-smokers were those who never smoked or who smoked occasionally but did not
meet the definition of a smoker. Ex-smokers were those who used to smoke but had not
smoked for more than 6 months. Drinkers were those who drank liquor or other spirits,
wine or other fruit wine, beer, and other alcohol at least once a week for more than 6 months,
and non-drinkers were those who never drank or drank occasionally but did not meet the
definition of drinkers. Ex-drinkers were those who used to drink but had not drunk for
more than 6 months. Physical exercise was divided into three types: no, occasionally, and
often exercise. Occasionally exercise was defined as exercise less than 3 times a week and
exercise more than 30 min on average, and often exercise was considered as exercise at least
3 times a week for more than 30 min each time. Hypertension was defined as self-reported
physician-diagnosed hypertension or definite clinical records of hypertension or blood
pressure ≥140/90 mmHg (1 mm Hg = 0.133 kPa). Diabetes was defined as self-reported
physician diagnosis of diabetes or definite clinical records of diabetes or fasting blood
glucose ≥7.0 mmol/L.

2.5. Statistical Analysis

Participants’ baseline characteristics were presented as means ± standard deviation
(SD) for continuous variables and numbers (percentages) for categorical variables. Com-
parison of continuous variables between groups using the Student’s t-test and chi-squared
test for categorical variables. Hazard ratios (HRs) with 95% confidence intervals (95% CIs)
were calculated to estimate the associations between CKD, eGFR at baseline and dynamic
change of eGFR with incident HUA and the associations of HUA, and sUA at baseline and
dynamic change of sUA with new-onset CKD by using Cox proportional hazards regression
models, including Model 1 and Model 2. None of the covariates were adjusted for Model 1,
covariates that were included in Model 2 were those that altered the hazard ratios for the
effect of CKD and HUA by more than 5% in Analysis I and Analysis II, respectively, and all
of the covariates were in the form of categorical variables. Finally, the covariates included
in Model 2 of analyses I were age (<45 years, 45–64 years, ≥65 years), gender (male, female),
BMI (<24.0 kg·m−2, 24.0–27.9 kg·m−2, ≥28 kg·m−2), education (junior high school or be-
low, high school, junior college, bachelor’s degree or above), smoking status (non-smoker,
smoker, ex-smoker), drinking status (non-drinker, drinker, ex-drinker), hypertension (no,
yes), TC (≤4.20 mmol/L, 4.21–2.00 mmol/L, ≥5.01 mmol/L) at baseline. The covariates in-
cluded in Model 2 of analyses II were age (<45 years, 45–64 years, ≥65 years), gender (male,
female), BMI (<24.0 kg·m−2, 24.0–27.9 kg·m−2, ≥28 kg·m−2), smoking status (non-smoker,
smoker, ex-smoker), drinking status (non-drinker, drinker, ex-drinker), diabetes (no, yes),
hypertension (no, yes), TG (≤1.20 mmol/L, 1.21–2.00 mmol/L, ≥2.01 mmol/L) at baseline.
Stratified analyses were performed according to age gender, BMI, smoking, and drinking
status. Likelihood ratio tests were used to investigate interactions. Restricted cubic splines
were used to investigate the possible nonlinear relationship between eGFR with incident
HUA and sUA with new-onset CKD. Knots were placed at the 5th, 35th, 65th, and 95th
percentiles, with the 50th percentiles set as a reference for sUA and eGFR, respectively.

The cross-lag panel model was used to analyze the bidirectional association between
sUA and eGFR. The multiple regression equations of baseline and follow-up sUA, eGFR,
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and covariates were constructed before the analysis separately. The residuals of the above
equations were taken and normalized by Z-transformation (mean = 0, SD = 1), and then
the path coefficients were estimated by R package “lavaan”. The covariates included in
Analysis III were follow-up time, age, gender (male, female), BMI, TC, TG, diabetes (no, yes),
hypertension (no, yes), smoking status (non-smoker, smoker, ex-smoker), drinking status
(non-drinker, drinker, ex-drinker), education (junior high school or below, high school,
junior college, bachelor’s degree or above) when they were not the strata variables, among
which the multi-categorical variables smoking, drinking and education were included in
the model as dummy variables. The comparative fit index (CFI) and root-mean-square
residual (RMR) were used to evaluate the model fitting, with CFI > 0.90 and RMR < 0.50
representing a good fit. Differences between path coefficients were tested by Fisher’s Z to
identify the main causal sequential effect.

Several sensitivity analyses were also conducted. To avoid possible reverse causality,
we performed sensitivity analyses after excluding participants who experienced outcomes
during the first 2 years of follow-up in both Analysis I and II. To avoid possible bias in
the glomerular filtration rate estimation equation, we estimated GFR using the modified
Modification of Diet in Renal Disease (MDRD) equation and then assessed the bidirectional
association between it and sUA. In addition, we reassessed the bidirectional relationship
between sUA and eGFR after excluding patients with gout at baseline in Analysis III.

All statistical analyses were performed with SAS program, version 9.4 (SAS Institute
Inc., Cary, NC, USA) and R software (R Foundation for Statistical Computing), version 4.2.1.
All statistical tests were two-sided, and p < 0.05 was considered statistically significant.

3. Results
3.1. Baseline Characteristics

Among 25,433 participants eligible for Analysis I, participants with CKD at baseline
had lower HDL-C and eGFR levels, and higher BMI, SBP, DBP, FPG, TC, TG, LDL-C, and
sUA levels. They were more likely to be older, male, and have a higher proportion of
diabetes and hypertension (Supplementary Table S1). Among 28,422 participants eligible
for Analysis II, participants with HUA at baseline had lower HDL-C, and eGFR levels, and
higher BMI, SBP, DBP, FPG, TC, TG, LDL-C, and sUA levels. They were more likely to be
older, male, and have a higher proportion of hypertension (Supplementary Table S2). The
baseline characteristics among the 31,028 individuals eligible for Analysis III were shown
in Supplementary Table S3.

3.2. Analysis I: Associations between CKD, eGFR at Baseline, and Dynamic Changes of eGFR with
New-Onset HUA

Among 25,433 participants, 1597 new-onset HUA were observed during 56,698.43
people’s years of follow-up, with an incidence density of 28.17/1000 person/year. As
shown in Table 1 and Figure 2, a significantly higher risk of HUA was observed in indi-
viduals with CKD compared to individuals without CKD. The adjusted hazard ratio (HR)
and 95% confidence interval (CI) were 1.58, 1.28–1.95, respectively. Results of stratified
analyses showed that the association of CKD with risk of HUA was more evident among
participants who were between 45 and 64 years old, female, ex-smoker and ex-drinker,
or had a BMI < 24.0 kg·m−2, while no significant interaction was observed except for age
(p for interaction = 0.010) and gender (p for interaction = 0.023; Figure 3).

Moreover, in addition to lower eGFR, an association between higher eGFR with
new-onset HUA was also observed. Compared with group 3 of eGFR, the adjusted HRs
(95% CIs) of HUA were 3.56 (2.50–5.05) for the individuals in the group1, 1.61 (1.42–1.83)
for those in group 2, and 1.74 (1.42–2.14) for those in group 4 (Table 1). In addition, after
adjusting for those same covariates as Model 2 in Table 1, except in subgroups aged between
45 and 64 years, older than 65 years, and white-collar workers, the results of restricted cubic
spline showed that there were U-shaped relationships between eGFR with incident HUA
(Supplementary Figure S1).
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Table 1. Associations between CKD and eGFR at baseline with new-onset HUA.

N No of Events (%)
Model 1 Model 2

HR (95% CI) p Value HR (95% CI) p Value

CKD at Baseline
Non-CKD 24,684 1502 (6.08%) 1.00 1.00
CKD 749 95 (12.68%) 1.94 (1.58–2.39) <0.001 1.58 (1.28–1.95) <0.001

Groups of eGFR
(mL·min−1·1.73 m−2)

Group1 (<60) 135 35 (25.93%) 3.88 (2.77–5.43) <0.001 3.56 (2.50–5.05) <0.001
Group2 (60~<90) 3689 438 (11.87%) 1.72 (1.53–1.92) <0.001 1.61 (1.42–1.83) <0.001
Group3 (90~<120) 19,191 999 (5.21%) 1.00 1.00
Group4 (≥120) 2418 125 (5.17%) 1.74 (1.44–2.10) <0.001 1.74 (1.42–2.14) <0.001

Model 1 was not adjusted for any covariates. Model 2 was adjusted for age (<45 years, 45–64 years, ≥65 years),
gender (male, female), BMI (<24.0 kg·m−2, 24.0–27.9 kg·m−2, ≥28 kg·m−2), education (junior high school
or below, high school, junior college, bachelor’s degree or above), smoking status (non-smoker, smoker,
ex-smoker), drinking status (non-drinker, drinker, ex-drinker), hypertension (no, yes), TC (≤4.20 mmol/L,
4.21–2.00 mmol/L, ≥5.01 mmol/L) at baseline. CKD, chronic kidney disease; eGFR, estimated glomerular
filtration rate; HUA, hyperuricemia; HR, hazard ratio; CI, confidence interval.
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Analyses were adjusted for age (<45 years, 45–64 years, ≥65 years), gender (male, fe-
male), BMI (<24.0 kg·m−2, 24.0–27.9 kg·m−2, ≥28 kg·m−2), education (junior high school or
below, high school, junior college, bachelor’s degree or above), smoking status (non-smoker,
smoker, ex-smoker), drinking status (non-drinker, drinker, ex-drinker), hypertension (no,
yes), TC (≤4.20 mmol/L, 4.21–2.00 mmol/L, ≥5.01 mmol/L) at baseline when they were
not the strata variables.

Importantly, a remarkably higher risk of HUA was observed in participants with a
sustained reduction in eGFR. Compared with the group of N-N, the adjusted HR (95% CI) of
HUA was 3.90 (2.63–5.77) for the participants in the group of R-R (Supplementary Table S4).
The associations between CKD, eGFR, and dynamic change of eGFR with incident HUA
remained unchanged after excluding participants who had outcomes during the first
2 years of follow-up (Supplementary Tables S6 and S7).
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3.3. Analysis II: Associations between HUA, sUA at Baseline, and Dynamic Changes of sUA with
New-Onset CKD

Among 28,422 participants, 1212 new-onset CKD were observed during 63,574.32 person
years of follow-up, with an incidence density of 19.06/1000 person years. As shown
in Table 2 and Figure 2, a significantly higher risk of CKD was observed in individuals
with HUA compared to individuals without HUA. The adjusted HR (95% CI) was 1.28
(1.12–1.47). Results of stratified analyses showed that the association of HUA with risk
of CKD was more robust among participants who were over 65 years old, female, and
either a non-smoker or ex-smoker, while no significant interaction was observed (all p for
interaction > 0.05; Figure 4).

Table 2. Associations between HUA and sUA at baseline with new-onset CKD.

N No of Events (%)
Model 1 Model 2

HR (95% CI) p Value HR (95% CI) p Value

HUA at Baseline
Non-HUA 24,553 933 (3.80%) 1.00 1.00

HUA 3869 279 (7.21%) 1.70 (1.48–1.93) <0.001 1.28 (1.12–1.47) <0.001
sUA (µmol/L)

Q1 (≤285) 7024 192 (2.73%) 1.00 1.00
Q2 (266–318) 7087 260 (3.67%) 1.22 (1.01–1.47) 0.036 1.03 (0.85–1.25) 0.738
Q3 (319–374) 7091 309 (4.36%) 1.46 (1.22–1.74) <0.001 1.04 (0.85–1.27) 0.705
Q4 (≥375) 7220 451 (6.25%) 2.02 (1.70–2.39) <0.001 1.24 (1.01–1.51) 0.038
p trend <0.001 <0.001

Model 1 was not adjusted for any covariates. Model 2 was adjusted for age (<45 years, 45–64 years, ≥65 years),
gender (male, female), BMI (<24.0 kg·m−2, 24.0–27.9 kg·m−2, ≥28 kg·m−2), smoking status (non-smoker, smoker,
ex-smoker), drinking status (non-drinker, drinker, ex-drinker), diabetes (no, yes), hypertension (no, yes), TG
(≤1.20 mmol/L, 1.21–2.00 mmol/L, ≥2.01 mmol/L) at baseline. Q1–Q4 referred to the quartiles of serum uric
acid grouped according to the quartiles of the non-CKD participants, respectively. The median of each group
was included in the regression model as a continuous variable to calculate the p value for the test of trend. HUA,
hyperuricemia; sUA, serum uric acid; SBP, systolic blood pressure; CKD, chronic kidney disease; HR, hazard ratio;
CI, confidence interval.
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Analyses were adjusted for age (<45 years, 45–64 years, ≥65 years), gender (male,
female), BMI (<24.0 kg·m−2, 24.0–27.9 kg·m−2, ≥28 kg·m−2), smoking status (non-smoker,
smoker, ex-smoker), drinking status (non-drinker, drinker, ex-drinker), diabetes (no, yes),
hypertension (no, yes), and TG (≤1.20 mmol/L, 1.21–2.00 mmol/L, ≥2.01 mmol/L) at
baseline when they were not the strata variables.

Furthermore, the risk of CKD increased with the increase of sUA. Compared with the
first quintile of sUA, the adjusted HR (95% CI) of CKD was 1.24 (1.01–1.51) for the individu-
als in the fourth quantile (p trend < 0.001, Table 2). Besides, after adjusting for those same co-
variates as Model 2 in Table 2, except in subgroups aged between 45 and 64 years and older
than 65 years, the results of restricted cubic spline showed that there were positive linear
dose–response relationships between sUA with incident CKD (Supplementary Figure S2).

Moreover, a notably higher risk of CKD was observed in participants with persistently
elevated sUA. Compared with the group of N-N, the adjusted HR (95% CI) of HUA was
1.83 (1.54–2.16) for the participants in the group of H-H (Supplementary Table S5). The
relationships between HUA, sUA, and dynamic change of sUA with new-onset CKD
persisted after excluding Individuals who had outcomes during the first two years of
follow-up (Supplementary Tables S8 and S9).

3.4. Analysis III: Cross-Lagged Panel Analysis between sUA and eGFR

A bidirectional relationship between sUA with eGFR was observed by using a cross-
lagged model, with the path coefficients (ρ1 = −0.024, p < 0.001) from baseline eGFR to
follow-up sUA and the path coefficients (ρ2 = −0.015, p < 0.01) from baseline sUA to
follow-up eGFR, the difference between ρ1 and ρ2 was not statistically significant (Figure 5).
Furthermore, these bidirectional relationships did not alter when the data were stratified
by gender, and still existed among participants who were between 45 and 64 years old,
front-line workers, and white-collar workers (Figure 5). When eGFR was estimated by
the modified Modification of Diet in Renal Disease equation, the results remained similar
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among participants who were male, between 45 and 64 years old, over 65 years old,
front-line workers, and white-collar workers (Supplementary Figure S3). After excluding
195 participants with gout at the baseline, the above bidirectional relationships still exist
(Supplementary Figure S4). All models showed RMR values of 0.05 or less and CFI values
of 0.90 or greater.
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(A: Total population, B: male, C: female, D: age < 45 years old, E: age between
45 and 64 years old, F: age ≥ 65 years old, G: front-line workers, H: white-collar workers).
Covariates included in the model were follow-up time, age, gender (male, female), BMI,
TC, TG, diabetes (no, yes), hypertension (no, yes), smoking status (non-smoker, smoker,
ex-smoker), drinking status (non-drinker, drinker, ex-drinker), and education (junior high
school or below, high school, junior college, bachelor’s degree or above). These were not
the strata variables, among which the multi-categorical variables smoking, drinking, and
education were included in the model as dummy variables.

sUA, serum uric acid; eGFR, estimated glomerular filtration rate; ρ1, cross-lagged
path coefficients from baseline eGFR to follow-up sUA; ρ2, cross-lagged path coefficients
from baseline sUA to follow-up eGFR; r represented synchronous correlations; β1 and β2
represented tracking correlations; R2, variance explained; RMR, root mean-square residual;
CFI, comparative fit index.

4. Discuss

The present study showed that CKD and HUA were closely associated with each
other. There was a U-shaped relationship between eGFR with incident HUA and a positive
linear dose–response relationship between sUA with incident CKD, with HUA and CKD
as follow-up outcomes in a prospective cohort study, respectively. In addition, there was a
bidirectional relationship between sUA with eGFR.

Uric acid [20] (UA) is the final product of purine metabolism in the human body, which
is mainly excreted by the kidneys. When the kidney function is insufficient or declined,
the excretion of UA is hindered, resulting in an increase in the level of sUA and the
occurrence of HUA. A significantly higher risk of HUA was observed in individuals with
CKD compared to individuals without CKD in the present study. Similarly, results from
several cross-sectional studies [12,13,21] have also demonstrated an association between
renal insufficiency and the risk of HUA, which increases with lower eGFR. However, these
studies only analyzed the association between low eGFR (<60 mL·min−1·1.73 m−2) with
the risk of HUA and did not further explore the possible association between high eGFR
with HUA. Studies have shown that high eGFR can be used as a predictor of cardiovascular
disease [22] and hypertension [23], while the association between high eGFR and HUA
risk has rarely been reported. We found that the adjusted HRs (95% CIs) of HUA were
3.56 (2.50–5.05) for the participants in the group of eGFR less than 60 mL·min−1·1.73 m−2,
1.61 (1.42–1.83) for those in the group of eGFR between 60 and 90 mL·min−1·1.73 m−2,
and 1.74 (1.42–2.14) for those in the group of eGFR more than 120 mL·min−1·1.73 m−2,
compared with the group of eGFR between 90 and 120 mL·min−1·1.73 m−2, and that
there were U-shaped relationships between eGFR with incident HUA. Studies have shown
that GFR hyperfiltration not only leads to increased intra-glomerular pressure [24], but
also higher levels of tubular markers, such as neutrophil gelatinase-associated lipocalin
(NGAL) and kidney injury molecule-1 (KIM-1) in hyperfiltered individuals compared to
those without hyperfiltration [25]. Besides, it can also lead to proteinuria and reduced renal
function [26]. Therefore, the association between high eGFR and the risk of HUA in the
present study may be due to the obstruction of UA excretion after a renal injury caused by
GFR hyperfiltration. Prospective studies with larger samples are needed to validate these
findings and to dissect the underlying mechanisms of these associations.

It was found that UA can lead to reduced eGFR and CKD probably through the
formation of urate crystals that block the renal tubules, induce the proliferation of vascular
smooth muscle cells and the reduction of endothelial NO, and activate the renin-angiotensin-
aldosterone system [27,28]. These possible mechanisms provide a reasonable biological
explanation for our results. We found that the adjusted HR (95% CI) was 1.28 (1.12–1.47)
in individuals with HUA compared to individuals without HUA, and the adjusted HR
(95% CI) of CKD was 1.24 (1.01–1.51) for the participants in the fourth quantile, compared
with the first quintile of sUA. These findings are consistent with previous studies [29–32].
Importantly, repeated measurements of indicators and the study of associations between
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their dynamics with the disease can, to a certain extent, avoid the interference caused by
potential reverse causality and make the results more accurate and reliable. For example,
in a cohort study in Taiwan, China [33], sUA levels were measured repeatedly, significantly
higher risk of CKD was observed among individuals whose sUA levels were above clinical
cut-off values at baseline and follow-up, compared with individuals with sUA levels below
clinical thresholds. Similarly, a notably higher risk of CKD was also observed among
participants with persistently elevated sUA in the present cohort study. Additionally,
a remarkably higher risk of HUA was observed among participants with a sustained
reduction in eGFR as well as in the present study.

In addition, a bidirectional relationship between sUA with eGFR was observed in the
present study by using a cross-lagged model, which has the advantage of controlling for
the autoregressive effects of the variables and allows the direction of the main causal effect
to be determined by comparing the differences between the cross-lagged path coefficients,
provided that the time-series relationship is clear. It was found that eGFR decreases with
age, and there may be gender differences in the association between sUA and eGFR [34,35].
Therefore, subgroup analyses in the cross-lagged model were performed by age and
gender in our study. Likewise, these bidirectional relationships did not alter when the
data were stratified by gender and still existed among participants who were between
45 and 64 years old. However, no association between sUA and eGFR was observed in the
subgroup aged less than 45 years old. In the present study, the incidence of HUA was 3.85%,
7.91%, and 12.57% among those aged <45 years, 45–64 years, and ≥65 years, respectively,
with the lowest incidence of HUA among those aged <45 years. Similarly, the incidence of
CKD was 3.15%, 4.01%, and 11.22% in those aged <45 years, 45–64 years, and ≥65 years,
respectively, with the lowest incidence of HUA in those aged <45 years. Because of the
lower incidence of HUA and CKD in the age <45 years group, there were relatively few
cases of elevated sUA and reduced eGFR in this population during the follow-up survey.
We presume that this is the reason why a bidirectional association between sUA and
eGFR was not observed in this population. Meanwhile, only a unidirectional significant
association between baseline eGFR and follow-up sUA was observed in the subgroup
aged more than 65 years old, which may be due to the relatively more severe eGFR
decline in older participants [36,37], so we only observed that baseline eGFR significantly
predicted follow-up sUA in this population (ρ1 = −0.058, p < 0.001), whereas baseline sUA
has not been observed to predict substantially follow-up eGFR (ρ2 = −0.023, p = 0.073).
Besides, the number of people aged ≥ 65 years in Analysis III (N = 3205) was smaller
compared to those aged <45 years (N = 16,064) and 45–64 years (N = 11,759), which
somewhat limited the statistically positive results. Therefore, further exploration of this
result in a multicenter, larger-volume population is still needed, though whether their
association differs in different age groups and the mechanism of the difference needs to be
further explored.

To our knowledge, this cohort study with relatively large sample size is the first to
investigate the bidirectional relationship between eGFR and sUA using cross-lagged panel
analysis in a Chinese population. However, several limitations should be taken into account.
First, this study used eGFR and albuminuria to jointly diagnose CKD, in which albuminuria
was qualitatively diagnosed with urine dipstick, which was used to diagnose albuminuria
in several epidemiological studies, rather than quantitative detection of urine protein, such
as urine albumin/creatinine ratio (UACR). The study will be more comprehensive and
reliable if the cross-lagged model can be used to further analyze the relationship between
sUA and UACR as a supplement. Second, this study only included the data of the Jinchang
cohort at baseline and the first round of follow-up surveys, with a relatively short follow-up
period. Additionally, it was limited to the Jinchang cohort population, all participants
were from JNMC, and most of them were front-line workers whose long-term exposure to
industrial raw materials and heavy metals may have contributed to the development of
HUA and CKD in this population, which limited the generalization of the study conclusion.
Therefore, the results still need to be further verified in a multicenter, large-scale cohort
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study. As an observational study, although we adjusted for confounding factors as much
as possible, it still could not avoid the interference of residual confounding. Finally, this
study lacks the medication information and diagnostic information for the hematopoietic
disorders of participants. Some patients with CKD or HUA may have been treated and
taken the corresponding drugs, eGFR may be increased, and sUA may be decreased, which
would be an underestimation of the association between them in this study. In addition,
elevated sUA would underestimate this association due to participants suffering from
hematopoietic disorders.

5. Conclusions

In conclusion, using a cross-lagged model, the present study elucidated the bidi-
rectional association between CKD and HUA and further demonstrated this association
between eGFR and sUA. Given the above research results, CKD and eGFR can be used
as predictors of the risk of HUA, which has important guiding significance for the early
prevention of HUA and the screening of high-risk groups. The management of HUA
and sUA should also be taken into account in the prevention and control of CKD. Active
treatment of HUA and control of sUA levels are conducive to the prevention of CKD and
delay of the decline of eGFR.
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