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Abstract

Cardiac fibroblasts play critical roles in the maintenance of cardiac structure and the response 

to cardiac insult. Extracellular matrix deposition by activated resident cardiac fibroblasts, called 

myofibroblasts, is an essential wound healing response. However, persistent fibroblast activation 

contributes to pathological fibrosis and cardiac chamber stiffening, which can cause diastolic 

dysfunction, heart failure, and initiate lethal arrhythmias. The dynamic and phenotypically plastic 

nature of cardiac fibroblasts is governed in part by the transcriptional regulation of genes encoding 

extracellular matrix molecules. Understanding how fibroblasts integrate various biomechanical 

cues into a precise transcriptional response may uncover therapeutic strategies to prevent fibrosis. 

Here, we provide an overview of the recent literature on transcriptional control of cardiac 

fibroblast plasticity and fibrosis, with a focus on canonical and non-canonical TGF-β signaling, 

biomechanical regulation of Hippo/YAP and Rho/MRTF signaling, and metabolic and epigenetic 

control of fibroblast activation.
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Introduction

The heart is a muscular pump responsible for providing oxygenated blood to the entire 

body. Heart muscle, called myocardium, is composed of a variety of cell types with distinct 

functions and spatial distributions, including cardiomyocytes, cardiac conduction system 

cells, vascular endothelial and mural cells, resident immune cells, valvular interstitial cells, 
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and cardiac fibroblasts (CFs). Fibroblasts, which make up ~20% of the non-myocytes in 

the heart1,2, provide a framework of fibrillar collagen that support cardiac structure and 

function.3 Perhaps more importantly, resident CFs respond to cardiac insult by proliferating 

and acquiring a contractile and secretory phenotype. These activated fibroblasts, also called 

myofibroblasts secrete copious amounts of extracellular matrix (ECM) in an adaptive 

response that supports cardiac integrity.4,5 However, unchecked CF activation is a primary 

cause of fibrotic scar formation, which sustains myocardial integrity at the expense of 

pliability, leading to diastolic dysfunction, heart failure and eventually increasing the risk 

of lethal arrhythmias.6 A deeper understanding of the mechanisms that control fibroblast 

plasticity and adverse myocardial remodeling may accelerate the development of anti-

fibrotic strategies to treat cardiac pathologies including diastolic heart failure (heart failure 

with preserved ejection fraction, or HFpEF), a poorly understood condition with limited 

treatment options. The goal of this review is to provide a short summary of the recent 

literature related to transcriptional control of the fibroblast phenotype and cardiac fibrosis; 

we apologize to the authors of studies that were not cited due to limited space.

TGFβ signaling

Transforming growth factor beta (TGFβ) is ubiquitously involved in cell growth, 

differentiation, migration, and apoptosis during embryonic development and adult cellular 

pathophysiology and is the cornerstone of fibroblast activation and cardiac fibrosis. The 

canonical TGFβ signaling pathway is mediated by SMAD family transcription factors 

(TFs), which include receptor regulated (R)-SMADs (SMAD1/2/3/5/8), a common SMAD 

(SMAD4) and inhibitory (I)-SMADs (SMAD 6/7). Upon TGFβ binding to type I receptors, 

R-SMADS such as SMAD2/3 are phosphorylated, stimulating their recruitment of SMAD4 

and translocation to the nucleus (see Figure). This complex binds to and activates SMAD-

binding elements (SBEs) in the promoter region of target genes to initiate transcription.7–9 

Initial studies using global gene deletion in mice described SMAD3 as a critical regulator 

of the myofibroblast phenotype, which stimulates ECM deposition in pressure overload and 

myocardial infarction (MI) models.10,11 More recently, CF-specific deletion of Tgfbr1/2 
or Smad3 in mice confirmed their roles in ECM deposition during pressure overload 

and ischemia-induced cardiac remodeling.12 However, these studies also revealed a more 

nuanced role of SMAD2 and SMAD3. SMAD3 directly induces the expression of genes 

encoding ECM molecules, suppresses MMP (matrix metalloproteinase)-3 and MMP-8, and 

induces TIMP (tissue inhibitor of metalloproteinases)-1 to stabilize the collagen network 

and support cardiac integrity in left ventricle pressure overload without impacting CF 

proliferation.13 In fact, fibroblast specific Smad3 deletion often leads to lethal left ventricle 

rupture after MI, which is attributed to disorganized scar formation and insufficient repair.14 

In contrast, fibroblasts that lack Smad2 elicit a surprisingly normal fibrotic response to 

pressure overload and ischemia.12,15 While these studies don’t explain why Smad2 deletion 

does not impede the development of cardiac fibrosis, one clue may be the unique induction 

of integrin α2 and α5 by SMAD3, which may mediate important cellular interactions with 

the ECM.15 Indeed, fibroblasts are reported to play an important structural role in the 

healing cardiac scar.16

Burgos Villar et al. Page 2

Curr Opin Physiol. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The TGFβ−SMAD axis is also influenced by cooperative association with additional 

TFs related to epithelial to mesenchymal transition (EMT). For example, RAS-responsive 

element binding protein 1 (RREB1) was identified as a molecular link between RAS 

and TGFβ/SMAD pathways in carcinoma cells, where RREB1 and SMADs cooperate 

to promote the expression of Snai1, a TF that drives fibrogenic EMT in intratumoral 

myofibroblasts.17 Scleraxis, a basic helix-loop-helix TF, has been shown to induce Twist1 
and Snai1 expression to stimulate EMT.18 Scleraxis also plays a critical role in CF activation 

and fibrosis, potentially via synergizing with SMAD3 to induce expression of ECM genes 

(see Figure).19 The fibroblast phenotype is also supported, in part, by the post transcriptional 

regulation of genes encoding EMT and fibrosis associated proteins by the RNA-binding 

protein muscleblind-like 1 (MBNL1)20. It is important to note that while similarities exist 

between the molecular programs inducing EMT and fibroblast activation, EMT does not 

appear to influence fibrosis in the heart to the same extent as in other organs; instead EMT is 

primarily driven by the activation of pre-existing resident CFs4,21.

In contrast to SMAD-dependent signaling, non-canonical TGFβ signaling is mediated 

by mitogen-activated protein kinases (MAPKs), including p38 isoforms (α, β, γ, and 

δ), extracellular signal-regulated kinase 1 and 2 (Erk1/2), and c-Jun N-terminal kinases 

(JNKs). TGFβ-activated kinase 1 (TAK1)-p38 activation is observed in MI and pressure 

overload models, where it stimulates cardiac fibrogenesis22. Fibroblast-specific deletion of 

MAPK14 (p38α) prevents fibroblast activation and cardiac fibrosis in mice, often leading 

to left ventricle rupture after MI (see Figure),23 and salinmoycin, a small molecule that 

inhibits p38, can block and reverse pathological fibrosis in mouse models of ischemic and 

non-ischemic cardiac remodeling.24 Cardiac fibrosis can also be influenced by negative 

regulators of TGFβ-SMAD signaling. In fact, SMAD7 expression is suppressed in the 

infarcted rat heart, which may allow for the propagation of TGFβ-SMAD signaling 

and fibroblast activation.25 Overexpression of SMAD7 has been shown to reduce ECM 

deposition both in vitro and in vivo.26,27 Interestingly, the anti-fibrotic activity of SMAD7 

is attributed to the inhibition of SMAD2/3 and SMAD-independent suppression of Erbb2 

activation.28 The lysine de-acetylase sirtuin 1 (SIRT1) also plays a cardioprotective role in 

a mouse pressure overload model, at least partially by inhibiting SMAD2/3 transactivation 

to alleviate cardiac fibrosis.29 Transcriptional cofactors Ski and SnoN are also negative 

regulators of SMAD-dependent transcription and myofibroblast activation.30–32 A recent 

gene delivery approach blocking the STAT3/FOXM1 pathway enhanced SnoN/Ski signaling 

and suppressed the TGFβ/Smad pathway in pulmonary fibrosis.33

Biomechanical control of transcription and fibroblast activation

Importantly, fibrotic tissue stiffening is both a consequence and a trigger of myofibroblast 

activation. Therefore, scar formation can stimulate further fibroblast activation to exacerbate 

pathological fibrosis. Recent studies have begun to elucidate the biomechanical mechanisms 

that control myofibroblast activation in the injured heart. Indeed, biomechanical regulation 

of chromatin accessibility is at least partially responsible for stimulating the myofibroblast 

phenotype.34 Biomechanical regulation of the Rho-Rho kinase (ROCK)-myocardin-related 

transcription factor (MRTF)-serum response factor (SRF) axis is also particularly important 

in cardiac fibrosis. MRTFs are transcriptional co-factors for SRF that are sequestered in 
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the cytoplasm via interactions with globular (G) actin. Mechanical tension can trigger Rho-

ROCK signaling that initiates actin polymerization, reducing the G-actin pool and allowing 

MRTFs to translocate to the nucleus where they activate SRF target genes responsible 

for myofibroblast activation (see Figure).35,36 Global deletion of MRTF-A suppresses 

myofibroblast activation and fibrosis following MI in mice37, and altering Rho-MRTF 

signaling with a small molecule reduces the severity of fibrosis in animal models.38,39 In 

Idiopathic pulmonary fibrosis, the stretch-dependent transient receptor potential vanilloid 

4 channel (TRPV4) enhances actomyosin remodeling and increases nuclear translocation 

of MRTF-A in a SMAD-independent manner.40 In addition, non-canonical TGFβ/p38 

signaling stimulates SRF-dependent transient receptor potential cation channel subfamily 

C member 6 (TRPC6) expression, which induces Ca2+-dependent NFAT/SRF activation and 

further myofibroblast activation.41 NFAT-dependent fibroblast activation is also facilitated 

by the non-canonical Ca2+ – calmodulin dependent control of G protein-coupled receptor 

kinase 5 (GRK5) nuclear accumulation, revealing considerable crosstalk between pro-

fibrotic signaling pathways.42

The Hippo pathway is another mechanosensitive gene-regulatory program that impacts 

the CF phenotype. Cell stretch or loss of contact inhibition disrupts Hippo-pathway 

kinase cascades, allowing for the nuclear accumulation of Yes-associated protein (YAP) 

and transcriptional coactivator with PDZ-binding motif (TAZ).43 In lung and cardiac 

fibroblasts, YAP/TAZ nuclear translocation directly stimulates TEAD (transcriptional 

enhanced associate domain)-dependent transcription of genes encoding ECM components 

and inflammatory mediators, in part through H3K9 methylation (see Figure).44–46 Hippo 

signaling can also cooperate with canonical and non-canonical TGFβ and Rho signaling 

pathways. YAP/TAZ binding to SMAD2/3 allows SMAD2/3 sub-cellular localization to 

be directly regulated by cell stretch47. Mechanical tension also facilitates p38-YAP-TEAD-

dependent transcription, linking tissue stiffness to excessive fibroblast activation after MI.48 

Interestingly, Caveolin-1 positively modulates mechanosensitive YAP activation through 

a Hippo-kinase-independent mechanism, which requires Rho-dependent actin-cytoskeleton 

alterations, revealing a common signaling paradigm upstream of both YAP- and MRTF-

dependent gene programs.49 Indeed, MRTF enhances YAP transcriptional activity through 

TEAD50, and MRTFs and YAP/TAZ facilitate crosstalk between G-protein coupled receptor- 

and Rho-dependent gene expression.51 A recent study also found that YAP induces the 

expression of Mrtf-a in cardiac fibroblasts, potentially establishing a pro-fibrotic positive 

feedback loop52. However, both TGF-β and cell stretch appear to be required for the 

cooperative activation of target genes by YAP/TAZ, SMAD3 and MRTFs, suggesting a 

more nuanced and context dependent functional interaction between these gene regulatory 

programs.53 Of note, fibroblasts reportedly acquire “mechanical memory”, whereby culture 

on a stiff substrate lowers the threshold for subsequent fibroblast activation; a priming 

event that is hypothesized to aggravate chronic fibrotic conditions such as idiopathic 

pulmonary fibrosis54. Hippo/YAP and Rho/MRTF are perfectly positioned to contribute to 

biomechanical transcriptional memory, which may play a particularly important role later 

in the remodeling process when ECM deposition increases organ stiffness. Conversely, it 

is interesting to speculate that an appropriate mechanical intervention may return activated 
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myofibroblasts to a quiescent state, or even shift their phenotype from profibrotic to pro-

resolution.

Regulation of fibroblast phenotype by hypoxia and reactive oxygen species

Ischemic heart disease, hypertrophic cardiac remodeling, inflammation, and fibrosis 

all disrupt perfusion of the heart with oxygenated blood, leading to intermittent or 

more extended bouts of hypoxia and reactive oxygen species (ROS) dysregulation. A 

transcriptomic analysis of CFs isolated from mice that were subjected to an exercise 

regimen, compared to ischemic and non-ischemic models of pathologic cardiac remodeling, 

revealed surprisingly divergent phenotypic responses; differentially regulated gene programs 

included ROS scavenger pathways and p53-dependent gene expression.55 Transgenic 

overexpression of the p53 target gene, Cdkn1a (p21), in CFs restrains their proliferation 

and attenuates cardiac fibrosis in vivo.56 Control of CF proliferation by the p53-Cdkn1a 

axis appears to be a physiological characteristic of heart disease, as SPRR2B/MDM2-

dependent degradation of p53 accelerates cardiac fibroblast proliferation in vitro and was 

observed in fibrotic foci of human heart failure tissue (see Figure).57 Indeed, a common 

characteristic of cardiac insult is the altered expression of cell cycle regulators supporting 

the transient proliferation of fibroblasts in the diseased heart58. ROS and hypoxia signaling 

also provide metabolic control of the fibroblast phenotype - fibroblasts in the healthy 

heart are surprisingly hypoxic, and exhibit elevated hypoxia-inducible factor 1α (HIF-1α) 

levels59. This study found that elevated HIF-1α dependent gene expression in CFs is 

important for metabolic buffering that limits mitochondrial ROS production after MI (see 

Figure).59 This protective mechanism breaks down upon genetic deletion of Hif-1α in 

fibroblasts, leading to excessive post-MI mitochondrial ROS production, CF proliferation 

and the generation of a robust fibrotic scar. Metabolic reprogramming may also facilitate 

fibroblast activation via stimulating the action of histone demethylases that enhance the 

accessibility of chromatin, particularly in regions that harbor pro-fibrotic genes.60 Although 

antioxidant therapies have not been successful in clinical trials, these studies suggest that 

the development of a more targeted approach to metabolic and redox control may still hold 

promise for treating cardiovascular disease, in part via the prevention of CF activation and 

pathological cardiac fibrosis.

Targeting the epigenetic control of fibroblast activation

Epigenetic changes in chromatin condensation are associated with gene expression changes 

that impact cell state and have recently been correlated with the CF phenotype.61 

Bromodomain and extraterminal (BET) proteins are a family of epigenetic readers that 

recruit coregulatory factors and promote transcription of target genes; BRD4 plays a 

particularly important role in the progression of heart disease.62–64 BRD4 increases 

innate immune activation, ECM production, and cell adhesion via activation of nuclear 

factor kappa B (NFκB) and TGFβ signaling pathways (see Figure).64 BRD4 responds to 

non-canonical TGFβ signaling to facilitate TF binding in enhancer regions, and a small 

molecule BET inhibitor, JQ1, suppresses fibroblast activation and fibrosis.65 A recent study 

utilizing JQ1 to suppress the myofibroblast phenotype identified a dynamic and reversible 

transcriptional switch responsible for the plasticity of the fibroblast phenotype.66 Fibroblast 
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activation in response to left ventricle pressure overload was ameliorated with JQ1, and 

fibroblast re-activation was observed upon cessation of JQ1. The bi-directional phenotypic 

switch is tightly correlated with chromatin occupancy of BRD4 at myofibroblast gene 

enhancers, and especially with chromatin accessibility at the Meox1 gene locus. Meox1 
induction by TGF-β was shown to be an important regulator of fibroblast activation and 

cardiac fibrosis. Further studies are certainly warranted to establish the therapeutic potential 

of inhibiting the BRD4-dependent pro-fibrotic gene program, or whether a targeted approach 

that silences a more specific maladaptive switch such as Meox1 is feasible.

Conclusion

The studies described here highlight the importance of CFs in cardiac health and disease. 

Indeed, CF are emerging as a dynamic and highly malleable cell type that provides structural 

support during normal cardiac homeostasis and contributes to heart repair and scar formation 

following cardiac insult. A more complete understanding of the transcriptional control of 

fibroblast function may lead to unique therapeutic strategies to ameliorate the development 

of pathological fibrosis that prevent diastolic cardiac dysfunction and heart failure.
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Figure. Summary of the signaling pathways and transcriptional regulation of fibroblast 
activation.
Arrows indicate upstream signaling pathways converging on select transcription factors, or 

experimentally validated interactions between transcription factors. BRD14 (bromodomain 

containing protein 4), Ca2+ (calcium), ECM (extracellular matrix), EMT (epithelial-to-

mesenchymal transition), HIF1α (hypoxia inducible factor 1 alpha), MAPK (mitogen-

activated protein kinase), MRTF (myocardin-related transcription factor), ROCK (Rho-

kinase), ROS (reactive oxygen species), SRF (serum response factor), TAZ (transcriptional 

coactivator with PDZ-binding motif), TGF-β (Transforming growth factor beta), TRPC6 

(transient receptor potential cation channel subfamily C member 6), YAP (Yes-associated 

protein).
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