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Abstract: The fruit production and processing sectors produce tremendous amounts of by-products
and waste that cause significant economic losses and an undesirable impact on the environment. The
effective utilization of these fruit wastes can help to reduce the carbon footprint and greenhouse
gas emissions, thereby achieving sustainable development goals. These by-products contain a va-
riety of bioactive compounds, such as dietary fiber, flavonoids, phenolic compounds, antioxidants,
polysaccharides, and several other health-promoting nutrients and phytochemicals. These bioactive
compounds can be extracted and used as value-added products in different industrial applications.
The bioactive components extracted can be used in developing nutraceutical products, functional
foods, or food additives. This review provides a comprehensive review of the recent developments in
fruit waste valorization techniques and their application in food industries. The various extraction
techniques, including conventional and emerging methods, have been discussed. The antioxidant and
antimicrobial activities of the active compounds extracted and isolated from fruit waste have been
described. The most important food industrial application of bioactive compounds extracted from
fruit waste (FW) has been provided. Finally, challenges, future direction, and concluding remarks on
the topic are summarized.

Keywords: fruit waste; valorization; bioactive compounds; value addition; food fortification; extraction
techniques

1. Introduction

The past decade has unveiled a prodigious advancement in the food industry, making
it one of the swiftest-developing segments across the globe. This profuse growth of the
sector is conjoined with an array of challenges, among which the two most prominent
issues are food safety and food waste management. Baysal and Ülkü [1] reported that,
according to estimations, one-third of the food produced annually is either lost or wasted.
Consistent with approximations from the Food and Agricultural Organization (FAO), this
accounts for a minimum of 1.6 billion tons and is estimated to release a carbon footprint
equaling 3.3 billion tons of carbon dioxide [2]. Nevertheless, a major proportion of this
waste is attributed to the processing sector. Food waste is termed the by-products or
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residues derived from the processing of raw material into higher-value products [3]. These
wastes are primarily cataloged into two categories corresponding to their origin: animal
and vegetable waste. The former classification is known to include wastes that are derived
from the meat, seafood, cattle, and dairy processing industries. The latter category includes
a large variety of residues depending on the source type [4]. Contrary to other food-
processing sectors, the fruit and vegetable industries produce higher volumes of waste,
including 25–30% peels, followed by seeds, skins, shells, pods, cores, pulp, pomace, etc. [5].
Its innate perishable attributes, product traits, logistics issues, and disposal are some major
apprehensions that make the valorization of this waste a grueling practice. Nevertheless,
owing to the incidence of bioactive components, the excesses of the fruit and vegetable
industries are considered to be specialized residues. Supervening the mounting consumer
demand for higher-value products across all markets, fruit and vegetable residues can be
considered to have vast potential that remains unmapped.

Reviewing the approaches employed in managing wastes, incineration and landfill
are the common methods. While incineration involves the production and expulsion
of different pollutants, the latter involves the discharge of carbon dioxide and methane,
proffering extreme environmental and health impacts [6]. Handling this waste requires a
holistic approach encompassing the isolation of the majority of the waste and usage, such as
for the synthesis, extraction, or preparation of high-valued compounds [7]. To accomplish
this transformation, it is imperative to gain a basic understanding of the countless points of
food waste generation, the volume of the waste generated, the nature of waste generated
from different sources, and last, but not least, the elementary characterization of waste
components. The optimal valorization approach depends on the specific nature and
properties of the substance that exist or are attained from individual waste environments.

This review provides a comprehensive approach to the valorization of fruit waste
for bioactive components along with extraction techniques, including Soxhlet extraction,
microwave-assisted extraction, enzyme-assisted extraction, high-hydrostatic-pressure ex-
traction, etc., and their applications. This review is structured as follows: the former
explains the implications of waste from fruit processing, elaborating on the active compo-
nents and their antioxidant and antimicrobial activities. The following section involves the
elucidation of the methods involved in the extraction of these components and practical
utilization of these bioactive components in different areas of food industries.

2. Materials and Methods

This study seeks to offer a comprehensive assessment of the bioactive chemicals that
may be extracted from fruit waste and their relevance in the food industry. Electronic
searches of the literature, primarily in databases such as PubMed, Google Scholar, Scopus,
and ScienceDirect were used to gather published articles for the development of the
manuscript. The search terms used were broad and included terms such as valorization,
fruit waste utilization, fruit by-products, extraction techniques, bioactive components, etc.
A total of 300 scholarly items, including research articles, reviews, books, patents, and
other publicly accessible internet sources, were returned by the search procedure. The
shortlist included about 200 items that were published after 2000. Due to the scarcity of
contemporary studies and their relevance to the chosen topic, articles published before 2015
were also chosen. The selected articles were thoroughly studied and critically analyzed for
the preparation of the manuscript. This review outlines a brief introduction, was written
based on the PRISMA guidelines, and is correct to the best of our knowledge.

3. Fruit Loss and Processing Waste

According to the FAO of the United Nations, about 14% and 17% of the food produced
is either lost or wasted globally each year [8]. However, a new report from the World Wide
Fund for Nature WWF [9] and Tesco in 2021 revealed that food loss or wastage is around
2.5 billion tons globally each year. This represents an increase of almost 1.2 billion tons
from the previously estimated figure of 1.3 billion tons. These updated estimates show
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that more food is being wasted than was previously thought (33%), with an estimated 40%
of all food produced going uneaten. The FAO also stated that food waste would be the
third-largest carbon dioxide emitter in the world if it were a nation, after China and the US.

It is projected that the wastage is higher for fruits and vegetables, accounting for ap-
proximately 46% (1400 million tons produced are wasted). Fresh fruit and vegetable waste
in European Union (EU) households exceeds 17 billion kg annually, or 35.3 kg per person,
14.2 kg of which is avoidable. The average amount of fresh produce purchased by (EU)
families wasted is 29% [10]. On the other hand, a survey estimated that Americans throw
away $10 worth of fruit every week because it has gone bad or is unusable, which translates
to throwing away $520 worth of fruit annually in the United States [11]. According to the
Food and Drug Administration (FDA), between 30 and 40% of the food supply is wasted in
the United States, which leads to problems [12].

Fruit is lost in fields as a result of crop pests and diseases. Ineffective techniques for
fruit harvesting, storage, and transportation also result in fruit loss. Additionally, fruit is
also wasted because it is purposefully thrown away in stores, supermarkets, and homes.
Thirty-five percent of the wasted food is simply thrown out by supermarkets, shops, and
households [13]. Bananas are the most wasted fruit due to brown markings or slight
bruising in stores, according to a study from Sweden [14]. It is estimated that 3.7 trillion
apples are wasted worldwide each year. Fruit processing generates two different types
of waste: liquid waste (juice and wash water) and solid waste (peels/skins, seeds, stones,
etc.). Fruit peel waste accounts for between 15 and 60% of the various types of fruit waste
that are produced, and it is usually discarded [15]. For several fruits, such as the mango
(30–50%), orange (30–50%), pineapple (40–50%), and banana (20%), a significant amount
is often wasted. Common fruits, including the mango, banana, orange, watermelon, and
lemon, account for between 25 and 57 million tons of waste annually [16].

These fruit wastes can pose major environmental challenges, such as water and soil
pollution, the greenhouse effect, eutrophication, global warming, and other health problems if
not effectively handled due to their high biodegradability and fermentability [17]. Although
some fruit waste is used as animal feed [18], landfill, incineration, and open burning are
the most frequently used methods to dispose of fruit waste [5]. However, these methods
or approaches could result in other problems, such as the generation of secondary waste.
Additionally, these wastes are renewable and viable resources that could be valorized to
create commodities with a high market value following the “circular economy” concept [19].
Therefore, waste recycling and resource recovery are essential for the effective valorization of
fruit waste. A schematic diagram of fruit waste utilization is shown in Figure 1.
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4. Bioactive Compounds from Fruit Waste

Fruit wastes and/or by-products that food agro-industries accumulate are typically
made up of underutilized residual biomasses that are rich in various bioactive functional com-
ponents [20]. Fruit wastes have been researched for the extraction of phenolic compounds,
dietary fibers, and other bioactive substances, as they are rich sources of phytochemicals.
Peels, pomace, and seed fractions make up the majority of fruit by-products, and they have
the potential to be a decent source of bioactive compounds with high added value, such as
proteins, dietary fibers, polysaccharides, flavor compounds, and phytochemicals [21]. As a
starting point for additional research into the usage of these compounds, researchers and
food manufacturers frequently examine the bioactive compounds found in various fruit
parts. Therefore, scientific evidence showing the abundance of beneficial components in
various fruit parts justifies the consumption of fruit waste in food applications, while also
reducing its environmental impact. Studies have shown that sizeable levels of essential
nutrients and phytochemicals are available in the peels, seeds, and other parts that are not
often utilized, even though most people only eat the pulp of fruits [22]. In contrast to banana
peels, which primarily contain gallocatechin, catechin, and epicatechin, the peels of avocado
and custard apples have large concentrations of condensed tannins and flavonoids, including
procyanidins [22]. However, the predominant compounds found in banana peels are gallo-
catechin, epicatechin, and catechin [22]. Peels of Prunus cultivars, including the nectarine,
apricot, and peach, are abundant in hydroxycinnamates and flavan-3-ols, which may have
antioxidant properties [22]. Onion peel is reported to be rich source of flavonoids, including
athocyanins, kaempferol, and quercetin derivatives (quercetin diglucoside, quercetin agly-
cone, and quercetin 4-O-glucoside) [23,24]. Phenolic compounds are secondary metabolites
that are among the major classes of significant bioactive compounds with wide-ranging
biological effects. In their basic structure, they have one or more aromatic rings, along with
one or more hydroxyl groups. Polyphenolic compounds can be divided into several classes,
including flavonoids (subclasses: flavonols, flavanones, flavanonols, flavanols, flavones,
isoflavones, and anthocyanidins), tannins, phenolic acids, lignans, and stilbenes [25]. Accord-
ing to Wolfe, et al. [26], apple peels can contain up to 3300 mg/100 g of dry matter in terms of
their phenolic content. Zadernowski, et al. [27] noted that mangosteen peel and rinds have
been shown to contain around two times more total phenolics and phenolic acid than the aril,
whereas the mangosteen pericarp has been observed to have a total level of seven primary
xanthones that is eight times greater than that in the aril [28]. It was formerly reported that
the total phenolic content of mango peels is roughly 13–47% higher than that of the flesh
and 32% higher than that of the seeds [29,30]. The phenolic content of papaya peels is about
1.2 times higher than that in the seeds [31]. On the other hand, the biochemical indices of
the crude fiber of papaya seeds are much greater than those of the pulp and peel, although
they have a lower total fiber content [32,33]. Passion fruit seeds and pulp are known to have
much higher total phenolic and flavonoid concentrations, although they have lower total
dietary fiber [34]. Both the peel and pulp of the dragon fruit contain a considerable amount
of pectic compounds; however, the peel exhibits a higher level of pectic compounds than
the pulp [35]. According to reports, tomato seeds contain a variety of bioactive substances,
including bioactive peptides, flavonoids, carotenoids, pectin, and vitamins (tocopherol) [36].
Guava seeds are also reservoirs of bioactive components, such as fatty acids, including
palmitic, linoleic, and oleic acid, as well as vitamin C, vanillin, and vanillic acid [37]. An
unpalatable byproduct of the fruit is the Jamun seed. However, its high concentration of
phytochemicals makes it a valuable source of nutraceuticals. The presence of phytochemical
components, such as phenols, tannins, flavonoids, saponins, triterpenoids, steroids, and
alkaloids, in the Jamun seed is associated with its bioactivity [38].

It has been previously reported that pineapple skin contains substantially more lutein,
α-carotene, and β-carotene than the core [39]. Notably, it has been reported that both
the fresh and dried pulp of rambutan has higher levels of ascorbic acid than the fruit’s
peel and lower levels of carotene [40]. Contrarily, despite the content of total carotenoids
derived from mango peels being much higher than that found in the kernel, they are
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poorer in terms of their total phenolic content and antioxidant activity [41]. Among plants,
raw grape leaves (16.19 mg/100 g) are considered a key source of β-carotene [42], and β-
carotene is widely utilized in the food additive, cosmetics, health care, and pharmaceutical
industries. Markedly, it has demonstrated several advantages, including improved human
immunity, antioxidant activity, protection against various malignancies, and a reduced risk
of cardiovascular illnesses due to its ability to manage cholesterol levels [43]. Along with
β-carotene and lutein, lycopene is one of the primary carotenoids extracted from tomato
waste [44]. Lycopene is a phytonutrient with a significant impact on human health and
it has long been recognized for its range of biological properties, including antioxidant,
anti-inflammatory, etc. [45,46]. Lutein is a yellow–orange carotenoid that is a member
of the xanthophyll family and is frequently found in fruits [47]. The main anthocyanin
found in many fruits is cyanidin 3-O-glucoside, which is the most prevalent anthocyanin in
plants and has been linked to anti-obesity, anti-inflammatory, antioxidant, and anti-tumor
characteristics [48,49]. Non-anthocyanin phenolic chemicals, such as flavonols (myricetin,
quercetin, and kaempferol) and flavones (luteolin and apigenin), are a promising family of
natural food colorings. In fruits, they are present mainly as quercetin [50]. For instance,
elderberry contains a significant amount of quercetin derivatives, and quercetin is reported
to have positive benefits on health; typically, they are well-known for their antioxidant, anti-
obesity, and anti-inflammatory properties, and can be used in preventing cardiovascular
illnesses [51,52]. Apple pomace is typically discarded as waste material in processing
industries after the juice has been extracted. This waste can, however, be an excellent
source of nutritional fiber. According to reports, apple peel contains more dietary fiber
than apple pulp. The amounts of soluble and insoluble dietary fiber in apple pomace
are 15% and 36%, respectively [53]. Apple seeds are also reported to be a rich source of
bioactive compounds [54]. The pomace powder of blackcurrants, red currants, gooseberries,
rowanberries, and chokeberries is also reported to have a high fiber content (>550 g/kg) [55].
The total amount of dietary fiber found in grape pomace is around 78%, of which 9.5% is
soluble and the remaining 68% is insoluble [56]. Ajila and Prasada Rao [57] evaluated the
total dietary fiber in mango peels and revealed their content to be 40–72%, with glucose,
galactose, and arabinose being the main neutral sugars in the soluble and insoluble dietary
fibers. The dietary fiber concentrations in the pulp and peels recovered as a byproduct
of the extraction of peach juice range from 31–36% (dry weight), with 20–24% insoluble
dietary fiber making up the majority.

5. Extraction Techniques

Presented with a wide range of bioactive chemicals and a multitude of plant species, it
is essential to develop a standardized and comprehensive screening method for extracting
compounds that are advantageous to human health. The use of bioactive chemicals in
several industrial fields, including the food, chemical, and pharmaceutical industries,
indicates the need for the most efficient and standardized technique to extricate bioactive
compounds from plant materials. The extraction of bioactive components from plant
matrix can be accomplished using a variety of extraction techniques, and the choice of
an appropriate technique alters the cost, duration, and accessibility of the procedure. An
efficient extraction approach should be able to target bioactive compounds from the plant
matrix, have high selectivity towards analytical procedures and bioassays, and provide
a robust and reproducible method that is free of fluctuations in the sample matrix [58].
The bioactive components can be extracted by using conventional or novel extraction
techniques. Some of the widely used extraction techniques in the food industry, along with
their advantages and disadvantages, are discussed in Table 1.
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Table 1. Techniques for the extraction of bioactive components.

Technique Advantages Disadvantages Bioactive Component References

Maceration • Can be used for
extracting thermolabile
components.

• Cheap method

• Lower extraction
efficiency

• High extraction time
• Requires solvent in a

larger volume

Polyphenols, anthocyanins,
flavonoids, and
essential oils

[59–61]

Percolation • More efficient than
maceration

• Lower extraction
efficiency

• High extraction time

Alkaloids,
Sterols, flavonoids,
glycosides, saponins,
phenols, lignins, sterols,
and tannins

[62,63]

Decoction • More economical
• Only use water as a

solvent
• Environment friendly

• Effective only for
heat-stable
compounds

• Not suitable for
light-sensitive
compounds

• Heat and mass
transfer efficiency is a
crucial factor

Antioxidants and
polyphenol

[64–66]

Reflux or solid–liquid
extraction

• Uses less solvent and
has a shorter
extraction time

• Easy
• High repeatability

• Not suitable for
volatile and
heat-sensitive
compounds

Essential oils, flavonoids,
and polyphenols

[25,67,68]

Soxhlet extraction • High efficiency
• Low cost
• Basic technique and

easy to use

• Not suitable for
volatile and
heat-sensitive
compounds

• Requires large
quantities of solvents

• Sample preparation is
time-consuming

Phenolics, antioxidants,
essential oils, and
flavonoids

[69–72]

Supercritical fluid
extraction (SFE)

• Greater penetration of
the sample matrix and
superior mass transfer
compared with a liquid
solvent

• Reduced extraction
period

• Higher selectivity as the
solvation power can be
adjusted by altering the
pressure and/or
temperature.

• Ideal for extracting
thermolabile
compounds

• Minimal waste
generation

• Needs a sophisticated
mechanism as a
precise temperature
and pressure should
be maintained

• Not suitable for
extracting polar
compounds

Flavonoids, antioxidants,
carotenoids, fatty acids,
essential oils, terpenes, and
polyphenols

[73]
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Table 1. Cont.

Technique Advantages Disadvantages Bioactive Component References

Microwave-assisted
extraction (MAE)

• Reduced extraction
time

• Lower solvent usage
• Cost-effective
• Better extraction yield

compared with
traditional methods

• Not suitable for
heat-sensitive
compounds

• Not effective for
non-polar compounds

Phenolic compounds,
glycosides, flavonoids,
terpenoids, essential oils,
alkaloids, and saponins

[74,75]

Enzyme-assisted
extraction (EAE)

• Can be used to extract
cell-wall-bound
components

• Suitable for
heat-sensitive materials

• Higher-quality extracts
due to the high
specificity and
efficiency of enzymes

• Environmentally
friendly

• Not many enzymes
have been studied
and optimized for
their extraction
efficiency

Anthocyanins,
polyphenols, carotene,
terpenes, and flavonoids

[76,77]

Pulsed electric field
extraction (PEFE)

• Non-thermal technique.
• Minimal degradation of

thermolabile
compounds

• Can be used as a
pre-treatment before
conventional extraction

• Continuous method
• Short extraction time

• Not suitable for
products with high
electrical conductivity
as it reduces the
resistance in the
system

Phenols, flavonoids,
proteins, anthocyanins,
and carbohydrates

[78–82]

High-hydrostatic-
pressure extraction

• Low energy
consumption

• High yield
• Effective in extracting

both polar and
non-polar compounds

• Needs expensive
equipment

• Need a lot of
maintenance

Phenolic compounds,
carotenoids, flavonoids,
pectin, lutein, lycopene,
and catechin

[83]

Ultrasound-
assistedextraction
(UAE)

• Low energy
consumption

• High yield
• Short processing time
• Can be used for

heat-sensitive
compounds

• Can produce free
radicals that will
affect the quality of
bioactive compounds

• Difficult to scale up
for industrial uses

Phenolic compounds,
flavonoids, oils, and
anthocyanins

[58,84–86]

5.1. Conventional Methods

The polarity/ionic strength of various solvents in use, along with the usage of heat
and/or mixing, are the key factors influencing the effectiveness of conventional extraction
processes [87]. Soxhlet extraction, maceration, solvent extraction, reflux extraction, etc. are
examples of traditional extraction techniques. In maceration, the sample is ground into
fine particles to enhance its surface area and facilitate solvent mixing (water or an organic
solvent). The solvent is then combined with the ground materials, followed by continuous
agitation, and contaminants are later removed using filtration. The relatively simple
extraction technique of maceration has the drawbacks of a lengthy extraction period and
poor extraction effectiveness. However, thermolabile components could be best extracted
using maceration. Another extraction method that is more effective than maceration is
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percolation. It is an unceasing process that utilizes a special piece of machinery called a
percolator, in which the saturated solvent is continuously changed out for a new solvent.
The percolator is typically filled with dried powdered samples, which are then mixed with
boiling water and macerated for a few hours. To obtain concentrated extracts, evaporation
is carried out after the completion of extraction [88]. Another common extraction method
is called decoction, which involves boiling the crude aqueous extract to a pre-determined
volume for a specific amount of time to extract the heat-stable components. The liquid is
allowed to cool and is strained or filtered after it settles. The method can be used to extract
water-soluble components. It should be noted that this process is ineffective for materials
that are sensitive to heat and light, and volatile or thermolabile substances cannot be
obtained using decoction. In addition, mass transfer and kinetic effects must be taken into
account [64]. Compared with percolation or maceration, reflux or solid–liquid extraction
is more effective, uses less solvent, and has a shorter extraction time [87]. This procedure
involves mixing a dry sample with the solvent in a heated, agitated jar. Better mass transfer
and contact efficiency between the solvent and the treated matrix are gained when the
vapors are allowed to condense and trickle back into the flask. Compounds with high
thermolability cannot be extracted using this method [75]. Soxhlet extraction has long been
the most extensively operated method for concentrating analytes and separating bioactive
components from natural materials. Utilizing the principles of reflux and siphoning to
constantly extract the bioactive component with fresh solvent, the Soxhlet extraction process
combines the benefits of both percolation and reflux extraction. Compared with maceration
or percolation, the Soxhlet extraction process has a high extraction efficiency, takes less
time, and has lower solvent consumption. However, the high temperature and prolonged
heat exposure could increase the thermal degradation of the bioactive compounds [69].

5.2. Novel Emerging Methods

Numerous studies have demonstrated the effectiveness of traditional extraction tech-
niques, including the Soxhlet extraction and maceration processes. However, using such
techniques requires the use of a lot of time, energy, and solvent. There are alternative ex-
traction methods that have faster extraction times, higher selectivity, and higher efficiency,
and use less solvent to overcome the disadvantages of conventional extraction procedures.
These procedures are referred to as non-conventional or green extraction methods, or novel
extraction methods [89]. The application of novel technologies, such as ultrasound and
pulsed electric fields, to grapes has increased the polyphenol content by 32–23% and de-
creased the energy consumption by 17.6 fold [90]. Some of the promising non-conventional
extraction techniques are discussed below.

5.2.1. Supercritical Fluid Extraction (SFE)

Since Hannay and Hogarth’s discovery of supercritical fluid in 1879, it has been utilized
for extraction purposes, and in 1964, it was employed in the food industry to decaffeinate
coffee [58]. SFE has gained popularity in recent years as a method for extracting bioactive
components from plants at atmospheric temperatures while avoiding thermal denaturation.
Supercritical fluid (SF) is used as the extraction solvent in supercritical fluid extraction. A
substance can only reach the characteristic supercritical state if it is subjected to pressure
and temperatures beyond its critical point. Supercritical fluid exhibits liquid-like density
and solvation power, and gas-like viscosity, surface tension, and diffusion characteristics in
its supercritical state. These characteristics allow for faster and higher-yielding chemical
extraction. Due to its low critical temperature (31 ◦C), inertness, low cost, and non-toxicity,
supercritical carbon dioxide is frequently utilized in SFE. The main aspects that affect the
extraction efficiency of SCF extraction are the process temperature, pressure, flow rate, and
sample volume [73]. The efficiency of SFE in extracting bioactive components from plant
matrices has been reported in various studies [91]. SFE can be used to extract alkaloids,
such as Pyrrolidine [92], caffeine [93], Olchicine [94], and Vinblastine [95], essential oils [96],
terpenes [97], flavonoids [98], and phenolic compounds [99].
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5.2.2. Microwave-Assisted Extraction (MAE)

The microwave-assisted extraction technique is regarded as a novel practice that uses
microwave radiation to extract soluble compounds into a fluid from a variety of matrices.
Electromagnetic radiation with frequencies between 300 MHz and 300 GHz is known
as microwaves [100]. They are composed of electric and magnetic fields that oscillate
perpendicular to each other. The microwave heating principle relies on the dipole rotation
and ionic conduction mechanisms. The resistance of the medium to the flow of ions during
ionic conduction causes heat to be produced, whereas the electromagnetic field change
brought on by microwave radiation will frequently cause changes in molecular orientation,
thereby producing heat by molecular friction [101]. The high extraction yield in MAE is due
to the synergistic effect of the heat and mass gradients. MAE involves three stages; first, the
solvent’s penetration into the plant matrix, followed by the breakdown of the components
by electromagnetic waves, and the transport of the solubilized components from the
insoluble matrix to the bulk solution. Finally, liquid and residual solid phase separations
are performed [102]. MAE can be used to extract a variety of bioactive components, such
as flavonoids [103], isoflavone [104], saponins [105], piperine [106], carotenoids [107],
terpenes [108], essential oils [109,110], polysaccharides [111], etc.

5.2.3. Enzyme-Assisted Extraction (EAE)

The phytochemicals in plant matrices can be either disseminated in the cell cytoplasm or
found attached to the polysaccharide–lignin network by hydrogen or hydrophobic interactions,
making the compounds inaccessible for extraction using a solvent in a typical extraction
technique [102]. It has been suggested that enzymatic pre-treatment is a novel and efficient
method for releasing bound molecules and improving the total yield. To acquire bioactive
chemicals, enzyme-assisted extraction (EAE) can be used as a pre-extraction or extraction
procedure. The plant cell wall is destroyed, releasing the bound bioactive chemicals attached
to the lipid and carbohydrate chains [76,77]. The major enzymes that are used in EAE are
cellulases [112], pectinase [113], hemicellulase [114], amylase [115], glucosidase [116], etc. EAE
can be used for extracting bioactive components such as anthocyanins [117], polyphenols [118],
oleoresin [119], flavonols [120], terpenes [121], carotene [122], etc.

5.2.4. Pulsed Electric Field Extraction (PEFE)

Pulsed Electric Field Extraction (PEFE) promotes mass transfer during extraction by
breaking down membrane structures, thereby considerably enhancing the extraction yield
and decreasing the extraction time. The cell membrane experiences an electric potential
when it is deferred in an electric field, and when the electric potential exceeds a critical value,
repulsion between charge-carrying molecules creates pores in vulnerable regions of the
membrane, dramatically increasing permeability. The field strength, pulse count, specific
energy, and treatment temperature are all factors that affect PEFE treatment [123]. Due to
its energy efficiency, PEFE processing is a feasible technique for the food, pharmaceutical,
and biotech industries. PEFE can be used for extracting polyphenols [80], flavonoids [79],
proteins [81], anthocyanins [82], and carbohydrates [78].

5.2.5. High-Pressure Extraction

High-pressure extraction, also known as pressurized liquid extraction (PLE), acceler-
ated solvent extraction, enhanced solvent extraction, or pressurized fluid, involves using
a high pressure to keep solvents in the liquid state above their usual boiling point. The
high pressure maintains solvents in a liquid condition above their boiling point, leading to
high lipid solubility, high lipid solute diffusion rates, and high solvent penetration of the
matrix [124]. Compared with other procedures, PLE significantly reduces the extraction
time and amount of solvent used and has excellent repeatability. High-pressure extraction
has been effectively used by researchers to extract an array of bioactive components, such
as phenolic compounds, carotenoids, flavonoids, pectin, etc. [83].
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5.2.6. Ultrasound-Assisted Extraction (UAE)

With frequencies between 20 kHz and 100 MHz, ultrasound is a specific kind of sound
wave that is not audible to humans. Similar to other waves, it compresses and expands the
medium as it travels through it. This process causes a phenomenon known as cavitation,
which denotes the formation, expansion, and collapse of bubbles. This event releases a
significant amount of energy, which causes cell rupture [86]. The process of applying
intense ultrasonic waves for extraction is known as ultrasound-assisted extraction (UAE).
The technology is renowned for its ease of use and relative affordability when compared
with other traditional extraction methods. Moreover, UAE has lower solvent usage, a
shorter extraction time, and lower energy consumption. Sonication can also facilitate
efficient mixing and quicker energy transfer. UAE is an efficient technique for the extraction
of bioactive compounds, such as polyphenols, flavonoids, anthocyanins, etc. from various
plant matrices [58,84–86].

6. Bioactivities of Active Compounds Extracted from Fruit Waste

The further utilization of parts of fruit by-products is only possible with exploratory
studies on the bioactivities of their constituent compounds. Scientific studies on the
amounts and the functions of these active constituents serve as an insightful reference
and a justification to researchers and manufacturers for the successful extraction of these
components. Fruit by-products, as their source, are stated to be plentiful in high-value
compounds, such as bioactive compounds that are considered to have an effect on human
health owing to their biological properties, including anti-inflammatory, antioxidant, an-
timicrobial, antimutagenic, etc. [7,125]. The physiological activity exhibited by the array of
by-products of fruits is due to the synergistic action of these distinct compounds [126].

6.1. Antioxidant Activity

Antioxidants are defined to be compounds that can inhibit or adjourn oxidation and
thereby diminish the concentrations of transition metal ions or free radicals [127]. The
consumption of and introduction of food products with these compounds to the diet can
help in maintaining the antioxidant status and also control the development of chronic
diseases, such as cancer, cardiovascular issues, etc. The antioxidant potential of fruit
coproducts is dependent on several factors, with the main points under consideration
including the fruit type and by-product involved (e.g., peel, seeds, stems, pulp, etc.).
Taking the latter point under consideration, various studies have compared the potential
of each type of by-product obtained from fruits (Table 2). The pre-eminence of peels
in the antioxidant potential of different types of by-products compared with seeds and
other parts has been reported in different studies [128,129]. Apples are known for their
abundant reserves of phenolic substances, among which most of the active components are
concentrated in the apple pomace [130]. The antioxidant properties of apple by-products
are attributed to the different classes of these phenolic components and their oxidation
products. The dominance of apple by-products in terms of antioxidant potential over certain
other fruits was reported by Duda-Chodak and Tarko [128]. Maximum antioxidant activity
was found in the peels of apples (7925 mg Trolox × 100 g−1 d.w.), followed by white grapes
(6944), and the seeds of orange and Idared apples. The same trend has been observed among
the seed portions with the highest antioxidant potential attributed to different varieties of
apples. Peschel, et al. [131] also reported the high antioxidant potential of apple residues in
comparison with pear and strawberry residues obtained after juice production. The citrus
genus is one of the most cultivated and utilized groups of fruits, which accounts for 50–60%
of citrus by-products, including peels, seeds, pulps, stones, etc. The by-products of the
processing industries are reported to have high volumes of polyphenols, mainly flavonoids
and phenolic acids, compared with the edible portion [132]. The antioxidant potential of
citrus parts is attributed to these active components, mainly flavonoids [133]. The potential
of various species is decidedly reliant on the cultivar, species under consideration, type of
by-product, and harvesting conditions [129]. Chen, et al. [134] reported variations in the
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phenolic and flavonoid contents of dried citrus peel derived from Citrus reticulata from
different geographical areas. According to the difference in the zone, there was a variation
of 42–51.8 mg GA/g in the total phenol content and 14–31.9 mg/g in the flavonoid content
of the species. Deviation in the polyphenol content of citrus fruits based on the type of
by-product was reported by Xi, et al. [135], showing the superiority of lemon peels over the
seeds. Similar to this, many reports have reported a higher phenolic content in the peels
of fruits (papaya, passion fruit, mango, and mangosteen) when compared with the pulp,
stones, or seeds [136–138]. The total phenolic content of papaya peels was 1.2 times higher
than that of seeds, which was attributed to the superior antioxidant potential [31]. Added
to these, some reports illustrate the fact that the peel fractions of some fruits possess more
active constituents and higher antioxidant activity than the pulp portions. Li, et al. [139]
elaborated on the possibility of higher antioxidant activity of pomegranate peels than
that of the edible portions. Palanisamy, et al. [140] considered the antioxidant potential of
rambutan and described rambutan peels as a potent source of natural antioxidants owing
primarily to the presence of phenolic acids and ellagitannins.

Table 2. Antioxidant activities of bioactive compounds extracted from various fruit wastes.

Sl No Fruit Waste Bioactive Compounds Antioxidant Activity/Results Reference

1 Mango waste Catechin, epicatechin,
andkaempferol.

A significant amount of these phenolic
compounds contributes to the potential activity

[141]

2 Red pitaya seeds Flavonoids and
phenolic acids

The total phenolic content of the sample was
found to be 13.56 ± 2.04 mg GAE/g dry weight

[142]

3 Pomegranate peels Flavonoids and
phenolic acids

Higher antioxidant activity in the peel than in the
edible portions

[139]

4 Mango by-products Phenolic acids, sterols,
carotenoids, and
tocopherols

A safer alternative to the synthetic antioxidants in
biscuits, vegetable oils, and other different food
formulations

[143]

5 Apple peel and seeds Polyphenols and tannins Superiority of bioactivity was observed in the
case of peels compared with the seed portions

[130]

6 Citrus by-products Flavonoids and
phenolic acids

Depended on the species, cultivar, type of
by-product, and harvesting conditions

[129]

7 Mango, papaya, and
guava peels

Polyphenols Antioxidant activities from the four assays
indicated that mango peel extract possessed
higher antioxidant properties.

[144]

8 Rambutan by-products Phenolic acids and
ellagitannins

Constituents contributed to the antioxidant
potential of rinds

[145]

9 Pepper seed extracts Capsaicin and
di-hydrocapsaicin

Total polyphenolic content was 10.9 mg gallic
acid equivalents/g residue

[146]

10 Plum, grapes, and
elderberry fruit
by-products

Anthocyanins The highest values of 90.19 and 89.86% were
attributed to elderberry fruit and Italian red
grape extracts respectively

[147]

11 Pomegranate by-products Flavonoids and
condensed and
hydrolyzabletannins

Bioactive compounds found in by-products have
antioxidant properties that help protect cells from
various stimuli-induced oxidative stresses and
cell death

[148]

12 Orange by-products Ascorbic acid, flavonoids,
and phenylpropanoids

Flavonoids are an important subgroup exhibiting
high antioxidant activity

[149]

13 Grape seeds Phenolic acids and
flavonoids

Higher polyphenol concentration and antioxidant
potential of the sample when compared with
bagasse extract

[103]

6.2. Antimicrobial Activity

Agents that influence the elimination or inhibition of the growth of pathogenic or
spoilage microorganisms are termed antimicrobial agents. As microbial growth and ac-
tivity are prevailing conditions that affect food products’ quality as well as safety, the
significance of these components or agents is illustrious. Antimicrobial components are
known to be present in different parts of plants, such as peels, fruits, pods, leaves, seeds, etc.
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(Table 3). These constituents penetrate the cell membrane, causing lysis and protection
against pathogenic microbes. Good inhibitory activities of plum, elderberry, and Italian red
grape by-products against potential pathogenic strains were reported by Coman, Oancea,
Verdenelli, Cecchini, Bahrim, Orpianesi, Cresci and Silvi [147]. Elderberry skin and seed
extracts were reported to have a good inhibitory effect against the growth of Bacillus cereus,
with an inhibition zone of almost 20 mm. A moderate inhibitory effect of all fruit extracts
was observed against L. monocytogenes and they had very little inhibitory activity against
the probiotic strains. Similarly, the by-product extracts of mandarins also showed sig-
nificant inhibitory effects on both Gram-positive and -negative bacteria, with inhibition
zones of 16.1 and 17 mm [150]. Gunwantrao, et al. [151] also reported the effectiveness
of orange and pineapple peel extracts against the pathogenic bacterial strains Klebsiella
pneumonia, Pseudomonas aeruginosa, and Bacillus subtillis, with a maximum zone of inhibi-
tion. Muscadine grape polyphenols exhibited strong antibacterial activities against a broad
range of food-borne pathogens, mainly Staphylococcus aureus. A reported decrease of nearly
5 log10 CFU/mL in cell viability for S. aureus was observed in a 6 h period with lysis [152].
In the same way, various researchers have studied the antibacterial potential of several
other fruit by-products, including those of bananas [153], mangoes [154], cloudberries, and
raspberries [155], against S. aureus growth and activity. The potent antimicrobial activ-
ity of mango kernel extracts was ascribed to the incidence of phytochemicals, including
flavonoids, terpenes, coumarins, and tannins [154]. There is a correlation between the
by-product extract concentration and the inhibition efficiency [156]. Likewise, anti-fungal
and yeast growth-inhibiting properties of bioactive components in banana peel were re-
ported by Aboul-Enein, et al. [157]. The antimicrobial potential of these peels was ascribed
to the presence of tannins and phenolics in the sample. Analogous to antioxidant activ-
ity, the antimicrobial potential of fruit by-products is reliant on certain elements, among
which the type of residue involved is an imperative aspect. Owing to variations in the
chemical compositions of different parts of fruits, there are differences in their bioactivity
potentials. Kanatt, et al. [158] reported a disparity between the antimicrobial activities of
pomegranate peel and seeds. Pomegranate peel extract exhibited exceptional antioxidant
activity against Staphylococcus aureus and Bacillus cereus, while the seed extract did not have
any substantial activity. This was attributed to the variance in the form and quantity of
bioactive compounds present in both tissues. Even though there have been many studies
concentrating on the possibilities of by-products as antimicrobial agents, the principal
components responsible for such activity have not been evaluated in many cases.

Table 3. Antimicrobial properties of bioactive compounds extracted from various fruit wastes.

Sl No Fruit Waste Observation Reference

1 Citrus essential oil Antimicrobial activity against species such as Trichoderma
viride, Cladosporium herbarum, and Aspergillus flavus

[138]

2 Plum, grapes, and elderberry fruit by-products Constituted sizeable contents of anthocyanins and
significantly inhibited the growth of B. cereus

[147]

3 Grape by-products Antimicrobial activities of winemaking by-products were
verified against foodborne pathogens, with the lowest
MICs for Gram-positive bacteria and medium influences
on the MICs of Gram-negative bacteria

[159]

4 Muscadine grapes Muscadine polyphenols at 4 × minimum inhibitory
concentration caused nearly a 5 log10 CFU/mL decrease in
cell viability for S. aureus in 6 h with lysis

[152]

5 Banana peels The antimicrobial potential was due to the presence of
tannins and phenolics

[157]

6 Mango kernel extracts Greater inhibition against S. aureas at various
concentrations than against E. coli

[154]
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Table 3. Cont.

Sl No Fruit Waste Observation Reference

7 Orange and pineapple peels The pineapple sample showed the largest zone of
inhibition against Klebsiella and the smallest against
Bacillus subtilis

[151]

8 Pomegranate by-products Peel extract displayed excellent antioxidant activity, while
the seed extract did not have any substantial activity

[158]

9 Mandarin, broccoli, and orange by-products All samples showed inhibitory effects against Salmonella
spp., Escherichia coli, Bacillus cereus,
and Listeria monocytogenes.

[150]

10 Orange, banana, and lemon peels Effectiveness was found to be higher in yellow lemon,
followed by orange and banana peels. Klebsiella spp.
showed the highest sensitivity to the extract of yellow
lemon peel and showed the largest zone of inhibition

[160]

11 Quince fruit peel Effective against bacteria growth owing to flavonoid
proportions in the peel in conjunction with
chlorogenic acid

[161]

6.3. Other Properties

Apart from the major targets of the bioactive components present in different by-
products of fruits and vegetables, they have other key physiological properties includ-
ing anti-inflammatory, anti-carcinogenic, anti-melanosis, cardioprotective effects, etc., at-
tributed to these active constituents. Accordingly, it is necessary to elucidate these prop-
erties in detail. Pomegranate by-products exhibit anti-cancer, anti-inflammatory, and
anti-aging activities with the incidence of punicalagin and ellagic acid as bioactive con-
stituents [162]. Similar to these, citrus by-products are also known for their anti-cancerous
and anti-inflammatory properties owing to different bioactive constituents, including fla-
vanones, flavones, and anthocyanins [129]. In addition to these, the major constituents of
citrus oil, the terpenes, citral aldehydes, and esters, have a major role in operative therapy
for cancer-related issues [163]. Melanosis is the harmless, but unappealing, external discol-
oration of shrimp, crab, or lobster and is instigated by the enzymatic oxidation of colorless
phenols into quinones. The active components of the by-products of olive reportedly help
in the diminution of melanosis in shrimps [164]. Phenolic compounds present in these olive
by-products are responsible for blocking the progression of discoloration in shrimps.

7. Application of Bioactive Compounds in the Food Industry

Agricultural production currently creates substantial amounts of organic waste from
agricultural wastes and the industrialization of the output, such as food industry waste.
This industrialization process engenders large quantities of co-products that are difficult to
preserve because of their chemical and physical–chemical properties. Historically, these
co-products have been utilized for animal food or compost. In their composition, however,
it is likely that several compounds with high added value will be identified that, after
undergoing an appropriate conversion process, could be transformed into marketable
products as ingredients for the development of new food products to obtain the benefits
of the vast quantity of potentially valuable compounds that they contain. Some of the
food industry’s by-products include fruits, skins, seeds, and membrane residues that have
been discarded. These fractions are rich sources of many bioactive compounds, such as
dietary fiber (pectin, cellulose, hemicellulose, and lignin), minerals (potassium, calcium,
magnesium, and selenium), organic acids (citric, oxalic, and malic acids), vitamins (vita-
min C, thiamine, riboflavin, and niacin), phenolic acids (chlorogenic, ferulic, and sinapic
acids), flavonoids (hesperidin, narirutin, didymin, hesperetin, and diosmin), terpenes
(limonene), carotenoids (lutein, β-carotene, and zeaxanthin), etc. [15,165–168]. Numer-
ous health benefits have been linked to these bioactive substances, including antioxidant,
antibacterial, anti-inflammatory, anti-hypertensive, neuroprotective, and antiallergenic
activities [166,169–171]. As a result, the creation of several products employing by-products
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from agro-industrial waste is gaining interest in the food industry. This section discusses
the use of some of these compounds for food fortification and food preservation.

7.1. Food Fortification

The consumption and processing of a variety of fruits, such as apples, mangos, grapes,
and citruses, generate numerous by-products that frequently contain a high concentration
of useful bioactive compounds. One of the biggest by-products of processing fruits is the
fruit pomace. Fruit pomace can be used in food items as a cost-effective, low-calorie bulking
agent to replace some of the sugar, fat, or flour. It frequently improves food functionality
by enhancing emulsion stability and water and oil retention [172]. Fruit pomace often
combines the usual fruity and baked taste and aroma of the finished products to improve
the aroma and flavor of baked goods. By using 30% (w/w) apple pomace, researchers de-
veloped several high-fiber, functional baked and extruded snacks. The product’s chemical
composition remained unchanged when compared with the control [173]. In another study,
up to 20% (w/w) mango peel powder enhanced the soluble dietary fiber and hardness
while reducing spreading in soft dough biscuits. Contrarily, it was discovered that adding
mango peel powder up to 30% (w/w) improved the nutritional value of cookies without
impairing their sensory or textural qualities [174]. Similar to bakery products, the use of
fruit pomace in meat products has also been investigated by several researchers. To increase
the dietary fiber content of meat products, fruit pomace has been added to different meat
products. For example, apple pomace in meat could make up for the lack of fiber in our
diets. A study developed beef patties with 2–8% apple pomace as a beef substitute [175].
The water-holding capacity, cooking yield, meat emulsion stability, and textural qualities,
such as the firmness, toughness, and hardness, of patties were improved with higher apple
pomace powder incorporation. However, only the addition of apple pomace powder up to
6% was deemed acceptable based on a sensory examination of the patties. Similarly, it was
reported that red grape pomace could enhance the color stability and acceptability of pork
burgers by reducing lipid oxidation. When the percentage of fruit pomace replacement
exceeded 6%, a decrease in hardness and cohesiveness was found [176].

Fruit pomaces are sometimes also used in dairy products as a natural texturizer and
stabilizer. Apple pomace was added to skimmed milk in three different concentrations
(0.1%, 0.5%, and 1%) and then fermented at 42 ◦C by Lactobacillus bulgaricus and Streptococcus
thermophiles. The outcomes showed that adding 1% pomace caused a higher onset pH and
quicker gelation. Additionally, after 28 days of storage, yogurt supplemented with fruit
pomace showed enhanced cohesion and consistency [177]. Similarly, the addition of 3%
pomace to stirred yogurt caused a noticeably lower level of syneresis and an increase in the
matrix’s stiffness, cohesion, and viscosity [178].

Citrus fruits (orange, lemon, mandarin, and grapefruit) are also among the most widely
grown crops that produce a huge quantity of co-products, such as peel and pulp (seeds and
membrane residues). Soluble dietary fiber and insoluble dietary fiber, which can be found
in citrus co-products, are outstanding sources of dietary fiber. Several studies reported
very intriguing technological–functional properties of citrus co-products due to their high
dietary fiber content, including their water-holding capacity (WHC), oil-holding capacity
(OHC), swelling capacity (SC), foam capacity (FC), and emulsion capacity (EC). Citrus
co-products can be used to increase the dietary fiber content or serve as a fat substitute in
meat products. In this regard, a study examined the impact of adding lemon fiber at 2, 4,
and 6% on the amount of cholesterol in low-fat beef burgers. The researchers discovered
that adding lemon fiber lowered the amounts of cholesterol and saturated fatty acids in a
concentration-dependent manner [179]. Similar to this, low-fat Frankfurt sausages were
supplemented with various amounts of citrus fiber (1, 2, and 3%). According to these
authors, the sausage samples that had citrus fiber added to them had reduced levels of
saturated fatty acids and better water-binding properties [180]. Citric acid, one of the
by-products of kiwi processing, can prevent browning and maintain color characteristics
during the osmotic dehydration of kiwifruit slices [181]. Another compound of interest
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from kiwi is Actinidin. Actinidin has potential applications as a cost-effective coagulant in
milk. According to a study, kiwi extract caused a casein clot to form that was isolated from
the serum and remained stable for up to two months at room temperature [182].

Beyond fulfilling fundamental nutritional needs, bioactive substances have positive
health effects on the host. Due to the GRAS (Generally Recognized as Safe) status of
medicinal herbs, extracts, or essential oils, they can be added to a variety of food products.
The effect of flaxseed extract, which is high in linolenic acid, lignans, and fiber, on the
development and survival of kefir-isolated lactic acid bacteria was demonstrated in an
in vitro investigation by [183]. The growth of Lactobacillus kefiranofaciens DN1, Lactobacillus
bulgaricus KCTC3635, Lactobacillus brevis KCTC3102, and Lactobacillus plantarum KCTC3105
was reported to be considerably higher after treatment with crude flaxseed extract than
that in the control. Similarly, the characteristics of kefir drinks that had been supplemented
with yam, sesame seed, and bean extracts were examined [184]. Upon the application of
different concentrations (25, 50, and 75%) of these extracts, the results demonstrated that
the fermentation of yam, sesame, and bean extracts by water kefir grains was acceptable for
the preparation of fermented vegetable beverages. In addition, the formulation enhanced
with 50% beans was the finest base for producing kefir beverages, as well as a protein-
rich beverage. To partially replace the fat in an emulsified meat system, the impact of
orange peel addition, employed as a fat substitute, on the oxidative stability of low-fat
beef burgers was examined [185]. The authors claimed that the samples in which orange
peels were used as a fat replacer had peroxide levels that were lower than those of a control
sample, with reductions of >90%. Given that its dietary fiber can aid in regulating colon
bacterial populations and lower the synthesis of mutagens following the fermentation
of food chemicals by intestinal bacteria, the prebiotic capacity of kiwis is one of their
most researched characteristics [186]. It has been demonstrated that eating cooked starch
with kiwis delays the digestion and absorption of carbohydrates and has hypoglycemic
effects [187]. The use of kiwi seed oil as a component of dietary supplements intended
to lower cholesterol and prevent obesity has been suggested. It would have an anti-
inflammatory effect, enhance the intestinal flora, lower blood sugar levels, and promote a
lipid-lowering effect [188,189].

7.2. Food Preservation

Bioactive compounds such as phenolics, which comprise terpenes, aliphatic alcohols,
aldehydes, ketones, acids, anthocyanins, and isoflavonoids, are the most important group
of chemicals with antimicrobial activity [190,191]. The fundamental function of phenolics
is in plant defense against biotic and abiotic stressors, pathogens, and pests [192–194].
Flavonoids are a wide category of phenolic compounds found in several fruits, vegetables,
and roots, among other foods [195,196]. The subclasses of flavonoids include flavanones,
flavonols, flavones, flavonols, isoflavones, and anthocyanidins [197].

Grape seed extracts are by-products of winemaking or grape juice production and
are high in proanthocyanidins and other phenolic compounds [198–200]. The use of the
Isabel and Niagara varieties of grape seed extracts as natural antioxidants in amounts
of 40 and 60 mg, respectively, delayed the lipid oxidation of processed, cooked, and re-
frigerated chicken meat for 14 days, with effects comparable to those of the synthetic
antioxidant butylated hydroxytoluene (BHT). Similarly, the combination of grape extracts
with vacuum packaging has been shown to be an effective method for enhancing the
lipid stability of cooked chicken [201]. Several studies have also reported the antibacte-
rial effectiveness of grape extracts against lactic acid bacteria, foodborne pathogens, and
wine-rotting yeasts [202–207]. Grape seed extracts suppressed the growth of foodborne
pathogens, such as Staphylococcus aureus, Salmonella sp., Escherichia coli, Listeria monocyto-
genes, and Campylobacter sp. [208–210]. Depending on their composition, citrus peels are
abundant in several nutrients that serve as functional and antimicrobial compounds. These
by-products contain secondary metabolites, such as terpenoids, carotenoids, coumarins, fu-
ranocoumarins, and flavonoids, particularly flavanones and polyethoxylated flavones [211].
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The addition of citrus oil in combination with milder heat treatments has been reported
to have an impact on the control of spoilage bacteria in apple and orange juices [212]. On
the other hand, mango seed biowaste has also been characterized by a high concentra-
tion of bioactive components, including phenolic compounds, carotenoids, and vitamin
C [213,214]. A study reported an array of antibacterial properties for mango seed ethanolic
extracts and reported their efficacy against Gram-negative bacteria [215]. Various mango
peel extracts were evaluated for their antibacterial effects against Gram-positive Staphylo-
coccus aureus and Gram-negative Pseudomonas fluorescens. Different levels of antibacterial
activity were present in the extracts against both. In general, Gram-positive bacteria are
more sensitive to natural substances than Gram-negative ones. The peel of the Langra
mango variety showed the greatest zone of inhibition for both organisms when it was ex-
tracted with 70% ethanol and 80% acetone. Due to the existence of various cell wall architec-
tures, Gram-positive and Gram-negative bacteria exhibit diverse antimicrobial properties.
More potent antibacterial substances may include those that can fluidize the membrane
and successfully diffuse the lipid bilayer [216]. Avocado peels and seeds contain many
bioactive components, including phenolic acids, condensed tannins, flavonoids (including
procyanidins and flavonols), and hydroxybenzoic and hydroxycinnamic acids [217–219].
Studies have demonstrated the antibacterial action of avocado seed extract components
against microorganisms. A recent study demonstrated the biocidal impact of avocado seed
extracts against L. monocytogenes, suggesting that this action was caused by an increase
in cell membrane permeability. Avocado seed ethanolic extract (104.2–416.7 µg/mL) was
found to exert antibacterial effects against L. monocytogenes (Staphylococcus epidermidis, and
Zygosaccharomyces bailii [220]. Table 4 depicts some additional food-preservation effects
from food waste.

Table 4. Bioactive compounds extracted from fruit waste and their application as a natural food
preservative.

Food Waste/Bioactive Compound Food Preservation Effect Reference

Apple pomace Inhibitory effect against pathogens Helicobacter pylori [221]
Kiwi leaves (alcoholic and hydroalcoholic extracts) Antimicrobial effect against S. aureus [222]

Olive mill wastewater (phenols) Antimicrobial action against E. coli, P. aeruginosa, S. aureus, and
B. subtilis strains [223]

Tomato wastes Antimicrobial activity of tomato waste extracts against S. aureus
correlated moderately with isochlorogenic acid content [224]

Acetone and methanol carrot peel extracts Growth inhibition of Shigella flexneri, E.coli, S. aureus, and
Klebsiella pneumoniae [225]

Jabuticaba seeds Ellagitannins and ellagic acid in the extracts contained
antimicrobial and antioxidant properties. [226]

8. Challenges and Future Direction

Fruit and vegetable wastes from the agri-food sector are produced in enormous quan-
tities and, due to their high moisture content and microbial load, can lead to significant
environmental damage. Bioactive components could degrade quickly, even with the slight-
est alterations in extraction techniques. For instance, a 22% reduction in phenolic content
was reported in strawberries due to the influence of extraction parameters such as tempera-
ture and pressure [227]. Extraction process parameters, such as pressure, temperature, light,
pH, etc., can cause rapid variations in the quality and quantity of the extracted bioactive
compounds, thereby facilitating losses [75]. Therefore, it is necessary to ensure conditions
that will stabilize the bioactive components before and after extraction. Choosing an ap-
propriate optimized extraction technique is critical as it decides the final quality of the
bioactive compound. Today, the utilization of natural bioactive compounds in the food
business has been hampered by the lab-intensive and lengthy extraction and isolation
methods. As technology advances, new rapid and efficient technologies for extracting and
separating natural compounds emerge that can yield high-quality extracts with a better
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yield and reduced time and usage of solvents. However, the higher cost associated with
these novel technologies and the difficulties in scaling up to industrial standards remains a
major challenge. There are numerous potentials for employment and revenue growth in
the market for bio-based products. In recent years, these might account for up to 10% of
chemical industry penetration and the creation of nearly 200,000 jobs in the United States
alone. By 2020, the global nutraceuticals market was projected to increase by 8% annually
and reach a value of USD 263 billion [148]. However, these encouraging prospects must
overcome significant obstacles, such as the perishable nature of fruit and vegetable waste,
logistical problems brought on by the dispersed generation of fruit and vegetable wastes,
the composition of fruit and vegetable wastes, which often exist as complex mixtures that
increases the cost of extraction, etc.

In terms of industrial application, these chemicals are known to be used mostly in
the cosmetic and food industries [228]. The use and application of the extracted bioactive
compounds in the food industry depend on the amount of bioactive component (BC) extract,
the mode of addition into the food matrix (crude or powder), and external factors, such
as heat, light, pressure, etc., during food processing. Additionally, before advertising and
employing the bioactive component for consumer use, the extracts must undergo an in vivo
analysis to validate their bioactivity, stability, safety, and bioavailability. Moreover, further
research is needed to determine the best extraction procedures to meet the requirements
for food fortification and other applications.

9. Conclusions

The study of fruit waste valorization has gained recent significance as it can be used
as an important tool to meet sustainable development goals and help to combat the carbon
footprint and greenhouse gas emissions that are mostly caused by these wastes. Although
some fruit by-products contain even more bioactive ingredients than the original fruit
itself, they are typically seen as waste and thrown away. The high quantity of co-products
generated during the industrialization of agricultural produce, as well as their high content
of bioactive compounds with interesting functional properties, such as antioxidant and an-
tibacterial properties, have encouraged the development of processes for their valorization,
thereby contributing to the sustainability of this sector. However, the time-consuming and
lab-intensive extraction protocols have severely hindered the application of these bioactive
components in the food industry. As it is feasible to operate with environmentally friendly
solvents, such as water, and, in some circumstances, without any solvent at all, using
novel technologies for the extraction of bioactive components is a sustainable alternative.
Moreover, these techniques are more rapid, with better extraction quality and efficacy. The
food business is one of the industries that utilizes various extracts derived from these co-
products, primarily in response to consumer demand for new goods with a lower synthetic
preservative content generated through sustainable and eco-efficient techniques. Utilizing
these co-products as a source of bioactive compounds and as an ingredient in numerous
formulations for the food industry has become an attractive field today. Nonetheless, this
procedure necessitates interdisciplinary research, which may include food chemistry, food
technology, biotechnology, molecular biology, or toxicity.
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207. Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.
Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in
Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [CrossRef]

208. Filocamo, A.; Bisignano, C.; Mandalari, G.; Navarra, M. In vitro antimicrobial activity and effect on biofilm production of a white
grape juice (Vitis vinifera) extract. Evid. -Based Complement. Altern. Med. 2015, 2015, 856243. [CrossRef]

209. Silván, J.M.; Mingo, E.; Hidalgo, M.; de Pascual-Teresa, S.; Carrascosa, A.V.; Martinez-Rodriguez, A.J. Antibacterial activity of a
grape seed extract and its fractions against Campylobacter spp. Food Control 2013, 29, 25–31. [CrossRef]

210. Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Potential application of spice and herb extracts as natural preservatives in cheese.
J. Med. Food 2011, 14, 284–290. [CrossRef]

211. Ahmad, M.M.; Iqbal, Z.; Anjum, F.M.; Sultan, J.I. Genetic variability to essential oil composition in four citrus fruit species. Pak.
J. Bot. 2006, 38, 319.

http://doi.org/10.25177/JFST.4.7.RA.564
http://doi.org/10.1111/ijfs.13697
http://doi.org/10.1039/C7FO00914C
http://doi.org/10.1016/j.jff.2018.12.003
http://doi.org/10.1016/j.foodchem.2015.08.127
http://www.ncbi.nlm.nih.gov/pubmed/26593493
http://doi.org/10.1021/jf00021a002
http://doi.org/10.1016/j.ijfoodmicro.2004.03.022
http://www.ncbi.nlm.nih.gov/pubmed/15246235
http://doi.org/10.3389/fmicb.2016.00566
http://www.ncbi.nlm.nih.gov/pubmed/27148243
http://doi.org/10.1016/j.cofs.2016.02.002
http://doi.org/10.3390/ijms19113498
http://doi.org/10.1016/S0753-3322(97)88045-6
http://doi.org/10.1146/annurev.food.080708.100754
http://www.ncbi.nlm.nih.gov/pubmed/22129334
http://doi.org/10.1021/jf063150n
http://www.ncbi.nlm.nih.gov/pubmed/17199326
http://doi.org/10.1016/j.lwt.2005.02.003
http://doi.org/10.1021/jf049645z
http://doi.org/10.1111/j.1365-2621.2010.02201.x
http://doi.org/10.1128/AEM.01595-08
http://www.ncbi.nlm.nih.gov/pubmed/19047390
http://doi.org/10.1016/S0956-7135(03)00083-5
http://doi.org/10.1016/S0963-9969(02)00116-3
http://doi.org/10.1016/j.ijfoodmicro.2012.12.018
http://doi.org/10.1016/j.foodres.2011.01.022
http://doi.org/10.1016/j.foodchem.2009.07.019
http://doi.org/10.1155/2015/856243
http://doi.org/10.1016/j.foodcont.2012.05.063
http://doi.org/10.1089/jmf.2010.0009


Foods 2023, 12, 556 26 of 26

212. de Souza Pedrosa, G.T.; de Carvalho, R.J.; Berdejo, D.; de Souza, E.L.; Pagán, R.; Magnani, M. Control of autochthonous spoilage
lactic acid bacteria in apple and orange juices by sensorially accepted doses of Citrus spp. essential oils combined with mild heat
treatments. J. Food Sci. 2019, 84, 848–858. [CrossRef] [PubMed]

213. Jahurul, M.; Zaidul, I.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.-L.; Norulaini, N.; Sahena, F.; Omar, A.M. Mango (Mangifera indica L.)
by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [CrossRef] [PubMed]

214. Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E.; Aguilar, C.N. Mango seed: Functional
and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [CrossRef]

215. Kabuki, T.; Nakajima, H.; Arai, M.; Ueda, S.; Kuwabara, Y.; Dosako, S.i. Characterization of novel antimicrobial compounds from
mango (Mangifera indica L.) kernel seeds. Food Chem. 2000, 71, 61–66. [CrossRef]

216. Kanatt, S.R.; Chawla, S. Shelf life extension of chicken packed in active film developed with mango peel extract. J. Food Saf. 2018,
38, e12385. [CrossRef]

217. Hurtado-Fernandez, E.; Carrasco-Pancorbo, A.; Fernandez-Gutierrez, A.; Chemistry, F. Profiling LC-DAD-ESI-TOF MS method for
the determination of phenolic metabolites from avocado (Persea americana). J. Agric. FoodChem. 2011, 59, 2255–2267. [CrossRef]

218. Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive identification of bioactive compounds
of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chem. 2018, 245, 707–716.
[CrossRef]

219. Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive characterization of phenolic and
other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763.
[CrossRef]

220. Raymond Chia, T.W.; Dykes, G.A. Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea
americana) of three cultivars. Pharm. Biol. 2010, 48, 753–756. [CrossRef]

221. Anna, B.; Vizma, N.; Dmitry, B. Anti-Helicobacter activity of certain food plant extracts and juices and their composition in vitro.
Food Nutr. Sci. 2011, 2011, 868–877.

222. Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P. Hardy kiwifruit
leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem. 2018, 259, 113–121.
[CrossRef] [PubMed]

223. Obied, H.K.; Karuso, P.; Prenzler, P.D.; Robards, K. Novel secoiridoids with antioxidant activity from Australian olive mill waste.
J. Agric. Food Chem. 2007, 55, 2848–2853. [CrossRef] [PubMed]

224. Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and
their correlation with the biochemical composition. Lwt 2019, 116, 108558. [CrossRef]

225. John, S.; Priyadarshini, S.; Monica, S.J.; Arumugam, P. Phytochemical profile and thin layer chromatographic studies of Daucus
carota peel extracts. Int. J. Food Sci. Nutr. 2017, 2, 23–26.

226. Hacke, A.C.M.; Granato, D.; Maciel, L.G.; Weinert, P.L.; Prado-Silva, L.d.; Alvarenga, V.O.; de Souza Sant’Ana, A.; Bataglion, G.A.;
Eberlin, M.N.; Rosso, N.D. Jabuticaba (Myrciaria cauliflora) seeds: Chemical characterization and extraction of antioxidant and
antimicrobial compounds. J. Food Sci. 2016, 81, C2206–C2217. [CrossRef] [PubMed]

227. Terefe, N.S.; Matthies, K.; Simons, L.; Versteeg, C. Combined high pressure-mild temperature processing for optimal retention of
physical and nutritional quality of strawberries (Fragaria× ananassa). Innov. Food Sci. Emerg. Technol. 2009, 10, 297–307. [CrossRef]

228. Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.; Barros, L.; Ferreira, I. Phenolic compounds: Current industrial applications,
limitations and future challenges. Food Funct. 2021, 12, 14–29. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/1750-3841.14474
http://www.ncbi.nlm.nih.gov/pubmed/30866044
http://doi.org/10.1016/j.foodchem.2015.03.046
http://www.ncbi.nlm.nih.gov/pubmed/25863626
http://doi.org/10.1016/j.tifs.2016.06.009
http://doi.org/10.1016/S0308-8146(00)00126-6
http://doi.org/10.1111/jfs.12385
http://doi.org/10.1021/jf104276a
http://doi.org/10.1016/j.foodchem.2017.12.011
http://doi.org/10.1016/j.foodres.2017.11.082
http://doi.org/10.3109/13880200903273922
http://doi.org/10.1016/j.foodchem.2018.03.113
http://www.ncbi.nlm.nih.gov/pubmed/29680033
http://doi.org/10.1021/jf063300u
http://www.ncbi.nlm.nih.gov/pubmed/17373814
http://doi.org/10.1016/j.lwt.2019.108558
http://doi.org/10.1111/1750-3841.13405
http://www.ncbi.nlm.nih.gov/pubmed/27490163
http://doi.org/10.1016/j.ifset.2008.12.003
http://doi.org/10.1039/D0FO02324H

	Introduction 
	Materials and Methods 
	Fruit Loss and Processing Waste 
	Bioactive Compounds from Fruit Waste 
	Extraction Techniques 
	Conventional Methods 
	Novel Emerging Methods 
	Supercritical Fluid Extraction (SFE) 
	Microwave-Assisted Extraction (MAE) 
	Enzyme-Assisted Extraction (EAE) 
	Pulsed Electric Field Extraction (PEFE) 
	High-Pressure Extraction 
	Ultrasound-Assisted Extraction (UAE) 


	Bioactivities of Active Compounds Extracted from Fruit Waste 
	Antioxidant Activity 
	Antimicrobial Activity 
	Other Properties 

	Application of Bioactive Compounds in the Food Industry 
	Food Fortification 
	Food Preservation 

	Challenges and Future Direction 
	Conclusions 
	References

