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Abstract: Excessive drinking can significantly damage people’s health and well-being. Although
some lactic acid bacterial strains have been previously shown to alleviate the symptoms of alcohol
injury, the mechanism underlying these effects remains unclear. The aim of this study was to establish
an alcohol injury model and examine the protective effect and mechanism of B. animalis A12 and
L. salivarius M18-6. The results showed that A12 freeze-dried powder could maintain the survival
rate of mice with alcohol injury at 100%. Compared with Alco group, L. salivarius M18-6 dead cell
improved the survival rate of mice, attenuated liver steatosis, and significantly down-regulated
serum Alanine transaminase (ALT) level; at the same time, it activated keap1-Nrf2 signaling pathway
and up-regulated Superoxide dismutase (SOD), it protects mouse liver cells from oxidative stress
induced by alcohol injury. In addition, B. animalis A12 can reduce the stress response to short-term
alcohol intake and improve the ability of anti-oxidative stress by upregulating the level of isobutyric
acid, reducing the level of keap1 protein in the liver of mice and upregulating the expression of
thioredoxin genes (Txnrd1, Txnrd3, Txn1). Taken together, the results showed that B. animalis A12
and L. salivarius M18-6 alleviate alcohol injury in mice through keap1-Nrf2 signaling pathway and
thioredoxin system.

Keywords: alcohol injury; Bifidobacterium animalis; Lactobacillus salivarius; oxidative stress;
gene expression

1. Introduction

Excessive dosage and duration of alcohol consumption can cause alcohol injuries.
Alcohol injury has a wide range of effects, affecting the stomach, intestines, brain, liver,
nervous system, reproductive system, immune system, and other bodily functions and
systems [1–4]. As the problem of alcohol injury becomes increasingly serious, there is
an increasing amount of research in academia and it has gradually become a hot topic.
However, people are still helpless because of insufficient understanding of some alcohol
injury problems, such as alcoholic liver disease (ALD), for which there is still no Food and
Drug Administration (FDA)-approved treatment at any stage [5]. Alcohol metabolism in
the human body involves oxidation of ethanol to acetaldehyde and further oxidation to
Nicotinamide adenine dinucleotide (NADH) and reactive oxygen species (ROS) [6]. Ethanol
is oxidised to acetaldehyde, mainly in the cytoplasm of the liver, by ethanol dehydrogenase
and its coenzyme nicotinamide adenine dinucleotide [7].

Lactic acid bacteria (LAB) is a general term for non-spore, non-pathogenic, and gram-
positive bacteria that can convert carbohydrates (such as glucose, fructose and lactose)
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into lactic acid. Bifidobacterium and Lactobacillus are common probiotics that are used in
functional foods. In recent years it has been found that some probiotics have a signifi-
cant alleviating effect on ALD [8]. With the in-depth research of probiotics on alcohol
injury, people have found that alcohol injury outside of ALD also has a very good per-
formance [9,10]. The mechanism of action of probiotics on alcohol injury found so far
mainly includes reducing oxidative stress [11], lowering endotoxin levels, regulating cer-
tain cytokine metabolism levels [12], improving the environment of intestinal flora, and
repairing intestinal barrier function and the mucosal immune system, etc. [13–15]. Studies
have shown that probiotics can reduce acute alcoholic liver injury in mice by activat-
ing alcohol metabolism enzymes and reducing liver TNF-α response [16]. For example,
L. plantarum attenuates alcohol-induced epithelial tight junction and endotoxemia through
EGF receptor-dependent mechanisms [17]. L. paracasei GKS6, L. plantarum GKM3, and
L. rhamnosus GKLC1 can reduce alcoholic liver disease in mice [18], while L. fermentum
LA12 can significantly reduce the production and permeability of nitric oxide in the in-
testinal tract of rats with alcohol-induced injury, up-regulate the mRNA expression level
of tight junction protein, thereby stimulating the recovery of barrier structure and func-
tion, preventing endotoxin from infiltrating into the blood [19]. Additionally, L. rhamnosus
CCFM1107 alleviates alcohol injury by reducing oxidative stress, and L. rhamnosus granules
can balance intestinal microbiome disorder and improve chronic alcohol-induced liver
injury [20]. The application of B. animalis and L. salivarius to alcohol injury in keap1-Nrf2
signaling pathways and thioredoxin systems has not been reported. Therefore, this study
has important significance.

The National Institute on Alcohol Abuse and Alcoholism (NIAAA) model is a new
alcohol injury model, which can highly simulate the pathogenesis of human alcoholic
hepatitis. This results in a significant increase in the level of serum ALT, obvious steatosis
and inflammation in the liver, and high concentration of alcohol in serum [21–23]; therefore,
it has a good modelling effect. There are few reports on probiotics in this model. B. animalis
A12 isolated from the faeces of breast-fed healthy infants has potential hypoglycaemic and
lipid-lowering effects [24]. Previous studies have proved that the Bifidobacterium has a series
of excellent probiotic characteristics. M18-6 is an L. salivarius presented good antioxidant
activity in our previous study [25]. Therefore, this study selected B. animalis A12 and
L. salivarius M18-6 and explored the mechanism of action of the two probiotics on alcohol
injury from the perspectives of oxidative stress and immunity.

2. Materials and Methods

B. animalis A12 (CGMCC No.17308), L. salivarius M18-6 (separation and preservation
of bacterial strains in the functional dairy laboratory of Beijing University of Agriculture,
CGMCC No.16199), and B. animalis A12 freeze-dried powder were used in this study.

Bifidobacterium culture medium was created as follows: add 0.5 g/L of L-cysteine salt
(Beijing Chemical Plant) on the basis of Man Rogosa Sharpe (MRS) medium, pH adjusted to
6.5, aliquot into an anaerobic tube, seal it with nitrogen and autoclave at 121 ◦C for 15 min.

2.1. Microbiology Experiment

B. animalis A12 and L. salivarius M18-6 were taken from an −80 ◦C bacteria bank and
inoculated in MRS liquid medium for amplification and culture to the third generation.
After counting, the cell suspension concentration was diluted to 5.0 × 109 CFU/mL with
normal saline. To get the dead cells used in this study, the living bacteria were sterilised at
121 ◦C for 15 min, centrifuged at 4000× g and 4 ◦C for 15 min, and the concentration of cell
suspension was adjusted using normal saline.

2.2. Animal Experimental Design

The animal experiments were performed in accordance with the recommendations of
Animal Management Regulations, Ministry of Science and Technology of the People’s Re-
public of China. The protocol was approved by the Ethical Committee of the Experimental
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Animal Care of Beijing University of Agricultural (protocol code bua2022002, 2 March 2022,
Beijing, China). Studies were conducted on 8- to 9-week-old male, C57BL/6N mice raised
in the clean laboratory animal room of the Pony Testing Group Co., Ltd. The animals were
housed in standard cages and maintained under standard laboratory conditions, at ambient
temperatures of 20–23 ◦C, under a 12 h/12 h light/dark cycle, with a relative humidity of
50–60%, and with free access to water and food, Lieber-Decarli liquid feed feeding. All
the mice were allowed to adapt to the set environment for 7 days and then randomised
into seven groups (n = 12 per group): Normal group (fed with normal saline); Alco group
(fed with alcohol liquid feed only); A12-L group (fed with live B. animalis A12 cells); A12-D
group (fed with dead B. animalis A12 cells); A12-P group (fed with B. animalis A12 freeze-
dried power); M18-6-L group (fed with live L. salivarius M18-6 cells); and M18-6-D group
(fed with dead L. salivarius M18-6 cells). The formal experiment was divided into three
stages: stage 1: The mice were given a liquid diet adaptation period for 1 d with no alcohol
in the diet; stage 2: The alcohol concentration in the liquid diet increased from 1 to 4% in
the first 4 days; and stage 3: The mice were fed with 5% alcohol liquid feed for 10 days,
and then, on the morning of the 16th day, a high-dose alcohol was administered by gavage.
After 9 h, the animals were processed, and blood and liver samples were taken. The body
weights of the mice were measured weekly using a digital scale. Each mouse was gavaged
with normal saline or the corresponding bacterial test substance once daily. The gavage
volume was 0.2 mL with 1 × 109 CFU live cells or 1 × 109 CFU dead cells (Figure 1).
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Figure 1. The Schedule of the experimental protocol and drug administration. (n = 12 per group).
Normal: normal saline-fed; Alco: alcohol-fed group; A12-L: alcohol-fed with live B. animalis A12 cells
group, A12-D: alcohol-fed with dead B. animalis A12 cells group, A12-P: alcohol-fed with B. animalis
A12 freeze-dried power group, M18-6-L: alcohol-fed with live L. salivarius M18-6 cells group, and
M18-6-D: alcohol-fed with dead L. salivarius M18-6 cells group.

2.3. Serum Biochemistry Determination

Blood was coagulated at 20 ◦C for one hour and then centrifuged at 3500× g and 4 ◦C
for 15 min. The centrifuged serum was used immediately or stored in a low temperature
environment of −70 ◦C for later use. An automatic biochemical analyser type 7600 (Hitachi
High-tech International Trading, Shanghai, China) was used to determine mouse serum
alanine transaminase (ALT).

2.4. Liver Biochemistry Determination

Liver homogenate (10%) was centrifuged at 3000× g and 4 ◦C for 15 min, the precipitate
was discarded, the supernatant was collected, and the liver homogenate was stored at
−70 ◦C for the experiment. Total superoxide dismutase (T-SOD) levels were determined
(Nanjing Jiancheng Biotechnology Co., Ltd, Nanjing, China; Project No.: A001-1).
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2.5. Gene Expression Analysis

Txnrd1, Txnrd3, Txn1, Txn2, Nrf2, keap1, and p65 transcript expression levels in the
liver tissue were detected by real-time fluorescent quantitative PCR (Applied Biosystems,
Foster City, CA, USA). RNA was extracted from liver tissue according to the manufacturer’s
instructions, and the TAKARA reverse transcription kit-RR047A was used to obtain com-
plementary DNA (cDNA). The reverse-transcribed cDNA was used as a template, β-actin
acted as an internal reference gene, and specific primers (Sangon Biotech, Shanghai, China)
of the target genes were synthesised according to the sequences in Table 1. A fluorescence
quantitative PCR amplification system (cDNA template: 1 µL, Primer F: 0.5 µL, Primer
R: 0.5 µL, TB Green: 7.6 µL, Rox: 0.4 µL (Takara Biomedical Technology Co., Ltd, Beijing,
China), ddH2O: 10 µL). The PCR conditions were as follows: 5 min at 95 ◦C, 40 cycles of
10 s at 95 ◦C, 30 s at 60 ◦C, and 30 s at 72 ◦C followed by a melting curve step. The mRNA
expression level was calculated using the 2−44CT method and the data were analysed.

Table 1. Primers sequences used to amplify RNA transcripts.

Gene Oligonucleotide
(5′–3′)

Oligonucleotide
(3′–5′) Product(bp)

Keap1 TCGAAGGCATCCACCCTAAG CTCGAACCACGCTGTCAATCT 135
Nrf2 TAGATGACCATGAGTCGCTTGC GCCAAACTTGCTCCATGTCC 153
P65 ACTGCCGGGATGGCTACTAT TCTGGATTCGCTGGCTAATGG 126

Txn1 GTGGTGTGGACCTTGCAAAA CTGGCAGTCATCCACTCCA 100
Txnrd1 GGGTCCTATGACTTCGACCTG AGTCGGTGTGACAAAATCCAAG 117
Txn2 TTCCCTCACCTCTAAGACCCT CCTGGACGTTAAAGGTCGTCA 122

Txnrd3 GCACGCGGGTTAAGGAACT TGGGCACCGTTTTCTGGTTAC 129

2.6. Western Blot

Total protein of the tissue samples was extracted according to the manufacturer’s
instructions and electrophoresis was performed on a 12% gel prepared according to the
size of the target protein. The sample was loaded, and electrophoresis was conducted at
80 V for approximately 20 min. After the protein entered the separation gel and the marker
began to separate, the voltage was adjusted to 120 V. The total electrophoresis time was
approximately 1.5 h. The membrane was then transferred using a wet transfer method. The
transferred membrane was then shaken slowly in a blocking solution at room temperature
for 1 h. After blocking, the membrane was washed with TBST (10X TBST (100 mL/L): Tris
(24.2 g), and NaCl (80 g). Water was added to adjust the pH to7.6 and dilute the volume
to 1 L (Tween-20 1 mL/L), incubated with the primary antibody (keap1 dilution ratio of
1:1000, Nrf2 dilution ratio of 1:500, Proteintech, Chicago, USA, β-actin dilution ratio of
1:5000, Powan Biotechnology, Shanghai, China) in a refrigerator at 4 ◦C, and then incubated
with the secondary antibody at room temperature. After the incubation, the membrane was
washed with TBST, to allow the colour to develop, and photos were taken of the exposure
at different times to detect the protein expression of Nrf2 and keap1 in liver tissues.

2.7. Haematoxylin and Eosin (H&E) Staining of Mouse Liver

Liver tissues were analysed using Beijing Xuebang Technology Co., Ltd. The liver
lobules of each group were fixed in a solution of 4% paraformaldehyde solution, dehydrated
in alcohol, and embedded in paraffin. Four-micrometre sections were prepared and stained
with H&E for histological evaluation.

2.8. GC-MS Detection of Short-Chain Fatty Acids in Mouse Faeces

A 50 ± 1 mg sample was placed into a 2 mL Eppendorf tube, extracted with 0.5 mL
dH2O, by vortex mixing for 10 s. The sample was then homogenized in a ball mill for
4 min at 40 Hz and ultrasound treated for 5 min (incubated in ice water). It was then
centrifuged for 20 min at 5000 rpm and 4 ◦C. The supernatant (0.3 mL) was transferred into
fresh 2 mL EP tubes, extracted with 0.5 mL dH2O, vortexed for 10 s, homogenised for 4 min
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at 40 Hz, and ultrasonicated for 5 min (incubated in ice water). It was then centrifuged
for 20 min at 5000 rpm and 4 ◦C. After this, the supernatant (0.5 mL) was transferred into
a fresh 2 mL EP tube, and the supernatant was combined with the following for a total
volume of 0.8 mL; 0.1 mL 50% H2SO4 and 0.8 mL of 2-methylvaleric acid (25 mg/L stock in
methyl tert-butyl ether, added as an internal standard). The sample was then vortex mixed
for 10 s, oscillated for 10 min, then ultrasound treated for 5 min (incubated in ice water).
It was then centrifuged for 15 min at 10,000 rpm (4 ◦C) and kept at −20 ◦C for 30 min.
Finally, the supernatant was transferred to a fresh 2 mL glass vial for GC-MS analysis with
a Shimadzu GC2030-QP2020 NX gas chromatography-mass spectrometer. The system used
an HP-FFAP capillary column. A 1µL aliquot of the analyte was injected in split mode
(5:1). Helium was used as the carrier gas, the front inlet purge flow rate was 3 mL min−1,
and the gas flow rate through the column was 1 mL min−1. The initial temperature was
maintained at 80 ◦C for 1 min, then raised to 200 ◦C at a rate of 10 ◦C min−1 for 5 min, then
kept for 1min at 240 ◦C at a rate of 40 ◦C min−1. The injection, transfer line, quad, and ion
source temperatures were 240, 200, and 150 ◦C, respectively. The energy was −70 eV in
the electron impact mode. Mass spectrometry data were acquired in Scan/SIM mode with
an m/z range of 33–150 after a solvent delay of 3.5 min.

2.9. Statistical Analysis

All data were analysed using the statistical software IBM SPSS Statistics 26 (IBM,
Chicago, USA) for homogeneity test of variance, one-way analysis of variance, Duncan’s
method for multiple comparisons, nonparametric test, and the t-test for significance analy-
sis. The significance level was set at p < 0.05. The results of each index are expressed as
“mean ± standard deviation” (x ± SD). The graphics were performed using GraphPad
Prism (GraphPad Software 8, Santiago, USA). All experiments were repeated three times,
except for animal experiments. For biochemical parameters, n = 6 per group was employed,
whereas n = 3 per group was used for Western blot analysis.

3. Results
3.1. Effect of B. Animal A12 and L. salivarius M18-6 on Morphology and Survival Rate of Mice
with Alcohol Injury

We found that after treatment with alcohol, mice showed symptoms such as body
stiffness, slow movement, mental fatigue, or intense combat, and their fur began to lose its
lustre. Compared with the normal group, the mice in the other groups had poor appetite
and weight loss, but these symptoms were significantly improved in the other groups
compared with the Alco group.

To study the protective effect of B. animal A12 and L. salivarius M18-6 on alcohol injury,
we established a new alcohol injury model of NIAAA. Changes in the survival rate of the
mice during the experiment are shown in Figure 2. The survival rate on the eleventh day in
the Alco, M18-6-L, M18-6-D, and A12-D groups was lower than that of the normal group,
but the survival rate of the A12-P group remained 100%. The survival rate was significantly
higher in A12-P group than Alco group (p < 0.05, Figure 2D). This suggests that B. animalis
A12 and L. salivarius M18-6 are beneficial to the survival rate of experimental mice, thereby
alleviating alcohol-induced death.

3.2. Effect of B. animalis A12 and L. salivarius M18-6 on Liver Histopathology in Mice with
Alcohol Injury

Figure 3 shows a typical pathological section of the liver stained and liver index.
Owing to the stimulation and destruction of the metabolic system by alcohol, the liver, as
the main metabolic organ, has obvious pathological damage, such as fatty degeneration
and vacuolar degeneration. It can be seen that the structure of hepatic lobule in each
group is clear, the stem cells in the normal group are round, and only individual cells
are fatty degeneration (Figure 3A). Liver histological damage and fatty degeneration
were obvious in the Alco group (Figure 3B). Liver injury in the M18-6-L and M18-6-
D groups was significantly improved, such as reduced steatosis, which changed from
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vacuolar degeneration to granular degeneration (Figure 3F,G), while only slight steatosis
was observed in the A12-D group (Figure 3D). After alcohol intake, the liver is injured
and the liver index often decreases, which can be used as a preliminary indicator of the
degree of injury, and it can be seen from Figure 3H that compared with the normal group,
the liver indices of the Alco group decreased with no significant difference (p > 0.05). The
liver index in the M18-6-L group increased compared with that in the Alco group, and with
a remission rate of 2.6%. These results show that M18-6-L were effective in preventing
alcohol injury.
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Figure 3. Effects of probiotics treatment on liver histopathology (H&E staining, magnification × 40)
and liver index. Liver histopathology: (A): Normal; (B): Alco; (C): A12-L; (D): A12-D; (E): A12-P;
(F): M18-6-L; (G): M18-6-D; (H): Liver index. Compared with normal group (p < 0.05) *, compared
with Alco group (p < 0.05) #. Normal: normal saline-fed; Alco: alcohol-fed group; A12-L: alcohol-fed
with live B. animalis A12 cells group, A12-D: alcohol-fed with dead B. animalis A12 cells group, A12-P:
alcohol-fed with B. animalis A12 freeze-dried power group, M18-6-L: alcohol-fed with live L. salivarius
M18-6 cells group, and M18-6-D: alcohol-fed with dead L. salivarius M18-6 cells group.

3.3. Effect of B. animalis A12 and L. salivarius M18-6 on Serum ALT in Mice with Alcohol Injury

We examined the effects of treatment interventions expression of alanine transaminase
(ALT) in mice. As shown in Figure 4, compared with the normal group the ALT level
in the Alco group was significantly increased (p < 0.05), indicating that the liver injury
in these mice was severe. Both the A12-L and M18-6-D groups significantly alleviated
the increase in serum ALT activity caused by alcohol injury in mice (p < 0.05). M18-6-D
group serum ALT activity remission rate (=(Alco group-Experimental group)/(Alco group-
Normal group) × 100%) was 37.59%. It has been suggested that the elevation of serum
ALT activity caused by alcohol injury can be effectively alleviated by M18-6 dead cells.
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Alco group was significantly lower than that in the normal group (p < 0.05), indicating 
that alcohol intake caused a stress response. However, after the intake of probiotics, com-
pared with the Alco group the fold change in p65 was significantly increased (p < 0.05). 
The A12-D (1.26) and M18-6-D (0.99) groups restored the relative expression of p65 mRNA 
in the livers of mice in the normal (1) group. This study also measured SOD activity (Fig-
ure 5B); the SOD activity of the Alco group decreased compared with the normal group, 
while the A12-P, M18-6-D, and M18-6-L groups’ SOD activity significantly increased (p < 
0.05), indicating that B. animalis A12 and L. salivarius M18-6 can improve the body’s anti-
oxidant status. 

Figure 4. Serum ALT level in mice. Compared with normal group (p < 0.05) *, compared with Alco
group (p < 0.05) #. ALT: alanine transaminase. Normal: normal saline-fed; Alco: alcohol-fed group;
A12-L: alcohol-fed with live B. animalis A12 cells group, A12-D: alcohol-fed with dead B. animalis A12
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3.4. Effect of B. animalis A12 and L. salivarius M18-6 on Immune Level and Liver Oxidative
Status in Mice

Alcohol injury can lead to an abnormal immune system and reduced metabolic detoxi-
fication of alcohol, thereby inducing alcoholic liver disease, p65 is a subunit of the NF-kB
pathway. As the central factor of the immune response, the relative expression of mRNA in
each group is shown in Figure 5A. The relative expression of p65 mRNA in the Alco group
was significantly lower than that in the normal group (p < 0.05), indicating that alcohol
intake caused a stress response. However, after the intake of probiotics, compared with the
Alco group the fold change in p65 was significantly increased (p < 0.05). The A12-D (1.26)
and M18-6-D (0.99) groups restored the relative expression of p65 mRNA in the livers of
mice in the normal (1) group. This study also measured SOD activity (Figure 5B); the SOD
activity of the Alco group decreased compared with the normal group, while the A12-P,
M18-6-D, and M18-6-L groups’ SOD activity significantly increased (p < 0.05), indicating
that B. animalis A12 and L. salivarius M18-6 can improve the body’s antioxidant status.
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3.5. Effect of B. animalis A12 and L. salivarius M18-6 on Short Chain Fatty Acid Content

Short-chain fatty acids (SCFA) could affect intestinal permeability and maintain normal
physiological function of the gut. As shown in Figure 6A, there was a significant difference
between the normal and Alco groups (p < 0.05), the level of valeric acid in the A12 dead
cells, and freeze-dried power was higher than that in the Alco group. Figure 6B shows
the isobutyric acid content in the mouse colon, where it can be clearly seen that there are
significant differences between the Alco group and the normal group (p < 0.05), additionally,
A12-D and A12-P groups significantly higher than in the Alco group (p < 0.05) (Figure 6B).

3.6. Effect of B. animalis A12 and L. salivarius M18-6 on Gene Expression of Thioredoxin System
in Mice

qPCR analysis was used to determine the relative expression of these parameters at the
mRNA level. As shown in Figure 7A, the relative expression levels of Txnrd1 mRNA in the
livers of mice in the Alco, A12-L, A12 -D, M18-6-L and M18-6-D groups were significantly
higher than those in the normal group (p < 0.05), and those in the A12-L and A12-P groups
were significantly higher than those in the Alco group (p < 0.05). Therefore, B. animalis
and L. salivarius can upregulate the expression of Txnrd1 in the liver and respond better to
alcohol-induced oxidative damage. As shown in Figure 7B, the A12-L, A12-P, and M18-6-L
groups alleviated the decrease in the relative expression of Txnrd3 mRNA in the livers of
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mice with alcohol injury. The M18-6-L group restored the relative expression of Txnrd3
mRNA in mouse liver to the normal group, and the effect was the best for this group.
Compared with the Alco and normal groups, the expression of Txn1 in the A12-L group
was significantly increased (p < 0.05; Figure 7C). This indicated that A12 living cells could
improve the body environment, enhance antioxidant capacity, and resist alcohol injury by
increasing the relative expression of Txn1 mRNA in the mouse liver. As shown in Figure 7D,
the A12-L and A12-D groups reduced the stress response to short-term alcohol intake and
reversed the relative expression of Txn2 mRNA in the liver of mice, returning to the control
level without alcohol treatment. The A12-D group showed the best results.
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Figure 6. Short-chain fatty acid level in mice. (A): Valeric acid; (B): Isobutyric acid. Compared with
normal group (p < 0.05) *, compared with Alco group (p < 0.05) #. Normal: normal saline-fed; Alco:
alcohol-fed group; A12-L: alcohol-fed with live B. animalis A12 cells group, A12-D: alcohol-fed with
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L. salivarius M18-6 cells group.
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expression level; (D) Liver Txn2 mRNA expression level. Compared with normal group (p < 0.05)
*, compared with Alco group (p < 0.05) #. Txnrd1: thioredoxin reductase 1; Txnrd3: thioredoxin
reductase 3; Txn1: thioredoxin 1; Txn2: thioredoxin 2. Normal: normal saline-fed; Alco: alcohol-
fed group; A12-L: alcohol-fed with live B. animalis A12 cells group, A12-D: alcohol-fed with dead
B. animalis A12 cells group, A12-P: alcohol-fed with B. animalis A12 freeze-dried power group, M18-6-
L: alcohol-fed with live L. salivarius M18-6 cells group, and M18-6-D: alcohol-fed with dead L. salivarius
M18-6 cells group.

3.7. Effect of B. animalis A12 and L. salivarius M18-6 on Immune Proteins in Mice with
Alcohol Injury

The oxidative stress ability of the liver can be evaluated by measuring the levels of
immune factor proteins in the livers of mice. When the liver is damaged the level of immune
factor proteins changes, indicating that the liver may be damaged and that it requires timely
intervention. Figure 8B shows that the relative expression level of the keap1 protein in the
Alco group was significantly higher than that in the normal group (p < 0.05), indicating
that alcohol intervention increased the expression of keap1 in liver tissue and with liver
damage. The relative expression levels of keap1 in the A12-D, A12-P, and M18-6-D groups
were significantly lower than those in the Alco group (p < 0.05). Therefore, treatment with
A12 dead cells, A12 freeze-dried powder, or M18-6 dead cells can reduce the expression of
keap1 and alleviate alcohol injury. Nrf2 has been shown to have anti-inflammatory effects.
As shown in Figure 8C, compared with the normal group the expression level of the Nrf2
protein in the alcohol group was increased (p < 0.05). The expression of Nrf2 protein in the
A12-L, A12-D, and A12-P groups was significantly decreased, indicating that A12 living
cells, dead cells, and freeze-dried powder alleviated oxidative damage in mice. These
results suggest that the protective effect of probiotics in alcohol-injured mice is correlated
with the keap-Nrf2 signaling pathway.
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Figure 8. Expression of keap1/Nrf2 proteins in different treated groups. (A) Western blotting
map. (B) Liver keap1 mRNA expression level; (C) Liver Nrf2 mRNA expression level. Compared
with normal group (p < 0.05) #, compared with Alco group (p < 0.05) *. Keap1: Kelch-1ike ECH-
associated protein l; Nrf2: Nuclear factor erythroid2-related factor 2. Normal: normal saline-fed;
Alco: alcohol-fed group; A12-L: alcohol-fed with live B. animalis A12 cells group, A12-D: alcohol-fed
with dead B. animalis A12 cells group, A12-P: alcohol-fed with B. animalis A12 freeze-dried power
group, M18-6-L: alcohol-fed with live L. salivarius M18-6 cells group, and M18-6-D: alcohol-fed with
dead L. salivarius M18-6 cells group.
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4. Discussion

As current studies have shown, not all probiotics can prevent and treat alcohol injury,
and some can even aggravate the disease. Live cells are beneficial to the host as they
can survive and colonize in the animal digestive tract, compete with pathogenic bacteria,
and produce useful enzymes and metabolites; after inactivation, the active components
of the cell wall, such as exopolysaccharides, peptidoglycan and lipoteichoic acid, will be
dissociated from the cell wall membrane and may play an active role in some functions.
Freeze-dried powder uses multi-layer embedding technology to have high survival rate,
protect strains from reaching the intestine alive, adhere to the intestine, and drive away
harmful bacteria. Therefore, we evaluated the effects of B. animalis A12 live cells, dead
cells, freeze-dried powder, L. salivarius M18-6 live cells, and dead cells on the pathology,
immune system, antioxidant system, and intestinal content metabolites. Furthermore, this
study aimed to explore whether these factors have positive effects on the prevention and
treatment of alcohol injury, and to analyse its mechanism.

Cuicui et al. established a mouse model of acute liver injury, studied the hepatoprotec-
tive effect of L. plantarum C88, and determined the survival rate of mice [26]. The results
showed that no symptoms of death were observed in the group treated with L. plantarum
C88, similar to the results of this study, where the survival rate of mice in the B. animalis
A12 and L. salivarius M18-6 treatment groups was significantly improved, indicating that
the test substances involved in B. animalis A12 and L. salivarius M18-6 played a positive role
in ensuring the survival of the mice. In particular, during the third phase of the experiment
A12 freeze-dried powder maintained alcohol-induced survival in mice.

ALT and AST are considered indicators of liver disease. Hepatocyte injury often leads
to the infiltration of ALT and AST into the blood, which then increases serum transaminase
levels. The degree of alcoholic liver injury was evaluated by measuring serum ALT levels.
H&E staining can directly reflect histopathological changes in liver tissue. A previous study
showed that probiotic treatment could effectively reduce alcohol injury in mice, which was
similar to the results of this study. At the same time, compared with the normal group,
the serum ALT level of the Alco group was significantly increased, which was consistent
with previous reports [27]. In this study, dead L. salivarius M18-6 cells most significantly
reduced the ALT increase caused by alcohol injury, followed by B. animalis A12 live cells.
In addition, H&E staining of liver sections showed that steatosis and vacuolisation of the
alcohol group were the most serious, and the probiotic group was significantly improved.
Previous studies have shown that LAB intervention can reduce pathological damage to liver
tissue [28]. In this study, SOD levels decreased in the Alco group. However, SOD levels in
B. animalis A12 freeze-dried powder and L. salivarius M18-6 live and dead cells returned
to higher levels than those in the normal group. It has been reported that probiotics can
increase the SOD level of the liver tissue in mice [29–31], which is similar to our results. This
shows that the B. animalis A12 and L. salivarius M18-6 in this study play an important role.

SCFA are currently considered one of the most important metabolites of intestinal flora,
mainly produced in the caecum and colon, and are an important source of energy for the
host. In the chronic stages of various metabolic diseases, SCFA play an important role in re-
ducing inflammation, promoting lipid accumulation in adipocytes, reducing inflammatory
fat infiltration, and improving the intestinal mucosal barrier [32]. In the meantime, it could
affect intestinal permeability and maintain normal physiological function of the gut [33,34].
Studies have reported [35] that L. fermentum can increase SCFA in the colon contents of
colitis mice. Recent studies have also shown that butyrate helps alleviate alcohol-induced
gastric ulcers, and studies have shown that SCFA have beneficial effects in alcohol-induced
mice [36,37]. These results are similar to those of the present study. The results showed
that B. animalis A12 dead cells and freeze-dried powder significantly increased the level of
isobutyric acid in the intestinal contents, enhanced the viability of intestinal cells, reduced
fat infiltration, and regulated immune function, thereby reducing alcohol injury.

The thioredoxin system is an important intracellular oxidation system that consists of
NADPH, Trx, and TrxR. Its function is to provide an effective electron donor for ribonucleic
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acid reductase [38], which plays a role in inflammation, apoptosis, and cardiovascular
diseases [39]. TrxR1 and TrxR2 play important roles in reducing cellular oxidative stress
injury and scavenging mitochondrial cytoplasmic free radicals. Trx plays a major role
in the thioredoxin system, which is considered a biomarker of oxidative stress [40]. Trx
jointly scavenges ROS by interacting with peroxide oxidoreductase, thereby playing an
anti-oxidative stress role [41]. Txn1 and Txn2 are involved in Trx coding. Txnrd1 can
promote the body to induce an oxidative stress response by upregulating the level of p65
protein in NF-kB and is also positively regulated by Nrf2. When the thioredoxin system is
activated under oxidative stress, Trx and TrxR levels are significantly elevated to combat
reactive oxygen species and alleviate damage to the body. When the liver is impaired
in alcohol metabolism, gene expression in the liver (such as Txnrd1, Txnrd3, Txn1, and
Txn2) decreases significantly, indicating the risk of liver disease and the need for timely
intervention. Our results showed that the body entered the oxidative stress state of self-
protection and began to increase the relative expression of Txnrd1 mRNA in the liver of
mice, while L. salivarius M18-6 can further increased the relative expression of Txnrd1
mRNA in the liver to better cope with alcohol-induced oxidative damage. B. animalis A12
live cells and L. salivarius M18-6 live and dead cells significantly alleviated the relative
expression of Txnrd3 mRNA in the livers of mice caused by alcohol injury. L. salivarius
M18-6 live cells restored the relative expression of Txnrd3 mRNA in the livers of mice to
the level observed in the normal group. B. animalis A12 live and dead cells reduced the
body’s stress response to short-term alcohol intake and significantly reversed the relative
expression of Txn2 mRNA in the livers of mice to the level of the normal group.

Nrf2 is usually located in the cytoplasm and is degraded by keap1, which is the main
transcription factor that controls antioxidant production to maintain the redox homeostasis
of cells [42]. Keeping high sensitivity to ROS and RNS [43] when cells are stimulated,
Nrf2 can induce the transcription of anti-oxidative stress genes and phase II detoxification
enzymes [44], improving cell self-protection [45]. When a disease occurs, the interaction
between keap1 and Nrf2 is interrupted by various stimuli. Activated Nrf2 enters the
nucleus by binding to antioxidant response elements (AREs), stimulating several related
cell protections and antioxidant gene transcriptions. The Nrf2/ARE signalling pathway is
a key mediator of general redox and tissue-specific homeostasis [46]. Keap1 is an excellent
redox sensor for biological and intracellular oxidative stress. Under normal pressure-
free conditions, Nrf2 levels in cells are very low, and Nrf2 and keap1 form complexes
in the cytoplasm. Keap1 targets Nrf2 for multi-ubiquitination through ligase 3 followed
by proteasomal degradation. The Nrf2/ARE pathway plays an important role in cancer
treatment [47] and enhancing the ability of cells to resist oxidative stress [48]. It has been
reported that lactic acid bacteria resident in the intestinal tract can activate Nrf2 in the
liver and prevent oxidative liver injury [49]. It has also been reported that L. fermentum
can activate the Nrf2 signaling pathway and upregulate the expression of Nrf2 in the
liver. The results of this experiment showed that alcohol increased the expression of the
negative regulatory factor keap1. Compared with the Alco group, the protein expression
of keap1 in mice of B. animalis A12 dead cells, freeze-dried power, and L. salivarius M18-6
dead cell groups was significantly decreased, while the of the L. salivarius live cells and
dead cells groups was significantly increased. This suggests that L. salivarius activates
Nrf2 signalling and alleviates alcohol injury, possibly by preventing oxidative liver injury.
However, this is only a preliminary discussion and the specific causal relationship requires
further verification. In the future, we will continue to explore the changes in intestinal flora
in mice with alcohol injury, and even the clinical trials of B. animalis A12 and L. salivarius
M18-6 for the treatment of alcohol injury are needed to provide definitive evidence on its
therapeutic efficacy.

5. Conclusions

In this study, our findings showed that B. animalis A12 and L. salivarius M18-6 had
preventive and protective effects against alcohol injury in mice. L. salivarius M18-6 dead
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cells protect mouse hepatocytes from alcohol-induced oxidative stress injury by down-
regulating serum ALT level, activating keap1-Nrf2 signaling pathway and up-regulating
SOD. In addition, B. animalis A12 can reduce the protein level of keap1 in the liver and
up-regulate the expression of thioredoxin genes, reduce the stress response to short-term
alcohol intake, and improve the ability of antioxidant stress by upregulating the level of
isobutyric acid. The results of this study provide a scientific basis for the clinical application
and product development of probiotics for alcohol injury.
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