Table 7.
Dataset | Classifications | Metrics | Firefly Algorithm | SVM | LR | RF |
---|---|---|---|---|---|---|
First Dataset | Abnormal vs. Normal | Accuracy | Yes | 0.967 | 0.969 | 0.923 |
No | 0.969 | 0.967 | 0.886 | |||
Training time (s) | Yes | 315.31 | 63.84 | 55.46 | ||
No | 452.92 | 81.4 | 68.38 | |||
AMD vs. DME | Accuracy | Yes | 0.909 | 0.926 | 0.851 | |
No | 0.929 | 0.934 | 0.828 | |||
Training time (s) | Yes | 141.94 | 47.15 | 36.34 | ||
No | 307.82 | 86.83 | 52.67 | |||
CNV vs. DRUSEN | Accuracy | Yes | 0.965 | 0.977 | 0.934 | |
No | 0.965 | 0.971 | 0.934 | |||
Training time (s) | Yes | 117.24 | 24.93 | 35.29 | ||
No | 308 | 64.17 | 61.06 | |||
Second Dataset | Abnormal vs. Normal | Accuracy | Yes | 0.97 | 0.976 | 0.94 |
No | 0.973 | 0.976 | 0.953 | |||
Training time (s) | Yes | 11.71 | 7.17 | 9.33 | ||
No | 23.52 | 11.17 | 13.61 | |||
AMD vs. DME | Accuracy | Yes | 0.933 | 0.933 | 0.91 | |
No | 0.936 | 0.927 | 0.916 | |||
Training time (s) | Yes | 9.36 | 5.2 | 4.23 | ||
No | 10.86 | 5.99 | 4.54 |