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Abstract

This work explores a method for classifying peaks appearing within a data-intensive time-series. 

We summarize a case study from a clinical trial aimed at reducing secondhand smoke exposure 

via the installation of air particle monitors in households. Proper orthogonal decomposition (POD) 

in conjunction with a k-means clustering algorithm assigns each data peak to one of two clusters. 

Aversive feedback from the monitors increased the proportion of short-duration, attenuated peaks 

from 38.8% to 96.6%. For each cluster, a distribution of parameters from a physics-based model of 

airborne particles is estimated. Peaks generated from these distributions are correctly identified by 

POD/clustering with >60% accuracy.
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1. Introduction

Real-time and mobile technology for health delivery is becoming increasingly widespread 

and has the capacity to fundamentally alter the nature of the interaction between patients 

and health service providers. This technology offers the potential for personalized treatments 

that can be modified in real-time in response to several variables, namely participants’ 

varying behaviors, environmental contexts, and unique past history [1]. Capitalizing on 

this opportunity is predicated on the accurate identification of these variables in a variety 
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of dynamic contexts. Our ability to achieve this is limited by the availability of suitable 

technology to gauge behavior. In an effort to move towards this eventual future, this 

study explored the clustering of behavioral characteristics from intensive time-series data 

generated via a secondhand smoke exposure (SHSe) real-time technology intervention.

Project Fresh Air (PFA) is an ongoing randomized intervention trial aimed at reducing SHSe 

in the homes of smokers via the installation of Dylos DC1700 air particle quality monitors. 

Each study household contains a child as well as an adult who engages in SHS-generating 

behavior, typically indoor cigarette smoking. As described in Ref. [2], the monitors are 

calibrated to detect particles with sizes ranging from 0.5 to 2.5 microns, which is consistent 

with SHS as well as non-tobacco aerosol sources such as cooking and incense. One monitor 

is installed in the main smoking room and another is placed in the child’s bedroom; 

measurements from only the main room monitor are included in the following discussion. 

Every ten seconds, the monitor collects a measurement of the air particle concentration, 

which is an average of the previous 10 measurements collected at one-second intervals. This 

data is transmitted to a small computer that, in turn, uploads the data to a website that 

is accessible to PFA staff in near real-time. The monitors are fit with devices that deliver 

aversive visual and auditory feedback (yellow/red lights and beeps) that are programmed 

to engage when air particle concentrations exceed 60 μg
m3 ; the aversiveness of the feedback 

increases [3] if the 120 μg
m3  threshold is breached. For each home, the duration of the trial is 

broken into two phases: 1.) Baseline (BL) – a washout period during which feedback is not 

activated, designed to allow for the abatement of participant reactivity to monitor installation 

and 2.) Treatment (TX) – the period during which the feedback is activated.

To reduce SHSe, the PFA intervention aims to modify particle-generating behavior, in 

particular tobacco smoking. The intervals of the particle time-series data with elevated 

concentrations, or peaks, serve as proxy measures of this behavior. As such, we seek to 

abstract behavioral features from peaks in the time-series data. Complicating this task is the 

lack of information about the identification and number of household occupants associated 

with a given peak. Additionally, the monitors only detect information about particle size and 

not chemical composition so confounding sources of smoke particles, such as burning food, 

are likely present. Ultimately, we aim to associate different peaks with distinct behaviors 

such as cigarette smoking, food burning, or air venting and to analyze the patterns of these 

behaviors over time. The approach outlined hereafter represents the establishment of the 

groundwork on which to accomplish this task.

In Section 2, proper orthogonal decomposition (POD), a blind signal separation (BSS) 

technique that can be used to identify underlying source signals that are functionally 

associated with peak characteristics, is described. Section 3 discusses the application of 

the methodology in Section 2 to a case study from PFA. A cluster analysis of POD 

coefficients that allows characteristically similar peaks to be classified together is set forth in 

Section 4 and the results of this analysis are summarized in Section 5. Section 6 describes 

the relationship between peak clusters and parameters from a physics-based model of 
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airborne particulates, which enables a physical interpretation of the POD/clustering results. 

A discussion of findings ensues in Section 7.

2. Extension of Proper Orthogonal Decomposition to Peak Analysis

BSS is defined as the factoring of a mixed source into previously-unknown, independent 

components [4]. It has been implemented in a variety of contexts including the analysis of 

interstellar dust [5], neuroprocessing [6], and audio processing [7]. A popular BSS technique 

is proper orthogonal decomposition (POD) also known as Karhunen–Loève decomposition 

[8], principal components analysis [9], singular systems analysis [10], or singular value 

decomposition [11]. This procedure transforms a set of observations to a new coordinate 

system in which each dimension is linearly uncorrelated with the others. It is an attractive 

option to discriminate between peak characteristics since it provides an optimal basis to 

decompose signals and analytical bounds for the estimate of total “energy” captured by the 

decomposition [8]. For this study, POD is used to define a projection (decomposition) into 

a lower dimensional space where different types of peaks that represent similar physical 

scenarios that triggered elevated particle counts can be identified via clustering analysis.

Consider a sequence of observations represented by scalar functions u(x, ti), i = 1…M. 

Typically ti represents the ith temporal observation of state variable x. Without loss of 

generality, the time-average of the sequence, defined by

u(x) = u x, ti = 1
M ∑i = 1

M u x, ti , (1)

is assumed to be zero (if not, as it is in our case, simply subtract the time-average from all 

observations). The POD extracts time-independent orthonormal basis functions, ϕk(x), and 

time-dependent orthonormal amplitude coefficients, ak(ti), such that the reconstruction

u x, ti = ∑k = 1
M ak ti ϕk(x), i = 1, …, M (2)

is optimal in the sense that the average least squares truncation error of the POD 

reconstruction εm = u x, ti − ∑k = 1
m ak ti ϕk(x) 2

 is minimized for any given number m ≤ 

M of basis functions over all possible sets of orthogonal functions. ⟨·⟩ denotes an average 

operation, usually over time; and the functions ϕk(x) are called empirical eigenfunctions, 

coherent structures, or POD modes.

The domains x and t are completely empirical so that there is flexibility to interpreting 

them according to the needs of the data. Often times, POD analysis is performed on a 

state variable x assessed at various times ti [12]. When extended to time-series data, the 

interpretation can change to i instances of a univariate time-series x, e.g., stock returns for 

multiple companies over a specified interval [13]. The procedure can also be performed 

on multivariate time-series [14]. Yet another interpretation is singular spectrum analysis, 

where a univariate time-series is embedded to create a multidimensional state variable x, 

that is observed at time steps ti [15]. In our case, we are interested in peak events, i.e., the 

intervals in the time-series with elevated particle measurements. We assign u(x, ti) to the 
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indoor particle concentration measurements of the ith peak. Rather than representing a state 

variable assessed at some time ti, x is a subset of the data corresponding to the ith peak. Thus 

the collection of peaks can be summarized as the matrix U = [u(x, t1)|u(x, t2)|…|u(x, tM)] 

where the ith column corresponds to the data from the ith peak event, although the order of 

the peaks does not affect the analysis.

It can be shown that the eigenfunctions ϕk in Eq. 2 are the eigenvectors of the matrix 

product 1
M UUT . A popular technique for finding these eigenvectors when the resolution 

of x is greater than the number of observations is the method of snapshots developed by 

Sirovich [16]. First the eigenvectors of 1
M UTU, denoted as vk, are found. Then the ϕk’s 

are calculated by Φ = UV where Φ = [ϕ1|ϕ2|…ϕM] and V = [v1|v2|…vM]. Let ai represent 

the reconstruction coefficients associated with the ith peak. These can be calculated by A = 

UT Φ, where A is the M-by-M matrix [a1|a2|…aM]. Statistically speaking, the eigenvalues 

λk of 1
M UTU represent the variance of the data set in the direction of the corresponding 

POD mode ϕk(x). In physical terms, if u represents a component of a velocity field, then λk 

measures the amount of kinetic energy captured by the respective POD mode, ϕk(x). In this 

sense, the energy measures the contribution of each mode to the overall dynamics. Thus, the 

total energy captured in the POD is defined as the sum of all eigenvalues: E = ∑k = 1
M λk, and 

the relative energy captured by the kth mode is Ek = λk/E.

3. POD of Particle Concentration Time-Series

To demonstrate the application of POD to particle concentration data, we considered a single 

household from PFA, HM180. This home is a single-story, 1 bedroom, 1 bathroom detached 

house. The monitor was placed at a height of 8 feet in the living room of the home. The 

household was enrolled in the study for 95 days, with the first 31 days in the BL phase and 

the remainder in the TX phase. Approximately 750,000 measurements were collected from 

the monitor in the main smoking room. As will be discussed in detail in Section 5.2, HM180 

was chosen based on its reporting of tobacco smoking events to PFA staff.

When recorded by the Dylos monitor, each particle concentration measurement is assigned 

an alarm status variable that controls the emission of visual and auditory feedback. We 

use this variable to define peak events. An event begins when the alarm status indicates 

an initial breach of 60 μg
m3 ; this triggers a yellow light and the first sound. The peak event 

does not end until the alarm status indicates that the concentration has fallen below 40 μg
m3

which corresponds with the cessation of all visual and auditory feedback. This definition 

of a peak ensures that each peak event mirrors the presentation of monitor feedback, which 

is hypothesized to affect behavior. While there is a risk that the multiple peaks could 

be concatenated into one event, particularly for events with long tails, the eigenmodes 

calculated below do not indicate that this is a common occurrence.

Defining peaks this way results in considerable variability in the number of observations 

comprising each peak event. The POD process outlined above, though, requires each peak 
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to have the same number of measurements so they can populate the columns of the matrix 

U. In meeting this requirement two competing effects must be taken into account: (a) if 

too few measurements are used, then much of the information about the longer duration 

peaks is lost; but (b) if too many measurements are used, much of the information about 

the shorter-duration peaks is diluted. We chose the 90th percentile of the distribution of the 

number of measurements in a peak as a likely good balance between these considerations. 

This percentile is consistent with the right-skew distribution of the peak durations present 

in most homes. Figure 1(a) shows the distribution of peak durations; the 90th percentile is 

452 observations. The one minute (six observations) preceding each event is concatenated to 

the data to capture information about the leadup to threshold exceedance. In order to focus 

on peak shape, we aligned the center of mass of each peak while maintaining a uniform 

number of observations via the following process. Let lj and νj represent the number of 

observations and the center of mass, respectively, of the jth peak event. Generally speaking, 

lj ≠ lk and νj ≠ νk for the jth and kth peaks. Let ν* represent the maximum value of all 

νj’s and Ui,j represent the ith observation of the jth peak. We aligned all of the center of 

masses with ν* by concatenating ν* − νj “dummy” observations to U1,j, each of which 

are set equal to U1,j. To maintain uniformity in the number of observations, let r* be the 

maximum of lj − νj, the distance between a center of mass and the last measurement. Now 

concatenate r* − νj dummy observations to UN,j, each set equal to UN,j. Each peak event 

now has N ≡ ν* + r* observations and their centers of mass, calculated without including the 

dummy observations, align. This process, which we call padding, is illustrated in Fig. 1 for 

the 15th peak (in temporal order), where ν* = 250, r* = 275, and N = 525.

Following the above procedure, the data matrix U is obtained and the POD analysis can be 

performed. We subtract out the average over all observations, that is, the row averages of U, 

and find the eigenvalues and eigenvectors of UUT. The total “energy” captured by the POD 

reveals that the contribution for each mode decreases rapidly as seen in panel (b) of Fig. 

2. Specifically, using one and two modes corresponds, respectively, to capturing 79% and 

7% of the “energy” of the original peaks, or 86% cumulatively. Therefore, each peak can be 

approximated by a linear combination of these two modes. Figure 2 depicts the POD for a 

sample peak event; as can be observed in panel (a) the two-mode reconstruction is able to 

capture the shape of the peak quite accurately. The analytic results outlined hereafter were 

also performed using three and four eigenmodes as opposed to two. The results were not 

affected but the computational cost was significantly increased.

4. Cluster Analysis

As outlined above, the projection of each peak onto the two-dimensional subspace formed 

by the first two POD eigenmodes can be used to reduce the dimensionality of each peak 

from N to 2. By performing a cluster analysis on the coefficients of this projection, groups 

of peaks with similar coefficients, and therefore similar characteristics, can be identified. 

The k-means algorithm is very popular for cluster analysis due to its simplicity and local-

minimum convergence properties [17]. Given a set of observations (x1, x2, …, xM), the 

k-means algorithm partitions the data points into k clusters S = {S1, S2, …, Sk} while 

attempting to reduce the total sum of square error over all clusters. That is, we seek
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argmin
S

∑i = 1
k ∑xj ∈ Si xj − μi 2, (3)

where μi is the center of mass, or centroid, of the points in Si. The algorithm proceeds as 

follows:

1. Randomly select k values from (x1, x2, …, xM), which serve as the initial 

centroids.

2. Assign each data point to the centroid it is closest to, as measured by sum of 

square error. In other words, Si = {xp : ∥xp − μi∥2 ≤ ∥xp − μl∥2 ∀ l with 1 ≤ l ≤ k}. 

Each point can be assigned to only one cluster so in the rare event that there is a 

tie, it is resolved at random.

3. Recalculate μi = 1
Si

∑xj ∈ Sixj.

4. Repeat steps two and three until no xj’s change clusters.

The k-means algorithm is guaranteed to converge locally, but not globally. To ensure that 

the optimal clustering is identified, for each k-means application we perform the above-

described procedure 100 times and choose the clustering associated with the lowest sum of 

square errors. Generally speaking, a smaller k corresponds to less variability in the local 

minima that are identified.

The standard k-means algorithm gives equal weight to every dimension of the xj’s. Recall, 

though, that for this study the dimensions for each observation correspond to the coefficients 

for the first two eigenfunctions, ϕ1 and ϕ2, in the reconstruction of the peaks. These modes 

do not have equal weight in reproducing a peak and the proportion of the total information 

provided by ϕi is given by λi/∑j = 1
M λj. Consider Λ ≡ {λ1, λ2,} and Λ ≡ Λ/λ2. When 

calculating the distance between observations and centroids (xj − μi for i = 1, …, k and j = 1, 

…, M), the difference between the pth dimension of xj and μi is multiplied by Λp where Λp
is the pth element of Λ. This procedure ensures that differences corresponding to ϕ1 are more 

heavily-weighted, than differences in ϕ2. These weightings are in proportion to total energy 

captured by a mode. The difference between the cluster assignment from the standard and 

weighted k-means algorithms diminishes as k decreases. As will be described below, k = 2 

is appropriate and in this case, for this home, the cluster assignments from the standard and 

weighted k-means algorithm are identical.

A critical component of the k-means algorithm is the selection of k, the number of clusters 

with which to partition the data. Two metrics, silhouettes and the gap statistic, were used 

to identify the optimal k. The method of silhouettes is a graphical technique used to gauge 

the distinctness of clusters [18]. Let α(i) be the distance from xi, the ith peak, to μi and let 

β(i) be the distance from xi to the next closest centroid. The silhouette s(i) ≡ β(i) − α(i)
max α(i), β(i)

represents the relative distance of a peak to its two nearest clusters. In the ideal case, a peak 

lies directly on its centroid so α(i) = 0 and s(i) = 1. Therefore, to select the optimal number 

of clusters, we calculate s, the average silhouette over all peaks, for various values of k and 
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choose the one closest to 1. Figure 3(a) illustrates s calculated for k = 2, …, 10 and we see 

that the highest value corresponds to k = 2.

Because two clusters are used to determine the value of a silhouette, this method cannot 

be used to evaluate the k = 1 case, which is important if one wishes to determine whether 

the data as a whole data has any clustered structure. The gap statistic does not suffer 

from this weakness. It compares the clustering of the data versus the clustering of a 

reference distribution explicitly constructed without a clustered configuration [19]. For a 

set of clustered observations (x1, x2, …, xM), let E(k) ≡ ∑i = 1
k ∑xj ∈ Si xj − μi 2 denote the 

total sum of square error over all observations and their associated centroid. An unclustered 

reference distribution of M observations is then generated from a uniform distribution 

over the range of each dimension of the data. We partition the data into k clusters and 

calculate E*(k), the total sum of square errors for this distribution. B bootstrapped reference 

distributions are created and the above process is repeated. We can then calculate the 

gap statistic G(k) ≡ 1
B∑ log E*(k) − log(E(k)), which represents the difference between the 

errors for the data and the unclustered reference distribution for k clusters. Larger values of 

G(k) indicate a greater level of clustered structure in the data. The standard deviation of the 

errors associated with the B reference distributions can also be calculated, which allows the 

standard deviation of the gap statistic, σG(k), to be determined. A criterion for choosing k + 1 

versus k clusters is that G(k + 1) > G(k) + σG(k).

The gap statistic assumes well-separated, uniform clusters so the presence of subclusters 

within larger clusters in the data can lead to non-monotonic behavior. Therefore, it is 

important to examine the entire gap curve rather than simply identifying the maximum [19]. 

Figure 3(b) shows the gap statistic which illustrates two distinct clusters. The first, from k = 

1 through 3, has its maximum at k = 1 and then decreases, indicating uniformity throughout 

this cluster. The second cluster (k = 4 through 10) has an increasing trend in G(k), which 

is indicative of subclustering. Overall though, this analysis corresponds with the results of 

the method of silhouettes, namely that k = 2 is ideal when applying the weighted k-means 

algorithm to the data.

5. Results of POD and Cluster Analysis

5.1. Peak Classification

Based on the results from the previous two sections, a k-means cluster analysis with k = 

2 was performed on the projection coefficients of the first two eigenmodes extracted from 

the POD procedure. We give these clusters the intentionally nondescript names Type A 
and Type B to highlight the fact that they were identified solely through their structure 

with no immediately discernible connections to real-world, household activities. Figure 3(c) 

illustrates projection coefficients categorized by typology and Fig. 4 illustrates an interval 

of the time-series with peaks classified by cluster. There is more variance and subclustering 

in the Type B peaks indicating that they correspond to the k=4 through 10 class in Fig. 

3(b). For both classes, the “average” peak was constructed by using the coordinates of the 

centroid as projection coefficients, shown in Fig. 4(b). Type A peaks are characterized by 
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relatively minor exceedances of the 60 μg
m3  threshold, a shorter duration, and a lower initial 

value. Type B peaks are, on the other hand, less attenuated, longer, and have higher initial 

values. Table 1 illustrates the mean and standard deviation of peak duration, maximum 

concentration, initial value, and area under the peak of the non-padded type A and Type B 

peaks.

The POD/clustering procedure can be used to assess the effect of the intervention. As shown 

in Fig. 5, prior to the activation of the visual and audio feedback (BL phase), there were 

49 total peaks (19 Type A and 30 Type B). In the TX phase, there were 64 total peaks 

(58 Type A and 6 Type B). The TX phase is 2.1 times longer than the BL phase so the 

effective number of peaks (and type of peaks) in the BL is obtained by multiplying by 2.1, 

i.e. 49·2.1 = 102.9, which is 1.61 times the number of peaks in the TX phase. A z-test can 

be used to assess the null hypothesis that the proportions of peak types in the BL and TX 
phases are equal by pooling the samples together and calculating the standard error of the 

difference between the proportions. A z-score is then calculated by dividing the difference 

between proportions by this standard error. For the above-detailed results, the p-value is < 

0.01, indicating a statistically significant difference between the proportions.

Similar analysis can also be used to quantify the effect of the intervention on potential 

SHSe associated with peak events, quantified by the numerically-calculated area under the 

peaks. While the values reported are not indicative of true exposure that can be evaluated 

from a health-based perspective, this approach allows us to evaluate differences between 

the two phases of the intervention. In the BL phase, the total area under all 49 peaks was 

169,300.2 μg
m3 ⋅ min, of which a proportion of 0.096 was accounted for by Type A peaks. In 

the TX phase, the total area under the peaks was 50,627.3 μg
m3 ⋅ min, of which a proportion of 

0.153 was associated with the Type A cluster. The two-proportions z-test for area under the 

curve yielded a p-value of 0.37, indicating that, while a greater proportion of the area was 

associated with Type A peaks during the treatment phase, this difference was not statistically 

significant. The intervention did have the effect of reducing the overall exposure though. As 

described above, the effective area under the curve for the BL phase is calculated as as 169, 

300.2·2.1 =355,530.4 μg·min. This value is just over 7 times as large as the exposure in the 

TX phase.

To summarize, the intervention was effective in reducing the number of peaks and the total 

area under these events. It also resulted in a more frequent occurrence of Type A peaks in 

the TX phase compared to the BL. This is a positive result since Cluster A is associated with 

smaller, possibly less harmful peaks. The difference in the proportion of area under the curve 

attributed to each cluster between the two phases was not statistically significant, despite 

the increased frequency of Type A peaks. This is likely due to the short duration of Type A 

peaks which have minimal effects on the area under the curve.
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5.2. Relating Clustering to Household Activities

The above analysis provides information regarding the frequency and potential exposure 

due to peak events but does not address the ultimate goal of relating different types of 

peaks to household behaviors. To aid with this task, we use information obtained during 

coaching visits that occurred throughout the intervention. During these meetings, PFA 

coaches and study participants (SPs) reviewed graphs detailing air particle concentrations 

over the previous seven days. Specifically, time-periods with elevated concentrations were 

highlighted and the participants were asked to recall their behaviors at these times. In PFA, 

SPs seldom reveal that peaks are the result of tobacco smoking, even when other evidence 

of indoor tobacco use (e.g., cigarette butts in an ashtray) are observed. This was not the case 

for the subject home though, which is why it was selected to be summarized in this report. 

On 11/14/13, a version of the seven-day summary chart presented in Fig. 4(a) was reviewed 

by the SP and the home’s coach. This interaction focused, in part, on identifying strategies 

to reduce SHSe. Immediately following the coaching session, the monitor feedback was 

activated. The SP reported that the peak that occurred on Wednesday, 11/13/13 around 6:30 

p.m. “happens because [her] husband lights his cigarette and then closes the back door.” 

More generally, the SP commented that her “husband smokes outside on the back patio 

at night time when he gets home from work.” In a subsequent visit on 11/27/13, the SP 

indicated that when she is not home her husband often “is home and is smoking in the 

house.”

The SP’s comments represent reports of smoking at specific times which we can cross–

reference with our data. Table 2 provides a list of the 11 peak events for the time-period 

in Fig. 4(b). The 11/13/13 event is classified as Type B, as are eight of the other events. It 

may be the case then that the Cluster B events are associated with the husband’s cigarette 

smoking. Figure 4(c) illustrates the distribution of peak event start times for both cluster 

types and in both phases of the intervention. The mode of each distribution corresponds with 

the SP’s 6:30 p.m. report of her husband’s smoking. There is minimal difference between 

the Cluster B start time distributions from both phases. This is consistent with the evidence 

associating Cluster B with cigarette smoking and the SP’s report of her husband’s resistance 

to not smoking indoors. In contrast, the Cluster A distribution from the TX phase is more 

focused around 6:30 p.m. relative to the BL phase. Taken in conjunction with the sharp 

increase in the frequency of short-duration, cluster A peaks in the TX phase, this shift in the 

distribution may represent the husband taking steps to ensure that his after-work smoking 

less detrimentally affects the indoor environment. With this interpretation, the Type A peaks 

can be hypothesized to represent low-exposure events such as the lighting of a cigarette 

on the way out of the door or cigarette smoke drifting from outside into the home. Type 

B then could be associated with deviations from these behaviors and represent prolonged 

indoor smoking behavior. In PFA, though, the measures of human activity and the chemical 

composition of indoor air particles are too under-specified to allow this speculation to be 

either proved or disproved. As will be discussed later, the availability of verified information 

such as this would be a powerful tool for health promotion scientists to use when attempting 

to change household behaviors.
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6. The Relationship of POD to Physical Parameters

When utilizing the POD/clustering algorithm, peak clusters are identified empirically and 

there is no explicit correlation to physical characteristics. To address this, we investigate 

the relationship between peak typology and parameters from a physics-based mass balance 

model of airborne particles. Model parameter estimates are calculated for each peak and 

are grouped by cluster. As will be demonstrated, this allows for the assessment of the POD/

clustering algorithm’s ability to discriminate physical characteristics.

To model air particle concentration, consider the following first-order mass-balance equation 

that describes the dispersion of nonsorbing particles in a single zone [20, 21]:

dy(t)
dt = − Ay(t) + e(t)

V , (4)

where y(t) is the airborne concentration of particles at time t, V is the volume of the 

zone, e(t) is the particle emission rate at time t, and A is a rate coefficient for loss due to 

outdoor air exchange, particle deposition, and/or other first-order processes. It is likely that 

air exchange rate is the primary influence for A. We assume that the emission rate for a peak 

event, such as the smoking of a cigarette, is some constant ec for the duration of the particle 

generation and then zero otherwise, i.e.,

e(t) =
ec :0 ≤ t ≤ te
0 : te < t ≤ tl,

where te is the duration of the emission and tl is the length of an event. Equation (4) then has 

the exact solution

y(t) =
y0 − κ e−At + κ :0 ≤ t ≤ te

yme−A t − te : te < t ≤ tl,
(5)

where κ ≡ ec/(V A) and ym ≡ y0 − κ e−Ate + κ. κ is the ratio of the particle source rate to 

the volume of air being displaced per unit time and ym is the maximum concentration, which 

occurs at te.

As measured by PFA staff, the volume of the room where the monitor was located is 

approximately 180m3. With V = 180m3, Eq. (5) is fit to each of the 113 peak events [see 

Fig. 6(a)] and a vector of parameters pi = (y0, ec, A, te, tl)T is extracted for i = 1, …, 

113. The parameter tl is not extracted from the fit, but is instead set equal to the duration 

of the original event. Prior to the curve fitting, the one-minute that had been appended 

to the beginning of each event was removed since this flat time-period diluted the peak 

characteristics for short-duration peaks and had little effect on the fit for long-duration 

peaks. The fitting procedure did not converge for 18.6% of the events, primarily due to Eq. 

(5) being over-parametrized for the shortest-duration peaks.
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The (A, tl)-space corresponds in some sense to household characteristics since it 

encompasses the decay rate and the duration required for indoor air concentrations to fall 

below 40 μg
m3 .· (ec, te)-space, on the other hand, corresponds to behavioral characteristics 

concerning the magnitude and duration of a particle generating event. Figures 6(b) and 

(c) illustrate two-dimensional kerneldensity estimates, calculated using the ks package in 

the R Statistical Software [22], of these two parameter subspaces stratified by cluster. 

Kernel density estimation consists of the use of data smoothing to empirically estimate a 

probability density function [23]. We see that, while overall the POD does a satisfactory job 

of discriminating between the physical parameters, there is less overlap in the case of (A, tl). 
This indicates that the POD is more successful in identifying differences in these parameters 

as opposed to (ec, te). Similar differences in typology distributions exist for other pairs of 

variables not shown here.

We now seek to determine the accuracy of the POD/clustering algorithm at identifying 

peaks from each distinct physical parameter class using a bootstrap-type methodology. Let 

PA represent the sets of fitted parameters associated with the Type A peaks and PB be the 

sets of parameters associated with the Type B peaks. As detailed in Section 5, 77 Type 

A peaks were identified so we sample 77 parameter sets (pi), with replacement, from PA. 

Similarly, we sample 36 parameter sets from PB. The POD/clustering analysis (with the 

same specifications as in Section 5) is then performed on these sample peaks and each 

peak’s classification is compared with its original class for consistency. This procedure was 

repeated 1,000 times and the average ratios of correct identification over these trials were 

calculated. Type A peaks were accurately identified 68.2% of the time and Type B peaks 

were correctly identified 64.7% of the time. For our purposes, this is an acceptable level 

of accuracy. The misidentification of peaks can be due to one or more of several factors. 

First, the 18.6% of peaks that were not able to be fit to Eq (5) were all from Cluster A 

and were, in most cases, the shortest duration events, i.e. the most dissimilar from Cluster 

B. This likely biased the findings. Second, while the POD and curve fitting exercises can 

both be interpreted as dimensionality reduction techniques, the curve fitting is much more 

rigid than the POD in terms of what features can be extracted. Finally, as shown in Figure 

6(b)–(c), there is an overlap between typology parameter distributions which complicates 

the clustering procedure. Overall though, the POD satisfactorily identifies features from this 

first-order physics model.

7. Discussion

Intensive air particle concentration time-series data were generated from a health-behavior 

intervention aimed at reducing household SHSe. Peak events were extracted from the 

time-series and transformed so that POD could be used to project the peaks into a lower-

dimensional space. After using analytic metrics to obtain the optimal number of clusters, 

a k-means algorithm was used to partition the peaks into two classes. Once the aversive 

stimuli component of the intervention was activated, effects were observed in the form 

of a decreased number of peaks and an increased frequency of short-duration, attenuated, 

Type A peaks. Peak classification was cross-referenced with SP-reported information about 

household behaviors to generate evidence that Type B peaks were associated with indoor 
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smoking. The distribution of peak event start times also provided insight into how household 

members were adjusting their behavior in response to the intervention. A relationship was 

also identified between the POD-defined clusters and physical parameters obtained from 

fitting the peaks to the solution of a parsimonious ordinary differential equation.

The results summarized in the previous paragraph represent a case-study of one home, 

chosen due to the willingness of the SP to report indoor smoking. While preliminary 

analyses have indicated certain findings are robust among many homes (e.g., k = 2 as 

the optimal number of clusters), the extent to which these conclusions are generalizable 

to other homes is not known and requires additional investigation. In particular, more 

accurate information about the household behaviors associated with specific peaks is 

required, possibly via studies utilizing intensive ecological momentary assessments. This 

information will also allow for the exploration of the association between the subclustering 

identified in the Type B cluster and different classes of particle sources. Furthermore, the 

procedures described herein can be refined and alternate decomposition techniques (e.g., 

wavelet analysis) can be explored. As we move forward and the dynamics of more homes 

are identified, it is possible that we will gain the ability to efficiently characterize homes 

which are not intensely monitored into household archetypes which will allow us to modify 

the intervention based on archetype characteristics.

From a larger vantage point, PFA and other real-time and mobile technology based studies 

enable precise measures of behavior as it takes place in a natural environment, such as the 

home for PFA. This ability will radically transform interventions for disease prevention and 

treatment towards those that are suitable for adaptive technologies [24, 25] and personalized 

treatment that tailors interventions in real-time to the particular conditions at hand [1]. 

The social and behavioral science theories on which traditional interventions are based 

typically rely on hypothetical constructs, notably cognitions and personal decision making, 

as mediators of important human behavior. It has been suggested that extant cognitive 

models do not inform the advancement of models of real-time objective behavior [26]. 

Contextual behavioral science [27] provides alternatives to cognitive-based models such 

as the Behavioral Ecological Model (BEM), which asserts behavior as an extension of 

biology with contributions from chemistry and physics [28]. Fundamental to this theory are 

Principles of Behavior that define operant behavior as a function of immediate consequences 

rather than cognitions. This model relies almost exclusively on objective measures of 

behavior and, as such, it is well-suited to inform real-time measurements and to be informed 

by the results of real-time and mobile measures.

As mobile technology becomes more ubiquitous, adaptive interventions are beginning to be 

implemented. For example, the ability to employ automatic shaping mechanisms has been 

established for physical activity [29]. While our measurements are too crude to achieve 

high-fidelity use of behavioral principles, this study lays the groundwork to move tobacco 

control, specifically the control of SHSe, in this direction by gauging behavior in a variety 

of data-intensive, dynamic contexts, which is not the case for typical intervention models. 

As technological advances allow for a more comprehensive specification of behaviors, the 

knowledge gained by the data-centric techniques developed in studies like this will prepare 

us to take full advantage of the technology in many fields including, but certainly not 
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limited to, tobacco control. Furthermore, in a synergistic process, studies such as this will 

identify information gaps and poorly-specified variables that can serve as a road map for the 

development of more precise technology.
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Highlights

• A POD/k-means clustering algorithm classified time-series peaks into one of 

two empirically-defined classes.

• A behavioral intervention increased the proportion of peaks from the class 

associated with shorter durations.

• Distinguishing physical properties of the peaks were identified with > 60% 

accuracy.

Berardi et al. Page 18

J Comput Sci. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Panel (a) Distribution of the length of peak events. The shaded region represents the 90th 

percentile. Panels (b)-(c) The padding procedure for Peak 15 (in temporal order). The peak 

as it appears in the time-series is shown in Panel (b); Length(l15)=138 and center of mass 

(ν15) = 63. Panel (c) illustrates the peak after 187 and 200 dummy variables have been 

added to the beginning and end of the peak, respectively. The event, along with all others, 

now has N = 525 observations, enough to account for centering every peak event in the full 

data series about its center of mass. Note that the average has not been subtracted out.
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Figure 2: 
Proper orthogonal decomposition (POD) results. (a) Reconstruction of the 24th peak (in 

temporal order). The thick black line corresponds to the original peak while the blue and red 

lines represent POD reconstructions using, respectively, 1 and 2 POD modes. (b) Individual 

and cumulative average variance accounted for by the first ten eigenmodes, ϕi. Note ϕ1 ≈ 
79% and ϕ1 + ϕ2 ≈ 86% of the total variance. (c)-(d) The first two eigenmodes ϕ1 and ϕ2, 

respectively.
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Figure 3: 
Weighted k-means clustering. (a) Average silhouette. (b) Gap statistic. (c) Each point 

represents a peak. Its two coordinates are the coefficients corresponding to the first two 

eigenfunctions ϕ1 and ϕ2. k = 2 was used and each peak is classified as Type A (black) or 

Type B (red). The filled yellow diamonds represent the centroid of each cluster.
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Figure 4: 
Cluster characteristics. (a) Example time-series graph of the type reviewed by the participant 

in the present study. Peak events are colored by cluster type. (b) “Average” peak from each 

cluster calculated by using each cluster’s centroid coordinates as the projection coefficients 

and adding back the previously-subtracted peak average. (c) Estimated distribution of peak 

start time classified by both cluster and intervention phase.
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Figure 5: 
Intervention Effect. (a) Proportion of total number of peaks accounted for by each cluster 

stratified by intervention phase. (b) The same analysis but for proportion of total area under 

the curve.
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Figure 6: 
Parameter fitting and estimated density distributions. (a) The fitting of Peak 53 (in temporal 

order) to Eq. (5). (b) A log-log plot of the two-dimensional kernel density estimates of 

the parameter distribution in (A, tl)-space. (c) A log-log plot of the two-dimensional kernel 

density estimates of the parameter distribution in (ec, te)-space.
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Table 1:

Mean values over all peaks of key features stratified by cluster. Standard deviations follows the mean in 

parentheses.

Type A Type B

Duration in minutes 4.3 (7.0) 65.3 (48.2)

Maximum concentration 106.4 (38.4) 121.1 (40.3)

Initial concentration 15.5 (12.2) 40.0 (16.8)

Area under the peak 309.3 (456.8) 5447.4 (4344.7)
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Table 2:

Tabulation of the peak events identified in Fig. 4(a).

Start End Class

11/07/13, 08:01:59 11/07/13, 09:56:09 B

11/08/13, 15:33:19, 11/08/13, 15:41:49 A

11/09/13, 17:43:05 11/09/13, 19:00:15 B

11/09/13, 22:35:35 11/10/13, 02:32:19 B

11/11/13, 02:47:19 11/11/13, 03:33:29 B

11/11/13, 12:08:19 11/11/13, 12:35:59 B

11/11/13, 16:18:29 11/11/13, 16:45:09 B

11/11/13, 21:35:05 11/11/13, 22:51:55 B

11/12/13, 17:36:45 11/12/13, 17:39:45 A

11/12/13, 18:24:25 11/12/13, 19:51:25 B

11/13/13, 18:40:05 11/13/13,18:57:55 B
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