Skip to main content
. 2023 Feb 1;13(3):534. doi: 10.3390/diagnostics13030534

Table 1.

Convolutional neural Network model summary.

Layer (Type) Output Shape Param #
conv2d (Conv2D) (None, 66, 66, 18) 504
max_pooling2d (MaxPooling2D) (None, 33, 33, 18) 0
dropout (Dropout) (None, 33, 33, 18) 0
conv2d_1 (Conv2D) (None, 31, 31, 72) 11,736
max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 72) 0
dropout_1 (Dropout) (None, 15, 15, 72) 0
conv2d_2 (Conv2D) (None, 13, 13, 72) 46,728
max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 72) 0
dropout_2 (Dropout) (None, 6, 6, 72) 0
conv2d_3 (Conv2D) (None, 4, 4, 72) 46,728
max_pooling2d_3 (MaxPooling2D) (None, 2, 2, 72) 0
dropout_3 (Dropout) (None, 2, 2, 72) 0
flatten (Flatten) (None, 288) 0
dense (Dense) (None, 72) 20,808
dropout_4 (Dropout) (None, 72) 0
dense_1 (Dense) (None, 72) 146