Skip to main content
. 2023 Feb 1;11(3):415. doi: 10.3390/healthcare11030415

Table 7.

Comparison of different DL methods.

Reference Classification Techniques Data Set Performance Evaluation
Sensitivity of Method (%) Specificity of the Method (%) Precision (%) Accuracy (%)
[19] Transfer learning PH2 98.4 98.8 97.7 98.7
[20] Alex Net TL PH2 100 96.7 Not given 97.5
[21] DCNN PH2 72 89 Not given 80.5
[22] FRCN (Full resolution Conv. Network) PH2 91.6 96.5 Not given 94.6
[23] HRFB (High resolution Feature blocks) PH2 96.44 94.2 Not given 94.9
[24] 3D CTF (Color Text features) PH2 98.2 93.8 Not given 97.5
[25] Depth-wise residual convolutional network PH2 100 Not given 90.1 96.5
[26] Transfer learning PH2 92.5 94.5 Not given 93.3
[27] DCNN (pixel-wise) PH2 93.1 95.1 Not given 95.4
[28] FCNN + Google Net ISBI (2016) challenge data set 69.1 93.6 Not given 88.2
[29] Transfer learning ISBI (2016) challenge data set 90.2 99.1 92.1 92.5
[30] Fusion Method (DCNN + Features) ISBI (2016) challenge data set 93.2 80.5 Not given 95.6
[31] OCF (Optimized color features) + DCNN ISBI (2016) challenge data set 92.1 90.1 Not given 92.2
[32] Fusion method (DCNN + Feature vectors) ISBI (2016) challenge data set Not given Not given 68.9 86.9
[33] FCN + Google Net ISBI (2017) challenge data set 81.3 86.3 Not given 85.4
[34] LDA + CNN ISBI (2017) challenge data set 52.5 97.6 55.3 85.4
[35] Transfer Learning ISBI (2017) challenge data set 95.6 95.3 97.4 95.6
[36] DCNN + Augmentation Algorithm ISBI (2017) challenge data set Not given Not given 73.9 89.2
[37] CNN + Ranking Algorithm + Ra Pooling ISBI (2017) challenge data set 60 88.7 Not given 84.4
[38] Transfer Learning Algorithm ISBI (2018) challenge data set 80.2 98.1 Not given 97.6
[39] CNN + Regularize ISIC data set 94.3 93.2 Not given 97.6
[40] ECOC + SVM + DCNN Random images data set 97.0 90.2 Not given 94.3
[41] Fusion method (Alexnet + VGG16) Multiple 99.3 98.4 Not given 99%
[42] Modified CNN Multiple Dermis + Der Quest 94.2 94.5 Not given 94.6