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Abstract: Solitary pulmonary nodules (SPNs) are a diagnostic and therapeutic challenge for thoracic
surgeons. Although such lesions are usually benign, the risk of malignancy remains significant,
particularly in elderly patients, who represent a large segment of the affected population. Surgical
treatment in this subset, which usually presents several comorbidities, requires careful evaluation,
especially when pre-operative biopsy is not feasible and comorbidities may jeopardize the outcome.
Radiomics and artificial intelligence (AI) are progressively being applied in predicting malignancy in
suspicious nodules and assisting the decision-making process. In this study, we analyzed features of
the radiomic images of 71 patients with SPN aged more than 75 years (median 79, IQR 76–81) who had
undergone upfront pulmonary resection based on CT and PET-CT findings. Three different machine
learning algorithms were applied—functional tree, Rep Tree and J48. Histology was malignant
in 64.8% of nodules and the best predictive value was achieved by the J48 model (AUC 0.9). The
use of AI analysis of radiomic features may be applied to the decision-making process in elderly
frail patients with suspicious SPNs to minimize the false positive rate and reduce the incidence of
unnecessary surgery.

Keywords: solitary pulmonary nodule; radiomics; artificial intelligence analysis; machine learning;
lung cancer; elderly

1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide, and accounts
for 23% of all deaths from malignancy [1]. Despite improvements in the diagnosis and
treatment of lung cancer, the overall cure rate is still about 10%, although the 5-year
survival in early-stage disease may be as high as 92% [2]. In this context, the improved
overall survival has to be mainly attributed to the enhanced recognition of clinically silent
solitary pulmonary nodules (SPNs) which have eventually proved to be malignant, which
has been facilitated by the increased use of low-dose computed tomography (CT) and
hybrid imaging techniques such as positron emission tomography–computed tomography
(PET-CT) [3–5].

Despite the refinement of medical treatments, lung resection is still considered the best
curative treatment for early-stage lung cancer [6]. Therefore, achieving prior indications of
the nature of the SPN must be a priority in regard to offering a surgical chance to patients
deemed to have a malignant nodule, particularly when dealing with high-risk individuals
such as the elderly with associated comorbidity and functional impairment, in whom the
decision to operate requires a careful balance of the risk-to-benefit ratio.

In these instances, the practice of obtaining pre-operative biopsies can be time-
consuming and questionable. Quite often, CT-guided needle biopsy is challenging due
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to the location and the small diameter or sub-solid features of the nodule, and the risk of
procedure-related complications such as hemorrhage or pneumothorax, combined with
the high rate of false negatives, should be carefully considered, particularly in the elderly
population [7]. In light of the recent technological developments and the relevant digital-
ization process, artificial intelligence (AI) is increasingly becoming an integral part of the
modern approach to undetermined lesions in clinical practice.

On the other hand, radiomics is a method that involves extracting a large number
of features from medical images using data-characterization algorithms. These features,
termed radiomic features, have the potential to uncover tumor patterns and characteristics
that are not visible to the human eye. Through the acquisition and polyparametric process-
ing of data, the algorithm can differentiate normal images from pathological images with a
high sensitivity [8].

The role of radiomics combined with AI in preoperative evaluations of SPN is becom-
ing more and more essential [9–11].

We reasoned that including radiomic data in machine learning algorithms might
allow for the evaluation of the predictive value of the extracted features and consequently
help to identify malignant SPNs. The aim of this study was to demonstrate the validity
of radiomics and machine learning as predictive and non-invasive techniques in SPN
analysis, especially in elderly patients with multiple comorbidities, who require a tailored
surgical approach.

2. Materials and Methods
2.1. Patients Selection

In this study, CT and PET-CT scans from 71 consecutive patients over 75 years
old undergoing resection of a SPN from 2016 to 2021 were anonymously assessed in a
retrospective analysis.

All the evaluated CT scans included at least one reconstruction with a slice thickness
≤1.5 mm, in accordance with the revised Fleischner Society guidelines [12].

All images with either an incidentally detected SPN or an SPN detected through
screening were included. Patients with clinically advanced disease were excluded.

The clinical data collected from medical records included sex, age, smoking history,
comorbidities, pre-operative vital signs and laboratory tests, type of surgery, post-operative
complications, days of hospitalization and final histology.

Comorbidities were divided into cardiac (previous coronary artery disease, previous
cardiac surgery, current treatment for cardiac failure, hypertension or arrhythmia) and
other (insulin dependent diabetes, serum creatinine >2 mg/dl, previous cerebral vascular
accident, chronic kidney failure, chronic obstructive pulmonary disease, gastric ulcer, liver
disease, previous malignancy and others). The clinical data were used to calculate the
Charlson comorbidity index according to different risk scores of post-operative mortality
and morbidity, such as the Thorascore and POSSUM scoring system, applied in thoracic
surgery [13–15].

2.2. The Radiomic Feature Set

Radiomic features have the potential to uncover disease characteristics that fail to be
appreciated by the naked eye. The idea behind radiomics is that the distinctive imaging
features of different forms of disease may be useful for predicting prognoses and therapeutic
responses for various conditions, thus providing valuable information for tailored therapy.

The effectiveness of 71 different radiomic features in predicting the presence of pul-
monary nodules was explored. These features belonged to five different categories, de-
scribed as follows.
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• First-order features: this category described the distribution of voxel intensities within
the region of interest (ROI), which in this study was related to the areas in the magnetic
resonance image (MRI) associated with cancer. One feature belonging to this category
was considered.

• Shape: this feature category included descriptors of the three-dimensional size and
shape of the ROI. These features were independent of the gray level intensity distribu-
tion in the ROI and therefore were only calculated on the basis of non-derived images
and masks. Fourteen features belonging to this category were considered.

• Gray-Level Co-occurrence Matrix (GLCM): this category considered the spatial rela-
tionships of pixels in the gray-level co-occurrence matrix, i.e., the gray-level spatial
dependence matrix. The GLCM functions characterized the texture of an image by
computing how often pairs of pixels with specific values and in a specified spatial
relationship occurred in an image, and then extracting measures from this matrix.
Twenty-four different features belonging to this category were considered.

• Gray-Level Run Length Matrix (GLRLM): this category was related to the size of homo-
geneous runs for each gray level. It quantified gray-level runs, which were defined as
the length (expressed as a number of pixels) of consecutive pixels that had the same
gray-level value. Sixteen features belonging to this category were considered.

• Gray-Level Size Zone Matrix (GLSZM): the features of this category were used to
quantify gray-level zones in an image. A gray–level zone was defined as the number
of connected voxels that shared the same gray-level intensity. A voxel was considered
connected if the distance was one according to the infinity norm. Sixteen different
features were considered from this category.

The full set of 71 radiomic features considered in this study is reported in Table 1.

Table 1. Radiomic features considered in this study.

1 Class
First Order

Feature
Mean

Description
ROI Average Gray Intensity

2 Shape Elongation relationship between two largest principal components
3 Shape Flatness relationship between largest and smallest principal components
4 Shape LeastAxisLength yield smallest axis length of the ROI-enclosing ellipsoid
5 Shape MajorAxisLength yield largest axis length of ROI-enclosing ellipsoid
6 Shape Maximum2DDiameterColumn mesh vertices in row-slice plane
7 Shape Maximum2DDiameterRow mesh vertices in the column-slice plane
8 Shape Maximum2DDiameterSlice mesh vertices in row-column plane
9 Shape Maximum3DDiameter mesh vertices
10 Shape MeshVolume volume is obtained using the surface mesh
11 Shape MinorAxisLength second-largest axis length of the ROI-enclosing ellipsoid
12 Shape Sphericity roundness of shape of the tumor region relative to a sphere
13 Shape SurfaceArea the sum of all sub-areas
14 Shape SurfaceVolumeRatio Surface Area to Volume ratio
15 Shape VoxelVolume approximate volume
16 GLCM Autocorrelation magnitude of the fineness and coarseness of texture
17 GLCM ClusterProminence skewness and asymmetry of the GLCM
18 GLCM ClusterShade skewness and uniformity of the GLCM
19 GLCM ClusterTendency voxels with similar gray-level values
20 GLCM Contrast the local intensity variation
21 GLCM Correlation linear dependency of gray-level values
22 GLCM DifferenceAverage occurrences of pairs with similar and differing intensity values
23 GLCM DifferenceEntropy randomness/variability in neighborhood intensity value differences
24 GLCM DifferenceVariance heterogeneity of higher weights on differing intensity level pairs
25 GLCM Id inverse difference
26 GLCM Idm inverse difference moment
27 GLCM Idmn Inverse difference Moment Normalized
28 GLCM Idn Inverse difference Normalized
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Table 1. Cont.

1 Class
First Order

Feature
Mean

Description
ROI Average Gray Intensity

29 GLCM Imc1 informational measure of correlation 1
30 GLCM Imc2 informational measure of correlation 2
31 GLCM InverseVariance inverse of the variance
32 GLCM JointAverage the mean gray-level intensity of the distribution
33 GLCM JointEnergy a measure of homogeneous patterns in the image
34 GLCM JointEntropy measure of the randomness/variability in neighborhood intensity values
35 GLCM MCC maximal correlation coefficient
36 GLCM MaximumProbability occurrences of the most predominant pair of neighboring intensity values
37 GLCM SumAverage occurrences of pairs with lower and higher intensity values
38 GLCM SumEntropy sum of neighborhood intensity value differences
39 GLCM SumSquares distribution of neigboring intensity level pairs
41 GLRLM GLN gray-level non-uniformity
42 GLRLM GLNN gray-level non-uniformity normalized
43 GLRLM GLV gray-level variance
44 GLRLM HGLRE high gray-level run emphasis
45 GLRLM LRE long run emphasis
46 GLRLM LRHGLE long run high gray-level emphasis
47 GLRLM LRLGLE long run low gray-level emphasis
48 GLRLM LGLRE low gray-level run emphasis
49 GLRLM RE run entropy
50 GLRLM RLN run length non-uniformity
51 GLRLM RLNN run length non-uniformity normalized
52 GLRLM RP run percentage
53 GLRLM RV run variance
54 GLRLM SRE short run emphasis
55 GLRLM SRHGLE short run high gray-level emphasis
56 GLRLM SRLGLE short run low gray-level emphasis
57 GLSZM GLN gray-level non-uniformity
58 GLSZM GLNN gray-level non-uniformity (normalized)
59 GLSZM GLV gray-level variance
59 GLSZM HGLZE high gray-level zone emphasis
60 GLSZM LAE large area emphasis
61 GLSZM LAHGLE large area high gray-level emphasis
62 GLSZM LALGLE large area low gray-level emphasis
63 GLSZM LGLZE low gray-level zone emphasis
64 GLSZM SZN size-zone non-uniformity
65 GLSZM SZNN size-zone non-uniformity normalized
66 GLSZM SAE small area emphasis
67 GLSZM SAHGLE small area high gray-level emphasis
68 GLSZM SALGLE small area low gray-level Emphasis
69 GLSZM ZE zone entropy
70 GLSZM ZP zone percentage
71 GLSZM ZV zone variance

ROI = region of interest; GCLM = gray-level co-occurrence matrix; GLRLM = gray-level run length Matrix;
GLSZM = gray-level size zone matrix.

2.3. The Classification Process

After obtaining the patients’ labeled medical images, several machine learning algo-
rithms were applied.

Supervised machine learning algorithms received a set of instances, which were
individually labeled. Figure 1 shows the several steps belonging to the proposed method
for the detection of pulmonary nodules.



Diagnostics 2023, 13, 384 5 of 14

Diagnostics 2023, 13, 384 5 of 14 
 

 

59 GLSZM HGLZE high gray-level zone emphasis 

60 GLSZM LAE large area emphasis 

61 GLSZM LAHGLE large area high gray-level emphasis 

62 GLSZM LALGLE large area low gray-level emphasis 

63 GLSZM LGLZE low gray-level zone emphasis 

64 GLSZM SZN size-zone non-uniformity 

65 GLSZM SZNN size-zone non-uniformity normalized 

66 GLSZM SAE small area emphasis 

67 GLSZM SAHGLE small area high gray-level emphasis 

68 GLSZM SALGLE small area low gray-level Emphasis 

69 GLSZM ZE zone entropy 

70 GLSZM ZP zone percentage 

71 GLSZM ZV zone variance 

ROI = region of interest; GCLM = gray-level co-occurrence matrix; GLRLM = gray-level run length 

Matrix; GLSZM = gray-level size zone matrix. 

2.3. The Classification Process 

After obtaining the patients’ labeled medical images, several machine learning algo-

rithms were applied. 

Supervised machine learning algorithms received a set of instances, which were in-

dividually labeled. Figure 1 shows the several steps belonging to the proposed method 

for the detection of pulmonary nodules. 

As shown in Figure 1, the proposed method is composed of two distinct phases: train-

ing and testing. The training phase relates to the creation of a model (starting from a set of 

data called the training set), whereas the testing phase has the purpose of evaluating the 

effectiveness of the model learned in the training phase. 

 

Figure 1. The proposed method for pulmonary nodule detection. 

A dataset composed of different medical exam results belonging to 71 patients, 46 of 

whom were identified as suffering from malign pulmonary nodules and 25 of whom were 

detected as not suffering from malign pulmonary nodules, was gathered. 

The proposed method started with the extraction of a set of radiomic features belonging 

to five different categories, as described in the previous subsection. In particular, for each 

medical image, the radiomic features were extracted with a script developed by authors 

invoking the PyRadiomics library. 

Three different decision tree-based algorithms were applied: functional tree, Rep 

Tree and J48. 

Decision tree-based algorithms use multiple algorithms to decide to split a node 

into two or more sub-nodes. The creation of sub-nodes increases the homogeneity of 

t h e  resultant sub-nodes. Consequently, the purity of the node increases with respect to 
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As shown in Figure 1, the proposed method is composed of two distinct phases:
training and testing. The training phase relates to the creation of a model (starting from a set
of data called the training set), whereas the testing phase has the purpose of evaluating the
effectiveness of the model learned in the training phase.

A dataset composed of different medical exam results belonging to 71 patients, 46 of
whom were identified as suffering from malign pulmonary nodules and 25 of whom were
detected as not suffering from malign pulmonary nodules, was gathered.

The proposed method started with the extraction of a set of radiomic features be-
longing to five different categories, as described in the previous subsection. In particular,
for each medical image, the radiomic features were extracted with a script developed by
authors invoking the PyRadiomics library.

Three different decision tree-based algorithms were applied: functional tree, Rep
Tree and J48.

Decision tree-based algorithms use multiple algorithms to decide to split a node
into two or more sub-nodes. The creation of sub-nodes increases the homogeneity of the
resultant sub-nodes. Consequently, the purity of the node increases with respect to the
target variable. The decision tree splits the nodes on the basis of all available variables and
then selects the split which results in the most homogeneous sub-nodes.

In detail, the functional tree algorithm is aimed at building functional trees for clas-
sification, with particular regard to functional trees with logistic regression functions at
the inner nodes and/or leaves. Basically, a functional tree is a diagram showing the depen-
dencies between functions in a system (represented by the features in the case of machine
learning), which is constructed with the aim of breaking down a problem into simpler
parts. The Rep Tree algorithm builds a decision tree using information variance and prunes
it using reduced-error pruning. It is considered to be an extension of the J48 supervised
classification algorithm, improving the pruning phase by using reduced-error pruning
(REP). The method uses a separate pruning dataset. For every subtree, it checks whether
the subtree could be replaced by a single node without lowering the performance of the
classifier on this pruning set. As such, the pruning method is simple, but is often considered
to be too aggressive, i.e., it might remove subtrees which are actually relevant. The main
difference between the Rep Tree algorithm and the J48 algorithm is the fact that J48 does
not contain the REP step.

For model building, the Weka data science suite was exploited [16].
The proposed method was evaluated via k-cross validation, with k equal to 10.

2.4. Experimental Analysis

In the classification analysis, we considered four different metrics: precision, recall,
the F-measure and accuracy.
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Precision was computed as the proportion of the examples that truly belonged to class
X among all those assigned to the class. It was expressed as the ratio of the number of
relevant records retrieved to the total number of irrelevant and relevant records retrieved:

Precision =
tp

(tp + f p)

where tp indicates the number of true positives and fp indicates the number of
false positives.

The recall was computed as the proportion of examples that were assigned to class X
among all the examples that truly belonged to the class, i.e., how much of the class was
captured. Therefore, recall was expressed as the ratio of the number of relevant records
retrieved to the total number of relevant records:

Recall =
tp

tp + f n

where tp indicates the number of true positives and fn indicates the number of
false negatives.

The F-measure is a measure of a test’s accuracy. This score can be interpreted as a
weighted average of the precision and recall:

F − Measure = 2
Precision × Recall
Precision + Recall

The accuracy indicates how many times the model has correctly performed a classifi-
cation compared to the total number of evaluated instances.

The receiver operating characteristic (ROC) area is a value that illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. The ROC curve
was created by plotting the true positive rate against the false positive rate at various
threshold settings.

3. Results
3.1. Clinical Results

The clinical and pathological features of the study group are reported in Table 2.

Table 2. Characteristics of the enrolled patients.

Variable

Median age, years (IQR) 79 (76–81)

Gender, n (%)
Male

Female
45 (63.4%)
26 (36.6%)

Median number of comorbidities (IQR) 3 (IQR 2–5)

Cardiac comorbidities, n (%)
Coronary artery disease

Any previous cardiac surgery
Current treatment for hypertension
Current treatment for arrhythmia

Current treatment for cardiac failure

18 (25.3%)
13 (18.3%)
51 (71.8%)
15 (21.1%)
8 (11.3%)
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Table 2. Cont.

Variable

Non-cardiac comorbidities, n (%)
Insulin-dependent diabetes
Serum creatinine >2 mg/dL
Cerebral vascular accident

Chronic kidney failure
Chronic obstructive pulmonary disease

Gastric ulcer
Liver disease

Previous malignancy
Other comorbidities

19 (26.8%)
2 (2.8%)
8 (11.3%)
6 (8.4%)

36 (50.7%)
8 (11.3%)
8 (11.3%)

30 (42.2%)
35 (49.3%)

Smoking history, n (%)
Never smoked
Former smoker
Current smoker

Unknown

12 (17.9%)
44 (65.7%)
10 (14.9%)
1 (1.5%)

Median Charlson Comorbidity Index (IQR) 6 (5–7)

Median Thorascore (IQR) 2.8% (1.2–6.3%)

Median POSSUM mortality (IQR) 4.2% (3.1–8.5%)

Median POSSUM morbidity (IQR) 23.9% (17.7–44.3%)

Surgical procedure, n (%)
Pneumonectomy

Lobectomy
Segmentectomy
Wedge resection

1 (1.5%)
25 (35.2%)

4 (5.6%)
41 (57.7%)

Final histology, n (%)
Lung adenocarcinoma

Lung squamous carcinoma
Lung metastasis
Typical carcinoid

Atypical carcinoid
Benign lesion

30 (42.3%)
11 (15.5%)

1 (1.4%)
2 (2.8%)
2 (2.8%)

25 (35.2%)

30-day post-operative mortality, n (%) 0 (0.0%)

Post-operative morbidity, n (%) 22 (31.0%)

Median hospitalization, days (IQR) 8 (6–12)
IQR: interquartile range.

A total of 71 patients aged over 75 years, with a median age of 79 (interquartile range
(IQR) 76–81), was analyzed. We found that 63.4% of them (45/71) were male and most of
them were former smokers (44/71, 65.7%) or current smokers (10/71, 14.9%).

Patients had a median of three comorbidities (IQR 2–5) and the most common ones
were hypertension (51/71, 71.8%) and chronic obstructive pulmonary disease (36/71,
50.7%). Thirty of them (42.2%) had a history of previous malignancy.

The median Charlson comorbidity index was six (IQR 5–7%), which was related to
a 10-year survival of 2%. Regarding post-operative mortality and morbidity scores, the
Thorascore and the POSSUM score, which are applied in lung surgery, were used. Median
post-operative estimated mortality, according to the Thorascore, was 2.8% (IQR 1.2–6.3%).
With reference to POSSUM, median post-operative mortality was 4.2% (3.1–8.5%), whereas
post-operative estimated morbidity was 23.9% (IQR 17.7–44.3%).

The most frequent surgical procedure was wedge resection (41/71, 57.7%), followed
by lobectomy (25/71, 35.2%), segmentectomy (4/71, 5.6%) and pneumonectomy (1/71,
1.5%). Wedge resection was often preferred due to the several comorbidities of the patients
and their difficulty in tolerating single-lung ventilation for a long time.
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At final histology, 35.2% of nodules (25/71) were benign, thus implying that in these
cases surgery would have been avoidable.

Median hospitalization was eight (IQR 6–12) days. No post-operative mortality was
recorded within 30 days from the surgical procedure. The post-operative morbidity rate
was 31.0% (22/71). The main complications were prolonged anemia with the need of blood
bank products (n = 7), pneumonia (n = 6), atrial fibrillation (n = 4), acute respiratory distress
syndrome (n = 3; one patient required tracheostomy), prolonged air leaks (n = 3) and renal
failure (n = 2).

3.2. Results of AI-Integrated Radiomic Analysis

The results of the experimental analysis are shown in Table 3. For the functional tree
model we obtained an accuracy of 0.93 for healthy patients and an accuracy of 0.88 for
patients with disease; thus, the average accuracy was 0.905. With regard to the Rep Tree
model, we obtained an accuracy of 0.769 for healthy patients and 0.887 for patients with
disease, and the average accuracy was 0.828. With the last model, i.e., J48, the accuracy was
0.761 for healthy patients and 0.889 for patients with disease, with an average accuracy of
0.825. All three different models analyzed proved satisfactory in predicting malignancy,
although the best results in differentiating benign SPNs from malignant SPNs on the basis
of radiomics data were obtained by the J48 model, as shown by the greater ROC area
(Figures 2–4).

Table 3. Experimental analysis results.

Model Precision Recall F-Measure ROC Area Accuracy Label

Functional Tree 0.88 1 1 0.94 0.93 Healthy
0.866 0.913 0.889 0.847 0.88 Disease
0.854 0.855 0.854 0.847 0.905 weighted avg.

Rep Tree 0.836 0.741 0.786 0.915 0.769 Healthy
0.861 0.916 0.888 0.915 0.887 Disease
0.852 0.853 0.850 0.915 0.828 weighted avg.

J48 0.854 0.740 0.792 0.932 0.761 Healthy
0.861 0.927 0.893 0.932 0.889 Disease
0.858 0.859 0.856 0.932 0.825 weighted avg.
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4. Discussion

The presence of asymptomatic SPNs with the suspicion of malignancy is a challenging
clinical scenario for the thoracic surgeon. Although such lesions are usually benign, the risk
of early-stage and potentially curable malignant disease remains significant. Proper assess-
ment of the nature of the SPN plays an important role in the therapeutic process of early
lung cancer. Histologic confirmation of malignancy is usually required before anatomic
lung resection (i.e., lobectomy), and this should be performed with either preoperative or
intraoperative biopsy.
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Considering CT section thickness is important in order to ensure the accuracy of
nodule measurements. Several authors demonstrated that variability decreased with
decreasing section thickness [17–19] and that the thinnest sections (usually 1 mm) provided
the most consistent results [20].

Computed tomography (CT)-guided needle biopsy is challenging for smaller or more
central nodules, is associated with high false-negative results and is burdened with a
considerable rate of complications. Bronchoscopic sampling has a low yield for peripheral
and small nodules, whereas intraoperative frozen section analysis may be difficult for small
or central nodules and it can increase surgical time and cost. Alternatively, upfront surgery
has been proposed for SPNs that are highly suspicious for NSCLC based on their clinical
and imaging characteristics in the absence of tissue confirmation [21–23]. However, there is
concern associated with performing unnecessary surgery for benign lesions and subjecting
patients to potential morbidity.

Elderly patients (>75 years of age) represent a large segment of the affected population.
Various studies have shown that the risk of post-operative mortality in this subset is equal
to twice that of the population aged 65–69 years, or even threefold that of the general
population [24,25]. The incidence of postoperative complications in certain studies reaches
48% in octogenarians [26]. Therefore, the definition of SPNs is of paramount importance in
the diagnostic workup of such frail patients. In our study, 71 patients aged over 75 years
(median 79, IQR 76–81) with SPNs, with a median of three comorbidities (IQR 2–5), were
considered as the sample and the postoperative complication rate was 31.0%.

The use of AI analysis of radiomic features was applied to distinguish between benign
and malignant nodules in order to create a model with the aim of reducing unnecessary
surgery in elderly frail patients with suspicious SPNs. The predictive model for SPNs was
based on 71 radiomic features belonging to five different classes: first-order features, shape,
GLCM, GLRLM and GLSZM. The use of different classes and different combinations of
radiomic features allowed for better diagnostic performance.

Amongst the three machine learning algorithms used, the performance of J48 was
satisfactory, with a ROC area of 0.932, the largest compared to the functional tree and
Rep Tree models, which had ROC areas of 0.847 and 0.915, respectively. J48 is one of
the best machine learning algorithms to use when analyzing data with clear and easily
understandable rules. The model generates categorical and continuous results and provides
competitive performance.

The obtained results were consistent with those of several studies in the literature.
Albano et al. showed the optimal accuracy of radiomic and PET-CT metabolic features,
with an area under the curve (AUC) >0.8, compared to invasive procedures, in predicting
the diagnosis of SPNs in 202 patients [27]. However, they used different criteria in selecting
their sample compared to this study, considering patients >18 years of age without a previ-
ous history of any malignancy, surgery, chemotherapy or radiotherapy and considering
42 radiomic features instead of 71.

Other studies have shown an AUCROC >0.70 in the use of such methodologies to
discern nodules using CT or PET-CT data. Kumar et al. obtained an accuracy of 79.06%,
whereas Liu et al. achieved an accuracy of 81% and Wu et al. obtained an accuracy of
72% [28–30]. In addition, Niu et al. showed how adding SUVmax to the CT radiomics
analysis improves its predictive value in differentiating between benign and malignant
ground-class nodules, with a diagnostic efficiency of 0.940 [31].

Astaraki et al. conducted a comparison between the performance of radiomics
and deep-learning models for SPN malignancy prediction [32]. The database included
1297 nodules. With the classical radiomics approach, 102 features were extracted and their
predictive power was subsequently analyzed through the use of eight machine learning
algorithms. In this case, the use of decision trees yielded an AUCROC of 0.723 ± 0.011,
whereas adaptive boosting embedded on decision trees yielded the highest prediction
power, with an AUCROC of 0.889 ± 0.016, among all the used algorithms.
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Parmar et al. focused on different classification models, reporting a variation in
performance of 34.21% depending on the system used [33]. They evaluated 440 radiomic
characteristics in 464 images and used 12 different classifiers belonging to different classes.
In this case, however, the use of decision trees produced unsatisfactory results, with an
AUCROC of 0.54 ± 0.04 compared to the random forest method because of the latter’s high
stability against data perturbation.

These results are consistent with the idea that it is possible to obtain a safe indication in
a completely non-invasive way, without proceeding to a pre-surgical biopsy or an avoidable
resection. This in line with studies such as that of Ghamati et al., who showed that it is
common practice to carry out a lung resection without a preoperative defined diagnosis,
risking an increase in the rates of unnecessary surgery [34]. The physician’s ability to
make a reliable lung cancer diagnosis solely based on clinical and radiologic data in fact
represents an undeniable challenge.

Radiomics has proven to be a fundamental tool in reaching this goal. Indeed, according
to a review by Senent-Valero et al., many predictive models based on clinical and radio-
logical characteristics, without the aid of radiomics, have displayed numerous pitfalls [35].
Most of these are based on retrospective studies and a low level of methodological rigor.
On the other hand, Zhang et al. considered both clinical and radiomic predictors in the
evaluation of pulmonary malignancy nodules, showing a higher predictive value than
those mentioned by Senent-Valero et al. (AUC 0.89–0.91 vs. 0.59–0.70) [36]. Furthermore,
Zhao et al. obtained a higher model accuracy (81%) for the method based on radiomic char-
acteristics than the conventional CT model (63.7%) [37]. Rafael-Palou et al. [38] proposed a
method aiming to detect lung nodules by exploiting neural networks. The main difference
of this method with respect to the proposed method is the introduction of radiomic features
in order to discriminate between healthy and disease-affected patients, whereas neural
networks automatically extract features from images under analysis.

Zheng and colleagues [39] adopted an approach similar to the one proposed by the
authors in [38], yet they considered the task of automatically segmenting pulmonary
nodules. Conversely, in this paper, we have proposed a method aimed to detect the
presence of cancer using the whole image (i.e., the proposed method does not require the
user to manually segment a set of images for model training). Although the proposed
method achieved a very good performance, the present study represents a retrospective,
single-institution, nonrandomized experience with a small sample size and a referral
center bias. In future works, it might be necessary to increase the training and validation
datasets in order to deal with variability in SPN morphology, as well as to design a
prospective study.

5. Conclusions

Due to the rapid improvements in artificial intelligence (AI), and particularly in
machine learning (ML), these methods have a wide range of clinical applications in lung
cancer imaging, and are used by a growing number of radiologists, as witnessed by recently
published series and surveys [40–44]. Limitations in the development of new ML tools is
mainly due to the difficulties in recruitment and the availability of imaging data.

Radiomics has proven to be a promising method of diagnosis in early lung cancer. It
can be useful not only in cancer detection and staging, but also in predicting the response
to therapy, with a wide field of applicability.

Furthermore, in support of the results of previous studies, decision trees seem to
be the best method of analysis of radiomic features, achieving the greatest prognostic
performance. These tools can be a valid alternative to invasive diagnostic procedures in
the decision-making process and in the management of elderly patients with SPNs that are
suspicious for early-stage lung cancer, and finally reduce the rate of “unnecessary” surgical
procedures. In our study, the J48 model showed the best performance compared to the
functional tree and Rep Tree models.
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However, the long-term impact of such techniques on patient selection in terms of the
best treatment strategy, final outcomes and cost/benefit ratios is still not clear. The use of
open-source tools for algorithm development, where possible, is warranted to improve the
diagnostic performance of all AI software algorithms.
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