Skip to main content
. 2023 Feb 2;13(3):551. doi: 10.3390/diagnostics13030551

Table 12.

Performance results comparison among the suggested model and the other previous state-of-the-art works.

Author Architecture Number of Images Class Accuracy (%)
Khan et al. [57] CoroNet 297 COVID-19,
330 bacterial pneumonia,
310 normal,
327 viral pneumonia images.
4 89.6
3 95
2 99
Mahmud et al. [64] CovXNet 305 COVID-19,
305 bacterial pneumonia,
305 normal,
305 viral pneumonia images.
4 90.3
3 89.6
2 94.7
Ammar et al. [52] 6 pre-trained models 150 COVID-19, 150 normal,
150 pneumonia images.
3 91.28
Mousavi Z et al. [46] Developed LSTM network 800 COVID-19, 942 viral pneumonia,
939 healthy cases images.
3 90.0
Arsenovic et al. [60] ResNetCOVID-19 434 COVID-19, 1100 normal,
1100 bacterial pneumonia.
3 94.1
Hemdan et al. [79] COVIDXNet   25 COVID-19 and
  25 normal images.
2 90
Sethy et al. [58] ResNet50 plus SVM 25 COVID-19 and
25 non-COVID-19.
2 95.38
Proposed model (Dataset-1) Tuned ResNet50V2 1143 COVID-19,
1150 viral pneumonia,
1150 bacterial pneumonia,
1150 normal images.
4 89.76
3 97.22
2 99.13
Proposed model (Dataset-2) Tuned ResNet50V2 1143 COVID-19,
1150 viral pneumonia,
1150 bacterial pneumonia,
1150 normal images.
4 99.46
Proposed model (Dataset-3) Tuned ResNet50V2  1143 COVID-19,
 1150 adult pneumonia.
2 98.26