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Abstract: In the context of China’s “digital power” strategy, the realization of a green and low-carbon
shift in manufacturing has become a necessary condition to promote the economy, and the digital
factor has increasingly become a new driving force. The text mining and IPCC methods were used
to measure manufacturing enterprise digitalization and the level of enterprise carbon emission
intensity from 2011 to 2021, respectively. This study then explored the impact of digitalization on
manufacturing enterprise carbon emission intensity based on the least squares method model and
instrumental variable method model. This research comes to three conclusions. (1) Digitalization
can significantly reduce the enterprise carbon emission intensity of China’s manufacturing industry,
and the influence shows a “marginal increase.” (2) Notably, a mechanism analysis indicates the
intermediary effect sizes of four crucial intermediaries: green technology innovation > financing
constraint > information asymmetry > energy use efficiency. Interestingly, digital information
resources positively moderate the positive effect of digitalization on carbon emission intensity
through three paths: financing constraints, green technology innovation, and information asymmetry.
(3) The influence shows evident signs of heterogeneity—as environmental regulation, financial
development, executive education, and R&D quality advance, the inhibiting effect of digitalization
on enterprise carbon emission intensity becomes more pronounced. Finally, corresponding policy
suggestions are proposed.

Keywords: digital transformation; carbon emission intensity; information asymmetry; green innovation;
digital information resources; financing constraints

1. Introduction

Global carbon emissions continue to increase, resulting in climate warming, melting
glaciers, and other environmental problems that have gradually threatened human health,
equity, and sustainable development [1–3]. According to a survey by BP, China has been the
world’s largest carbon emitter since 2005, with carbon emissions from the manufacturing
sector increasing from 4.254 billion tons in 2005 to 8.386 billion tons in 2019, maintaining
a growth rate of more than 10 percent. The digital economy has demonstrated strong
resilience and great potential under the interwoven influence of the global pandemic and
severe environmental concerns across the world [4]. The digital economy has provided
unprecedented opportunities for China’s manufacturing transformation and low-carbon
development [3,5]. In 1996, Tapscott first put forward the concept of the “digital economy,”
believing that digital transformation would become the development trend of the future
economy [3]. Subsequently, some scholars have stated that the digital economy mainly relies
on information and communication technology to realize the economic trend of e-commerce
transformation [6]. Some scholars have further argued that digitization not only realizes
electronic commerce but also promotes business transformation through digital technology
retail, drives the emergence of new markets and new forms of business, achieves economic
growth, and increases enterprise labor productivity [7]. Therefore, enterprise digitalization
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not only contributes to the improvement of labor productivity but also improves traditional
extensive modes of production and the allocation efficiency of innovative resources by
enabling the production and R&D processes of enterprises through digital technology, thus
enhancing green production capacity and innovation [8]. As the world’s second-largest
digital economy, determining how China can use digital technologies to upgrade traditional
R&D, production and management models, and promote the low-carbon transformation
of its manufacturing industry is an important topic of research significance. As the main
battlefield of China’s digital transformation, accelerating the digital transformation of the
manufacturing industry has become a vital means to achieve low-carbon high-quality
development in the manufacturing industry.

As the main issue of China’s digital transformation, determining how to accelerate the
digitization of the manufacturing industry to reduce carbon emissions has concerned many
scholars, but there is still much room for the analysis of associated realization mechanisms.
There are still relatively few works that directly discuss digital transformation and carbon
emission intensity, and most do not adequately discuss paths and channels of carbon
reduction [9–11]. Based on information theory, this paper comprehensively analyzes the
impact of digital transformation on carbon emission intensity from multiple paths, includ-
ing information asymmetry and financing constraints. In addition, existing studies have
discussed the influencing factors of reducing carbon emissions, but most focus on the effects
of innovation [12,13], industrial structure adjustment [14], low-carbon pilot policies [15],
financial development [16–19], and the introduction of FDI [20] and ICT [21] on the impact
of carbon emissions. How exactly does digital transformation affect carbon intensity? What
is the mechanism of its influence? Are any regional location and business environment
conditions at play? To answer the above questions, text mining and the IPCC method were
used to measure manufacturing enterprise digitalization and the level of enterprise carbon
emission intensity from 2011 to 2021, respectively. This paper first explores the influence
and mechanisms of digitalization effects on carbon intensity. We verify the reliability of
our conclusions by using a series of methods, including the instrumental variable method
and GGM method. In addition, based on information theory, we comprehensively discuss
the mechanisms of digitalization, including carbon reduction from the four dimensions
of information asymmetry, energy efficiency, and financing constraints, and we explore
the regulatory role of digital information resources in each influence path. Finally, we
further analyze the applicable conditions of digitalization: carbon reduction. The present
research has important theoretical and practical implications for effectively releasing digital
dividends and promoting the low-carbon transformation development.

The contribution of this paper is four-fold. First, regarding the rationality and scien-
tificity of index measurement, most studies use the absolute value of enterprise carbon
emissions for measurement, resulting in a lack of comparability of carbon emissions among
enterprises [9–11]. This paper uses the carbon emission coefficient method to measure the
relative carbon emission intensity of manufacturing enterprises as the explained variable
to improve the scientific and rational measurement. This is because China advocates low-
carbon transition development and attaches importance to the synchronization of carbon
reduction and growth. Therefore, we have innovatively applied the IPCC method to the
enterprise level to improve the rationality of measurement and scientific research. Second,
regarding perspective innovation, text analysis methods are adopted to measure the dig-
italization of Chinese manufacturing enterprises, and on this basis, the paper discusses
the impact mechanism of digitalization on the carbon emission intensity of manufacturing
enterprises, enriching the literature on carbon emission factors. Third, regarding mecha-
nism innovation, based on information asymmetry theory, this paper analyzes four paths,
including information asymmetry, green innovation, energy efficiency, and financing con-
straints, and interestingly, it discusses the regulating effect of information accessibility,
which deepens our understanding of the environmental effect path of the development
of the digital economy. Finally, we explore heterogeneous innovation. Based on macro-
and micro-level perspectives, we discuss the conditions and applicability of the impact of
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digital transformation on carbon emission intensity, providing more detailed evidence for
the government to formulate emission reduction policies.

2. Literature Review

There are two main branches of literature that are closely related to this paper. One
body of literature discusses the digital economy and green development, while the other
discusses digitalization and enterprise low-carbon transformation development. For the
digital economy and green development, some scholars take green TFP as a standard mea-
surement of green development and find that the digital economy can improve green TFP
by optimizing industrial structures [22] and strengthening factor resource allocation [23].
Other scholars interpret the connotations of green development from different perspec-
tives. They explore the path mechanisms of the digital economy affecting environmental
quality and green innovation, finding that the digital economy can promote regional green
innovation by increasing investment in R&D and human resources [24]. Such an approach
can also contribute to the environmental improvement of local and neighboring areas [25].
Other scholars have focused on the environmental consequences of raw material and power
consumption in manufacturing and operations and from the disposal of digital devices
and services [26]. Such scholars find that digital technology is a double-edged sword for
energy consumption and carbon emissions. On the one hand, the application of traditional
ICTs can directly drive energy demand, especially for fossil fuels, causing carbon emissions
associated with energy use to rise simultaneously [27]. On the other hand, improving
energy efficiency through the use of ICTs also has the potential to trigger a rebound effect,
leading to higher carbon emissions [28]. In addition, a small number of scholars find that
the digital economy on green development presents a nonlinear relationship [29,30].

Another strand of literature focuses on digitization and the development of the low-
carbon transformation of enterprises. Some scholars believe that digitalization can promote
the rational allocation of internal resources of enterprises and enhance green innovation
through an information effect [31,32]. However, others argue that digitalization requires
installing more energy-intensive computers, which could increase carbon emissions [33]. A
few scholars also disagree with the idea that enterprise digitalization and carbon emissions
only have a linear relationship and verify that there may also be an inverted U-shaped
relationship between the two [34]. On this basis, some studies have discussed in depth the
existence of a threshold value whereby only within this threshold can digital transformation
be conducive to green development [35]. Therefore, not all enterprises are suited to
digitalization, and the carbon reduction effect of digitalization should not be exaggerated;
otherwise, it may not be conducive to low-carbon development [36]. In summary, scholars
have not reached a consensus on the relationship between digital technology and low-
carbon and green development.

There are some deficiencies in the existing literature. First, most research data focus
on macro-level examples. The discussion of macro-level carbon emissions is also based
on the total carbon emissions of all microenterprises, while it may ignore the emission
characteristics of microenterprises and lack micro-level guidance. Second, although a few
areas of literature analyze digital environmental effects from a microscopic perspective,
most discuss the impact on enterprises’ green innovation and total factor productivity, and
few directly measure the carbon intensity of Chinese manufacturing enterprises. Finally, the
mechanism through which corporate digital transformation affects corporate low-carbon
development is not yet sufficiently detailed. Based on this, this paper measures the digital-
ization index of Chinese manufacturing enterprises and analyzes the mechanisms of how
digitalization transformation affects enterprises’ carbon intensity based on information
theory and financing constraint theory. It is found that digitalization can not only accelerate
the restructuring of the manufacturing industry but also improve the energy efficiency
of enterprises. Moreover, digitalization can help enterprises achieve low-carbon transfor-
mation by easing the risk of information asymmetry between enterprises and external
stakeholders and alleviating financing constraints.
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3. Theoretical Analysis and Hypothesis
3.1. Digitalization and Information Asymmetry

According to information theory, market information asymmetry will lead to market
risk and then reduce the efficiency of market operations, which is not conducive to the
optimal allocation of resources [37,38]. On the one hand, digital technology can increase
exchanges and communication between different subjects, strengthening the knowledge
spillover effect of low-carbon technologies [39]. On the other hand, digital development
strengthens the links between regional industries, alleviates the analysis of information
asymmetry between regions, reduces the market segmentation behavior of local govern-
ments with the main motive of protecting the local market, and effectively alleviates the
mismatch of information resources at the spatial and industrial levels [40–42]. In addition,
digital technology can improve regional market integration and promote the optimal alloca-
tion of resources and factors between regions by reducing the barrier effects of geographic
distance on price information transmission [43], which will help reduce transportation and
market transaction costs, and alleviate the carbon overload caused by repeated construc-
tion [44,45]. Digital transformation can help enterprises realize the real-time acquisition
and transmission of information over long distances using digital means, break information
islands, and improve information accessibility between internal and external enterprises
as well as between enterprises [46,47]. On the one hand, it is helpful for enterprises to
obtain more green resources externally to support and improve their green development
abilities, and it is also helpful to strengthen the exchange of experiences between enterprises
involved in the same areas of trade and enhance cooperation in carbon emission research
and development between enterprises [48–50]. On the other hand, digital development
provides all enterprises with access to the Internet, creating the opportunity to obtain diver-
sified green financial services at low costs, and providing resource support for enterprises’
carbon emission reduction [51,52]. Hence, we propose Hypothesis H1.

H1. Information asymmetry mediates the impact of digital transformation on enterprise carbon intensity.

3.2. Digitalization and Energy Efficiency

China’s low energy efficiency is the result of extensive production methods. China’s
extensive business model is an important cause of carbon overloading. The existing studies
have found that enterprises’ digital transformation can reduce carbon emissions by improv-
ing energy efficiency [53–55]. On the one hand, digital technology is applied to optimize
the production process and efficiency. The main reason for China’s traditional mode of
high consumption and high emission is the backward production process and production
mode. The application of digital technology can help to promote the transformation of
the production mode of the traditional manufacturing industry, not only improving the
labor productivity of enterprises but also improving the efficiency of energy and resource
utilization, thus reducing the carbon emission intensity of enterprises [56–58]. Some schol-
ars have found that industries with a high degree of digitalization have lower carbon
emissions [59–61]. On the other hand, digital technology comes from ICT, which is also
recognized as an effective means of managing a country’s energy needs and helping reduce
energy use [27]. Therefore, enterprise digital transformation can help promote the transfor-
mation of enterprise energy consumption structure, improve the resource utilization rate,
and reduce enterprise carbon emission intensity [62]. Based on this analysis, we propose
Hypothesis H2.

H2. Enterprise energy efficiency mediates the impact of digital transformation on enterprise carbon intensity.

3.3. Digitalization and Green Innovation

The core driving force of digitalization is information technology. The most significant
impact of the information technology revolution on economic activities lies in its provision
of labor productivity and promotion of specialization [63,64]. Therefore, China’s innovation
activities are driven by the professional advantages of digital technology [65]. On the one
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hand, the high permeability and applicability of digital technology can promote industrial
transformation and upgrading. On the other hand, cross-industry digital technology
spillover enables regional low-carbon technology innovation and continuously reduces the
carbon emissions of enterprises in the same region [66].

First, digital technology has profoundly changed people’s way of thinking. Through
digital sustainability activities, we can stimulate an internal entrepreneurial spirit, enhance
the green innovation ability of enterprises, and balance social development and ecological
protection [67]. Second, the development of the Internet will force enterprises to pay
attention to ecological protection while continuing to innovate. That is, digital technology
can broaden the depth of green innovation through a reversal mechanism. Meanwhile,
digitalization is the product of technological innovation, which comes with cumulative and
iterative effects of technology. Such effects can constantly break through the boundaries
of fintech through the application of carbon trading, carbon capture, carbon utilization,
and carbon sequestration, promoting the continuous innovation of green technology [68].
Finally, digitalization accelerates the innovative development of financial products, which
is conducive to the green R&D activities of enterprises [69]. This integration will help
better bridge the gap in traditional finance, promote the diffusion of financial resources
to technology-oriented enterprises, and enhance enterprises’ green technology innovation
capabilities [70], helping reduce carbon emissions. Hence, we propose Hypothesis H3.

H3. Green innovation mediates the impact of digital transformation on enterprise carbon intensity.

3.4. Digitization and Financing Constraints

Information asymmetry will prevent stakeholders from providing innovative invest-
ment or credit support to enterprises, thus easing corporate financing constraints [71].
Studies have shown that strong financing constraints will lead to a reduction of enterprise
capital and labor input and distort enterprise resource allocation [72]. On the one hand, dig-
ital development can reduce the financing information costs of enterprises, enrich financing
channels, and improve financing efficiency, helping ease financing constraints and improve
low-carbon development [73–76]. FDI, on the other hand, tends to flow into financially sta-
ble countries [77]. Digitalization can effectively improve the efficiency of financial services,
alleviate the systemic risks of traditional finance, reduce the uncertainties of investment,
and promote the building of a high-quality, stable, and safe business environment, thus
continuously attracting FDI inflows [78]. Therefore, the technology spillover effect brought
by FDI is conducive to promoting the study and imitation of Chinese enterprises to reduce
carbon emission intensity [20,79]. In summary, the digital economy can help ease enterprise
financing information, improve enterprise resource abundance, and realize the sustainable
development of the green finance industry [80], which is beneficial to reducing enterprise
carbon emissions. Based on this analysis, we propose Hypothesis H4.

H4. Financing constraints mediate the impact of digital transformation on enterprise carbon intensity.

3.5. The Moderating Effect of Digital Information Resources

The fundamental feature of the digital economy is connectivity. The digital econ-
omy uses information elements as a source of productivity, information technology as
a driving force, and information networks as the carrier. Through the connections and
interaction between data elements and traditional production factors, the digital economy
will help fundamentally change the technology base and business models of traditional
manufacturing industries, remove limitations of time and space to connect various indus-
tries and regions, and achieve an optimal allocation of resources by alleviating information
asymmetry. In addition, China’s current fiscal decentralization system leads to regional
industry segmentation, resulting in the segmentation of the market, reducing information
efficiency, and making regional green and low-carbon development unfavorable [40,47,81].
The rich digital information resources based on the Internet realize the real-time transmis-
sion of information over long distances, greatly improve information accessibility among
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regions, industries, and enterprises, and alleviate market information asymmetry defects.
Therefore, we believe that the richness of regional digital information resources directly
affects the digital transformation of enterprises. Based on the above analysis, we propose
Hypothesis H5.

H5. Digital information resources moderate the impact of digital transformation on enterprise
carbon emission intensity.

Based on the above analysis, the digital transformation of enterprises mainly reduces
carbon emission intensity by reducing information costs, changing the production mode
of enterprises, and improving the level of green research and development. To better
demonstrate the mechanical framework, we use the conceptual model to summarize, as
shown in Figure 1.
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Figure 1. Mechanism diagram of the impact of digitalization on carbon emission intensity.

4. Model Settings, Variables, and Data Sources
4.1. Model Setting

This paper discusses the impact of digital transformation on enterprises’ carbon
intensity. The least square regression model is constructed to discuss the influencing factors
of carbon intensity. Referring to the practice of established scholars [5,8,82], the specific
model is shown in (1):

ECOEMISQit = α0 + α1digitalit + αcXit + i.companyi + i.yeart + εit (1)

In Model (1), ECOEMISQ indicates the carbon intensity of enterprises, and digital is
the digital transformation index of enterprises. The vector Xit represents a set of control
variables, company stands for individual fixed effect and Year represents time fixed effects,
εit said random disturbance.

4.2. Variable Measure and Description
4.2.1. Enterprise Carbon Emission Intensity

Carbon emission intensity refers to the carbon dioxide emission brought by each unit
of GDP, that is, carbon emission intensity = carbon emission/GDP. The index is used to
measure the relationship between a country’s economy and its carbon emissions. A country
has achieved a low-carbon development model if its carbon dioxide emissions per unit of
gross national product are falling while its economy is growing. This paper mainly adopts
the IPCC method. In terms of data availability, nine energy sources are mainly selected as
measurement indicators in this paper. We first need to obtain the raw energy consumption
data of China’s manufacturing industry through the China Energy Statistical Yearbook and
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then convert the energy consumption data into standard coal. The conversion coefficient
and carbon emission coefficient of various energy standard coal are shown in Table 1.

Table 1. Coal conversion and carbon emission coefficient of various energy standards.

Types of Energy Consumption A Standard Coal Conversion Factor Carbon Emission Factor

coal 0.7143 0.7559

coke 0.9741 0.8550

raw 1.4286 0.5857

fuel 1.4286 0.6185

gas 1.4714 0.5538

kerosene 1.4714 0.5714

diesel 1.4571 0.6921

natural gas 13.3 0.4483

electric 0.1229 0.75

Data sources: China Energy Statistical Yearbook, 2006 IPCC National GHG Guidelines.

The first step is to calculate the carbon emissions of the manufacturing industry. The
formula is shown in (2).

COEMISt =
12

∑
i=1

Ci =
12

∑
i=1

AiBiDi× 44
12

(2)

where Ci is the carbon emission of the I-th energy; Ai is the I energy consumption; Bi is the
coefficient of converting the I-th energy into standard coal; Di is the carbon emission coeffi-
cient of the I-th energy; the constants Ai and Bi are from China Energy Statistical Yearbook;
the constant Di is derived from the 2006 IPCC National Greenhouse Gas Guidelines, and
44/12 is the conversion factor of carbon emissions to CO2 emissions.

The second step is to calculate the enterprise’s carbon emissions.

ECOEMISi t =
eincom

indsincom
× COEMISi t (3)

COEMISit refers to the carbon dioxide emissions of enterprise i in t years, which is
equal to the product of the ratio of business income of the enterprise in the current year
to the main business income of the industry and the carbon emissions of the industry.
INCOMEit represents t year operating income of enterprise i, and MINCOME represents t
year main business income of the manufacturing industry.

The third step is to calculate the carbon emission intensity of enterprises. EGDPit
represents the total output value at the end of the year. The calculation is shown in
Formula (4).

ECOEMISQi t =
ECOEMISi t

EGDPit
(4)

4.2.2. Digitalization Index

Some scholars have statistically analyzed the word frequency of digital economy
keywords in the annual reports of listed companies through crawler technology and used
it to describe the degree of digital transformation of enterprises that have been recognized
by academic circles [8]. Annual reports between different companies are summarizing and
forward-looking in nature, so the digital index between listed companies is comparable.
Therefore, this paper uses the statistical method of word frequency of digital economy
keywords to construct the digital index of manufacturing enterprises. Specific steps: first,
make clear the keyword source of digital transformation. This paper refers to the relevant
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policy documents, research reports, and the enterprise digital empowerment action plan
issued by the General Office of the Ministry of Industry and Information Technology.
Secondly, the crawler technology is used to download the annual reports of enterprises,
extract the word frequency related to digital transformation and build a digital dictionary
for this paper [8,9]. On this basis, Python Chinese word Segmentation Library (jieba) is
used for word segmentation. Thirdly, the digital keywords of each listed company are
frequently added to get the digital economy index. Finally, the ratio of the total digital
word frequency to the total number of words in the annual report is used as the enterprise
digitalization index (digital). As shown in formula (5). And use the WINSOR2 command
of STATA software to reduce the tail of the variable at the 1% level.

digital =
Total number of digital keyword frequencies
Total number of words in the annual report

(5)

4.2.3. Mechanism Variables

(1) Asymmetric information (lnasymme): We use the ratio of absolute manipulative
accruals to total assets of listed companies to represent the information asymmetry.

(2) Energy utilization rate (energy): In this paper, the energy consumption rate is used
as the reverse proxy index of energy utilization. Energy consumption rate: We use the ratio
of coal consumption and total fuel consumption to the gross product of the enterprise as
the proxy index of the energy consumption rate.

(3) Green innovation (patent): We used green patent invention combing as a proxy variable
(4) Financing constraints (lnSA): The representative measurement methods include

KZ index, WW index, and SA index, but the three indexes all have defects to some ex-
tent. The existing research practices in this paper use the improved SA index [83,84].
Specific calculation:

SA = −0.737× size + 0.043× (size)2 − 0.040× age (6)

In Formula (6), the size represents the total assets of the enterprise, and age represents
the years of operation of the enterprise. SA is always negative, so we’re dealing with
absolute values to prevent outliers from interfering with our natural logarithm processing
of the mechanism variables

4.2.4. Control Variables

Control variables of this paper: (1) enterprise age (range). We use the establishment
years of enterprises as the proxy variable. (2) Enterprise scale (in size): represented by
the number of employees. (3) Profitability (income): represented by the current operating
income of the enterprise. (4) Enterprise cash flow (in cash): we use corporate cash rep-
resentation. In addition, we also control some of the industry influences. (5) Industrial
competition (HHI): our Herfindahl index represents the level of competition in the industry.
(6) Productivity of industry (TFP): we adopt the industry total factor productivity mea-
sured by DEA. To prevent heteroscedasticity interference, natural logarithm processing
was carried out for control variables at the enterprise level.

4.3. Data Description and Descriptive Statistical Analysis

The A-share listed companies in Shanghai and Shenzhen during 2011–2021 are selected
from the CSMAR database, and 13–43 categories of C categories of manufacturing are se-
lected according to industry codes and according to the standard of Industry Classification
of National Economy (GB/T4754-2012). Financial enterprises and ST samples were deleted
considering missing values and other reasons. Non-equilibrium panel data from 2030
companies in 11 years were obtained, with a total of 12,426 sample observations. Table 2
reports descriptive statistical results. The results show that the mean value of ECOEMISQ
in the manufacturing industry is −0.0210, the maximum value is 2.8625, and the minimum
value is −1.9150. The standard deviation is 0.2182. The mean value of enterprise digital
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is 0.4054, and the standard deviation is 0.2473. The maximum value is 0.8673 and the
minimum value is 0.0305. Whether digital transformation can reduce carbon emission
intensity needs further empirical analysis.

Table 2. Descriptive statistics of variables.

Variables N Mean SD Min Max

ECOEMISQ 12,162 −0.0210 0.2182 −1.9150 2.8635
lndigital 12,162 0.4054 0.2473 0.0305 0.8673

lnage 12,162 2.8101 0.3549 1.0986 4.1271
lnsize 12,162 7.7936 1.1434 2.9957 12.3421
lnsale 12,162 21.4566 1.3547 15.4959 27.5118
lncash 12,162 0.4009 0.1974 0.0071 1.6356
HHI 12,162 0.1068 0.3088 0.0000 1.0000
TFP 12,162 0.9207 0.3258 0.0000 2.5578

5. Empirical Analysis
5.1. Benchmark Regression

The estimation results in Table 3 demonstrate the effect of the level of digitalization
of enterprises on carbon emission intensity. Column (1) shows that digitalization has a
significant inhibiting effect on the carbon intensity of enterprises without considering other
control variables. The estimation results in columns (2) to (7) progressively add control
variables to the estimation results. Column (7) reports the estimation results that control for
individual and time and include all control variables, showing that the effect of corporate
digitalization on carbon intensity is significantly negative at the 1% statistical level. It
indicates that digital transformation still contributes to reducing the carbon intensity of
enterprises. This is consistent with the expected hypothesis [10,85–88]. Compared with
previous studies, we conclude that digital transformation has a greater carbon reduction
effect [82,89]. There may be two reasons for this. First, most of the previous studies used
data from the provincial, city, and listed companies, which was not very targeted [53,88,90].
Second, most of them used the absolute value of carbon emissions or the composite index
as the proxy variable, which may cause the comparability and economic significance of the
estimated results to be unclear [89,91,92]. According to the reality of China, low-carbon
transformation development requires carbon reduction and growth at the same time, so
environmental regulation policies need to take into account both corporate economic effects
and environmental effects. For city or provincial data, estimation results provide directional
and strategic guidance, but for enterprise data, we believe that accurate estimation results
are more conducive to policy making. Therefore, relative carbon emission intensity is
used in this paper, which improves the scientific index measurement and comparability of
estimation conclusions.

The estimation results of control variables show that the effect of enterprise age is
negative, which may help to control enterprise carbon emissions by increasing technological
innovation and energy use of enterprises. The effect of enterprise size is positive and
statistically insignificant. The effect of enterprise profitability is significantly positive at the
1% statistical level, possibly because China’s business model expansion is generally sloppy,
and gaining more profits by expanding production scale may exacerbate carbon emissions.
Corporate cash flow helps to curb carbon emission intensity. At the industry level, the
more competitive the industry is, the more favorable it is for enterprises to reduce carbon
emissions. This may be because a competitive market will force enterprises to research and
develop innovations. There is a negative relationship between industry productivity levels
and enterprises’ carbon emission intensity, indicating that higher industry productivity
helps enterprises reduce carbon emissions. This is because technology spillover effects
within and between industries help enterprises learn and improve productivity.
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Table 3. Baseline estimation tests.

Variables (1) (2) (3) (4) (5) (6) (7)

lndigital −0.2797 *** −0.2683 *** −1.0068 *** −0.8266 ** −0.9274 *** −0.9243 *** −0.9382 ***
(0.0583) (0.0605) (0.3636) (0.3573) (0.3512) (0.3513) (0.3512)

lnage −0.0739 −0.0772 −0.1078 −0.0416 −0.0390 −0.0370
(0.0768) (0.0768) (0.0772) (0.0761) (0.0760) (0.0763)

lnsize 0.1045 ** 0.0327 0.0549 0.0545 0.0561
(0.0492) (0.0474) (0.0473) (0.0473) (0.0472)

lnsale 0.0713 *** 0.0824 *** 0.0826 *** 0.0822 ***
(0.0119) (0.0123) (0.0122) (0.0122)

lncash −0.2906 *** −0.2930 *** −0.2915 ***
(0.0501) (0.0497) (0.0494)

HHI −0.1503 * −0.1482 *
(0.0812) (0.0806)

TFP −0.0205 **
(0.0090)

Constant 0.6635 *** 0.8250 *** 1.5292 *** 0.2845 0.0280 0.0322 0.0504
(0.1180) (0.1912) (0.4084) (0.4207) (0.4178) (0.4174) (0.4166)

i.company
√ √ √ √ √ √ √

i.year
√ √ √ √ √ √ √

Obs 12,162 12,162 12,162 12,162 12,162 12,162 12,162
R-squared 0.0227 0.0230 0.0235 0.0293 0.0377 0.0380 0.0385

Note: robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. The same is below.

5.2. Robustness Test
5.2.1. Outlier Handling

Measurement errors may exist in the data collection process. Considering the interfer-
ence of outliers may lead to bias in the estimation results. We perform outlier treatment
to remove outliers. In this paper, we do the tailing treatment for the variables at 1% and
99% levels. The test results are shown in column (1) of Table 4. The estimation results are
still robustness. In terms of coefficients, the suppression effect is greater, which may be
due to outlier interference, but the overall significance and sign are consistent with the
baseline regression.

5.2.2. Replacement Estimation Method

Considering that the estimation sample in this paper is a restricted subset of the overall
manufacturing enterprises, it may cause biased estimation, so we choose the restricted
dependent variable estimation method for re-estimation. As is shown in column (2) of
Table 4, there is a significant negative relationship between enterprise digitalization and
carbon emission intensity, which is consistent with the results estimated using the least
squares method. It shows that the inhibitory effect of enterprise digitalization on carbon
emission intensity is not disturbed by severe sample bias.

5.2.3. Substitution of Explanatory Variables

It is a scientific and feasible method to measure the degree of enterprise digitalization
through digital word frequency. According to the research of existing scholars, digital
assets are also intangible assets. Therefore, we used the proportion of digital intangible
assets as a proxy variable to test. Specifically, this included “software”, “network”, “client
management system”, “intelligent platform” and other digital technology-related keyword
statistics and sums. By using digital technology, the total value of intangible assets and
intangible assets at the end of the year represent the digitalization degree of an enterprise.
The calculation formula is shown in (7).

digital =
Total intangible assets of digital technology

Total intangible assets of the enterprise at the end of the year
(7)
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Table 4. Robustness test.

Variables (1) (2) (3) (4) (5)

Outlier Value Handling Alternative Estimation Method Change of
Independent Variable

Replacing the
Explained Variable Missing Variable Handling

lndigital −1.5197 *** −0.6603 *** −2.6411 *** −0.0011 ** −0.4319 *
(0.3718) (0.2304) (0.6752) (0.0017) (0.2319)

lnage −0.1116 *** −0.0060 −0.3389 *** −0.0239 0.0127
(0.0311) (0.0102) (0.0845) (0.0807) (0.0102)

lnsize 0.1245 ** 0.0061 0.2882 *** −0.0753 *** −0.0437
(0.0491) (0.0299) (0.0897) (0.0120) (0.0297)

lnsale 0.0823 *** 0.0791 *** 0.0200 0.0847 *** 0.1019 ***
(0.0076) (0.0058) (0.0168) (0.0126) (0.0050)

lncash −0.2389 *** −0.2635 *** −2.7523 *** −0.2878 *** −0.3977 ***
(0.0273) (0.0241) (0.0745) (0.0502) (0.0532)

HHI −0.1172 * −0.0087 −0.3099 * −0.1497 * 0.0013
(0.0651) (0.0124) (0.1802) (0.0815) (0.0117)

TFP −0.0118 *** −0.0063 −0.0168 * −0.0215 ** −0.0144 **
(0.0036) (0.0074) (0.0087) (0.0091) (0.0072)

rd 0.0017
(0.0056)

lev 0.0653 **
(0.0255)

Constant 0.8418 ** −0.1812 5.4679 *** −0.9308 *** −0.7329 ***
(0.4256) (0.2750) (0.8179) (0.2663) (0.2726)

i.company
√ √ √ √ √

i.year
√ √ √ √ √

Obs 12,162 12,162 12,162 13,182 12,162
R-squared 0.1917 0.5514 0.0363 0.0999

*** p < 0.01, ** p < 0.05, * p < 0.1.

The regression results in column (3) of Table 4 indicates that accelerating the digital
transformation of enterprises can help reduce the carbon emission intensity of enterprises.
The robustness of this paper is verified.

5.2.4. Replacing the Explained Variable

Considering that the relative carbon emission intensity of the enterprise covered up
the carbon emission information of the data, we used absolute carbon emission intensity
as a proxy variable to conduct the robustness test. In order to eliminate heteroscedasticity,
the absolute carbon emission intensity is treated logarithmically. The estimated results are
shown in column (4) of Table 4. The results show that the impact of digital transformation
on the absolute carbon intensity of enterprises is significantly negative at the statistical
level of 5%, indicating that the digital transformation of enterprises can help reduce the
absolute carbon intensity of enterprises. This proves the robustness of the conclusion to a
certain extent.

5.2.5. Handling Omitted Variables

We include the level of enterprise R&D and financial leverage. We use the ratio of R&D
investment expenses to operating revenue as a proxy variable for the level of technological
innovation of the enterprise (rd). Corporate financial leverage is used as a proxy variable
for the financial position (lev). The results of adding omitted variables to the model are
shown in column (5) of Table 4. The results indicate that the findings of this paper do not
have strict omitted variables.

5.3. Endogeneity Test

To address the endogeneity issue, this paper draws on the approach of established
scholars [43,91]. We first construct the instrumental variables for enterprise digitalization
using the city 1984 digital circuit and the city Internet user cross multiplication. Again,
city data is used to match with enterprise data. Because the city’s historical digital in-
frastructure construction has had a significant impact on the development of the city’s
digital economy, and thus on the digital transformation of the enterprise, the instrumental
variables therefore satisfy the relevance requirement. The level of enterprise digitalization
does not affect the historical infrastructure development of cities, and thus satisfies the
homogeneity requirement.
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Column (1) of Table 5 shows that the instrumental variables are significantly correlated
with digitalization. and passed the first-stage F-value test. Column (2) shows that after
addressing endogeneity, digital transformation can still significantly suppress the carbon
emission intensity of enterprises. In addition, the estimated model and omitted variables
are considered to cause the endogeneity problem. Columns (3) and (4) report the results
of systematic GMM and differential GMM estimation. After passing the AR2 and Hansen
tests, it shows that the instrumental variables are chosen reasonably. The conclusions of
this paper remain robust after the endogeneity test.

Table 5. Endogeneity test.

Variables (1) (2) (3) (4)

First Stage 2SLS SYSGMM DiffGMM

lndigital −10.9066 ** −10.0944 *** −16.3673 *
(5.2770) (3.3194) (9.3582)

lnage 0.0002 −0.0327 −0.0647 −2.1088
(0.0013) (0.0474) (0.0737) (1.7432)

lnsize 0.1387 1.4398 ** 1.2542 *** 2.2141 *
(0.0003) (0.7325) (0.4396) (1.3198)

lnsale −0.0019 0.0637 *** 0.0404 ** 0.0566
(0.0003) (0.0134) (0.0201) (0.0398)

lncash −0.0031 −0.3214 *** −0.2411 *** −0.1873 ***
(0.0008) (0.0345) (0.0447) (0.0618)

HHI 0.0009 −0.1335 −0.0079 0.0124
(0.0024) (0.0853) (0.0363) (0.0430)

TFP −0.0005 −0.0263 *** −0.0211 −0.0180 *
(0.0002) (0.0101) (0.0144) (0.0102)

instrument
−0.0035 ***

(0.0005)
F-value in Phase

I 19.01

AR2 p = 0.242 p = 0.256
Hansen p = 0.761 p = 0.795

Constant 1.0697 *** 10.0381 * 10.1133 ***
(0.0117) (5.2906) (3.6504)

i.company
√ √ √ √

i.year
√ √ √ √

Obs 12,162 10,788 12,162 10,853
R-squared 0.9854 0.0703 0.5049 -

*** p < 0.01, ** p < 0.05, * p < 0.1.

6. Heterogeneity Analysis
6.1. Environmental Regulation

Environmental regulation policies vary from region to region. Currently, there are
market-based environmental regulations such as carbon trading. There are also imper-
ative environmental regulations for carbon emission reduction. Regardless of the type
of environmental regulation, it will affect the carbon emission intensity of regional en-
terprises. We divide cities into environmental regulation cities and non-environmental
regulation cities according to environmental regulation. Then we match with enterprises
according to their registered cities. The results of subgroup estimation are shown in Table 6.
Columns (1) and (2) show the regression results of the impact of enterprise digitalization
on carbon emission intensity moderated by environmental regulation. The results show
that the suppression effect of corporate digital transformation on carbon intensity is more
significant in environmentally regulated cities. Environmental regulation policies may
help to push back the digital transformation of enterprises and strengthen the carbon
reduction effect of digital transformation. In areas without environmental regulation,
the digitalization of municipal enterprises still has a positive inhibitory effect on carbon
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emission intensity, but it is relatively weaker. Therefore, enterprises themselves shoulder
the main responsibility of reducing pollution and carbon, but appropriate environmental
regulation policies formulated by external government departments can help improve the
environmental effects of digital transformation, -ultimately realize low-carbon transforma-
tion development. Additionally, by using the between-group estimation test, the p-value
is found to be equal to 0.0001, indicating that there is a significant difference between
the coefficients of the groups. It indicates that the government pays attention to carbon
emissions and puts pressure on the carbon emissions of regional enterprises, which helps
to ultimately promote regional low-carbon development. Economic-type environmental
regulation displays the characteristics of a market economy by determining ownership,
while the main core idea of command-type environmental regulation is the transformation
of service-oriented government.

Table 6. Environmental regulation and financial development.

Variables (1) (2) (3) (4)

Regulated Cities Level of Financial Development

Yes No Low High

lndigital −2.1298 *** −0.6405 * −1.4146 −1.8248 ***
(0.4199) (0.6290) (0.9357) (0.6009)

lnage 0.0087 −0.1468 * 0.3128 0.0154
(0.0983) (0.0853) (0.3499) (0.1049)

lnsize 0.2075 *** −0.1542 * −0.2321 * 0.1311
(0.0569) (0.0847) (0.1314) (0.0834)

lnsale 0.0822 *** 0.0927 *** 0.0340 0.1042 ***
(0.0176) (0.0191) (0.0410) (0.0203)

lncash −0.2782 *** −0.2932 *** −0.4032 *** −0.2495 ***
(0.0709) (0.0628) (0.1480) (0.0762)

HHI −0.0734 ** −0.1624 *
(0.0370) (0.0855) - -

TFP −0.0276 ** −0.0075 −0.0543 −0.0075
(0.0118) (0.0153) (0.0370) (0.0086)

Constant 1.2028 ** −1.5078 ** −2.2932 * 0.5616
(0.5138) (0.6887) (1.2198) (0.7910)

i.company
√ √ √ √

i.year
√ √ √ √

Obs 8973 3189 6638 5524
R-squared 0.0388 0.0416 0.0189 0.1264

*** p < 0.01, ** p < 0.05, * p < 0.1.

6.2. Level of Financial Development

Resource-based theory suggests that enterprises’ access to abundant resources is the
basis of enterprise innovation. The abundance of corporate financing resources may directly
affect the energy-saving and emission-reduction behaviors of enterprises. Therefore, it is of
great significance to test the influence of the abundance of financial resources on enterprises’
digital transformation. Firstly, we use the ratio of city deposit and loan amount to city GDP
to characterize the level of financial development. Secondly, the city data is matched with
the enterprise data by using the information from the enterprise registration location and
the mean values are used to group. Table 6 shows that in the high-level group, the effect of
enterprise digitalization on carbon emission intensity is significantly positive. It indicates
that the higher level of financial development has a greater inhibitory effect of corporate
digital transformation on carbon emission intensity. Regional resource endowment or
regional location will affect the business environment of the region, especially the level
of financial development for an enterprise development bailout. The government should
actively optimize the business environment, accelerate financial development, attract
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more high-quality investment companies or financial companies to settle in, and diversify
financing channels.

6.3. Quantile Test

The least squares estimation method assumes that digitalization can only affect the
mean information of the conditional distribution of carbon intensity, which cannot fully
explain the suppressive effect of digitalization on carbon intensity. To explore in more detail
the variability of the effect of digitalization on carbon intensity at different categorization
levels, the article performs quantile regressions on carbon emission intensity levels at the
25%, 50%, 75%, and 99% quantile levels. Column (1) in Table 7 shows that the effect of
digitalization on the carbon intensity of enterprises is negative but statistically insignificant
at the 25% quantile. As the quantile level increases, the negative effect of digitalization
is greater. Quantile regression can make up for the shortcomings of the least squares
method and more accurately evaluate the impact of digitalization on the carbon emission
intensity of enterprises. By quantile regression, we can find the marginal increasing effect.
In other words, when the relative carbon emission intensity of enterprises increases, the
inhibitory effect of digital transformation on enterprise carbon emission becomes more
obvious, in order to provide more reliable estimation conclusions for policy formulation
and implementation.

Table 7. Quantile test of carbon emission intensity.

Variables (1) (2) (3) (4)

25% 50% 75% 99%

lndigital −0.4015 −0.8706 ** −1.4045 ** −2.4876 **
(0.3788) (0.3462) (0.5730) (1.2363)

lnage −0.0949 −0.0964 * −0.0981 −0.1016
(0.0592) (0.0540) (0.0895) (0.1929)

lnsize −0.0068 0.0406 0.0946 0.2041
(0.0495) (0.0452) (0.0749) (0.1615)

lnsale 0.0880 *** 0.0918 *** 0.0962 *** 0.1050 ***
(0.0096) (0.0087) (0.0145) (0.0313)

lncash −0.3173 *** −0.2849 *** −0.2481 *** −0.1733
(0.0446) (0.0408) (0.0675) (0.1456)

HHI −0.1332 ** −0.1383 *** −0.1442 * −0.1561
(0.0575) (0.0525) (0.0870) (0.1875)

TFP −0.0099 −0.0099 −0.0099 −0.0099
(0.0111) (0.0101) (0.0168) (0.0362)

i.company
√ √ √ √

i.year
√ √ √ √

Obs 12,162 12,162 12,162 12,162
*** p < 0.01, ** p < 0.05, * p < 0.1.

6.4. Educational Background of Executives

Entrepreneurs are the driving force behind corporate innovation, and the decision-
making ability of entrepreneurs is directly related to the sustainable development of
enterprises. Therefore, the educational background of entrepreneurs may affect the speed
and quality of digital transformation of different enterprises. Because education at the
undergraduate level and below is general education, it does not require much thinking
about students’ R&D abilities. Education at the graduate level and above mainly cultivates
students’ research thinking. Therefore, we speculate that different educational backgrounds
will have different impacts on the digital development and low-carbon development of
enterprises. We test the grouping based on the education of corporate chairmen and general
managers. We define enterprises whose chairman and general manager’s degrees are both
master’s degrees or higher as the high education group, and enterprises whose chairman
and general manager’s degrees have at least one educational background of bachelor’s
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degree or lower as the low education group. The results of the subgroup estimation
are shown in Table 8. Columns (1) and (2) show that there is variability in the effect of
digitalization on carbon emission intensity in terms of the educational background of
business leaders. Column (1) indicates that with higher education, companies may have
a greater awareness of R&D, which helps to strengthen the inhibitory effect of digital
transformation on carbon emission intensity. Therefore, in the digital transformation of
enterprises, one must pay attention to the introduction of talents with high educational
backgrounds. In addition, local governments have attached importance to education,
increasing the admission rate of graduate students, increasing support for the training of
digital professionals, and providing intellectual support for the development of enterprises.

Table 8. Executive education background and R&D quality.

Variables (1) (2) (3) (4)

Educational Background R&D Quality

Master’s Degree or Above Bachelor’s Degree or Below Low Quality High Quality

lndigital −3.5826 ** −1.6485 2.0943 * −1.2839 ***
(1.5505) (1.3654) (0.6498) (0.3714)

lnage 0.0471 −0.1504 0.1559 −0.0260
(0.1034) (0.1694) (0.4665) (0.0754)

lnsize 0.3347 * 0.2068 −0.3623 *** 0.1090 **
(0.1760) (0.2357) (0.0918) (0.0500)

lnsale 0.1008 *** 0.0627 ** 0.0851 ** 0.0851 ***
(0.0142) (0.0247) (0.0376) (0.0126)

lncash −0.1987 *** −0.4016 *** 0.2360 −0.3687 ***
(0.0656) (0.1133) (0.1606) (0.0485)

HHI −0.1224 ** −0.3047
(0.0618) (0.2664)

TFP −0.0201 ** −0.0058 −0.0096 −0.0192 *
(0.0098) (0.0187) (0.0167) (0.0100)

Constant 2.6375 1.1563 −3.7362 *** 0.2666
(1.7963) (1.1115) (1.1255) (0.4380)

i.company
√ √ √ √

i.year
√ √ √ √

Obs 9234 2928 1423 10,739
R-squared 0.0280 0.0737 0.0255 0.0486

*** p < 0.01, ** p < 0.05, * p < 0.1.

6.5. R&D Quality

There are significant differences in knowledge resource endowments within different
enterprises, which may lead to variability in enterprises’ accumulation of low-carbon R&D
and green innovation, resulting in differences in low-carbon development. We adopt the
number of patent applications as a proxy variable for enterprise knowledge resources.
Patent invention applications include invention patents, utility, and appearance patents.
The quality of invention patents is higher than that of utility and appearance patents.
Therefore, we divided the sample into a high R&D quality group and a low R&D quality
group according to the level of patent quality. The estimation results of the subgroups
are shown in columns (3) and (4) in Table 8. Column (3) indicates that in the low R&D
group, digital transformation is instead detrimental to the carbon emission reduction of
enterprises. It may be because the enterprises’ low-quality innovation did not implement
carbon emission reduction measures to cope with the policy pressure. The estimation
result of column (4) indicates that encouraging enterprises to improve the quality of patent
inventions can help strengthen the inhibitory effect of digital transformation on carbon
emission intensity and promote low-carbon development. To establish a more reasonable
and strict patent application system and mechanism to provide a basis for improving patent
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quality, the government has vigorously encouraged enterprises to innovate and rewarded
high-level R&D enterprises, forming a sound incentive mechanism for R&D subsidies.

7. Mechanism Test
7.1. Mediation Model Setting

To further explore how digitalization affects the carbon emission intensity of enter-
prises, we conducted a mechanism test. According to the previous analysis, digitalization
development will suppress the carbon emission intensity of enterprises by alleviating
information asymmetry and financing constraints, improving energy use efficiency and the
green technology innovation level. We tested this by constructing a mediating mechanism
model [93]. The mediating effect model is shown in Equations (8)–(10).

Mechanismit = β0 + β1digitalit + βcXit + i.companyi + i.yeart + εit (8)

ECOEMISQit = γ0 + γ1Mechanismit + γcXit + i.companyi + i.yeart + εit (9)

ECOEMISQit = α0 + α1digitalit + α2Mechanismit + αcXit
+i.companyi + i.yeart + εit

(10)

Model (8) Mechanism denotes mechanism variables, including information asymmetry,
energy utilization, green technology innovation, and financing constraints. ECOEMISQ
in model (9) denotes the carbon emission intensity of enterprises. Model (10) is based
on model (1) by adding mechanism variables, and the parameters are consistent with the
interpretation of model (1).

7.2. Intermediate Effect Test
7.2.1. Information Asymmetry

The digital information dissemination method based on the Internet realizes the instan-
taneous dissemination of information over long distances, which significantly improves
the accessibility of information between regions, industries, and enterprises, and allevi-
ates the risk of incomplete information for enterprises. Therefore, improving the digital
level of enterprise enhancement helps to alleviate the risk of information asymmetry and
strengthen the exchange and cooperation of energy-saving and emission-reduction tech-
nologies among enterprises. Thus, information asymmetry may play a mediating role. We
drew on established studies to substantiate this [94]. The ratio of the absolute value of
manipulative accruals to total assets of listed companies is used to characterize information
asymmetry. The estimated result shows that digitalization has a significant inhibitory effect
on information asymmetry in column (1). Column (2) shows that the effect of information
asymmetry on carbon emission intensity is significantly positive, indicating a significant
positive relationship between them. Column (3) is also added to the model for regression,
and it is found that the digital transformation of enterprises is significantly negative. It
indicates that the digitalization of enterprises can reduce the carbon intensity of enterprises
by reducing information asymmetry. Information asymmetry plays the role of a mediating
mechanism, and Hypothesis H1 is verified.

7.2.2. Energy Utilization

We used the energy consumption rate as a reverse proxy for energy utilization. For
the energy consumption rate, we used the ratio of total enterprise coal consumption and
fuel consumption to enterprise GDP as a proxy for the energy consumption rate (energy).
A larger value indicates a lower energy utilization rate, and conversely, a smaller value
indicates a higher energy utilization rate. The estimated results in column (4) of Table 9
show that the digital transformation of enterprises can significantly suppress the energy
consumption rate of enterprises. Column (5) shows that there is a significant positive
relationship between energy consumption rate and carbon emission intensity. Column (6)
estimates show that digital transformation remains significantly negative and that the
energy consumption rate is significantly and positively correlated with the carbon emission
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intensity of enterprises. In summary, it can be shown that energy utilization plays a
mediating role in the digital transformation of enterprises to reduce the carbon emission
intensity of enterprises, and Hypothesis H2 is verified.

Table 9. Information asymmetry and energy efficiency.

Variables (1) (2) (3) (4) (5) (6)

lnasymme ECOEMISQ ECOEMISQ lnenergy ECOEMISQ ECOEMISQ

lndigital −0.1589 * −0.9012 *** −0.4204 *** −0.8609 **
(0.0872) (0.3116) (0.0253) (0.3563)

lnasymme 0.2345 *** 0.2328 ***
(0.0338) (0.0338)

lnenergy 0.2334 *** 0.1839 *
(0.0855) (0.0947)

lnage −0.0439 *** −0.0270 −0.0267 0.0235 *** −0.0428 −0.0413
(0.0127) (0.0453) (0.0453) (0.0037) (0.0762) (0.0760)

lnsize 0.0133 −0.0721 *** 0.0530 0.0530 *** −0.0729 *** 0.0463
(0.0124) (0.0094) (0.0442) (0.0036) (0.0116) (0.0479)

lnsale 0.0046 * 0.0828 *** 0.0811 *** −0.0095 *** 0.0860 *** 0.0840 ***
(0.0024) (0.0087) (0.0087) (0.0007) (0.0125) (0.0124)

lncash 0.0502 *** −0.3006 *** −0.3032 *** −0.0029 −0.2883 *** −0.2910 ***
(0.0082) (0.0294) (0.0294) (0.0024) (0.0494) (0.0494)

HHI −0.0829 *** −0.1300 −0.1289 −0.0060 −0.1480 * −0.1471 *
(0.0227) (0.0812) (0.0812) (0.0066) (0.0810) (0.0804)

TFP 0.0008 −0.0202 ** −0.0207 ** −0.0007 −0.0199 ** −0.0204 **
(0.0026) (0.0091) (0.0091) (0.0007) (0.0090) (0.0090)

Constant 0.3933 *** −0.9444 *** −0.0411 0.6183 *** −0.9356 *** −0.0633
(0.1007) (0.1791) (0.3600) (0.0292) (0.2645) (0.4367)

i.company
√ √ √ √ √ √

i.year
√ √ √ √ √ √

Obs 12,162 12,162 12,162 12,162 12,162 12,162
R-squared 0.0113 0.0418 0.0425 0.0731 0.0380 0.0387

*** p < 0.01, ** p < 0.05, * p < 0.1.

7.2.3. Green Technology Innovation

We used the number of green patents as a proxy variable (lngreenpatent) for green techno-
logical innovation. The results of the mechanism test are shown in Table 10. Columns (1) to (3)
report the estimation results of the mediating effect of green technology innovation. The
estimation results in column (1) show that there is a significant contribution of enterprise
digitalization to enterprise green patents. Column (2) shows that the effect of green tech-
nology innovation on corporate carbon emission intensity is significantly negative. The
estimation results in column (3) indicate that digital transformation can reduce corporate
carbon emission intensity by promoting corporate green technology innovation. There-
fore, green technology innovation is an important path to reduce carbon, and the existing
literature has drawn similar conclusions [95]. Hypothesis H3 is verified.

7.2.4. Financing Constraints

Digital technology development has also brought a new paradigm of ICT in the finan-
cial industry to promote financial innovation—digital finance. On the one hand, digital
finance development broadens financing channels and lowers financing thresholds to ease
corporate financing constraints. On the other hand, digital economy development helps to
alleviate the risk of information asymmetry of enterprises, mitigate the risk of asymmetry
between enterprises and external stakeholders, and improve financing efficiency. When the
enterprise financing constraint is reduced, it is conducive for enterprises to spend more
resources on emission reduction technology and industrial structure upgrading [84]. The
estimation results are shown in Table 10. Column (4) shows that the effect of enterprise
digitalization on financing constraints is significantly negative at the 1% statistical level. It
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indicates that digitalization is negatively related to financing constraints and increasing the
digitalization level of enterprises helps to reduce their financing constraints. Column (5)
shows that the financing constraint index has a significant positive influence on the car-
bon emission intensity of enterprises. The estimation results in column (6) show that
financing constraints play an important role in the operation of intermediary mechanisms.
Hypothesis H4 is verified.

Table 10. Green technology innovation.

Variables (1) (2) (3) (4) (5) (6)

lngpatent ECOEMISQ ECOEMISQ lnSA ECOEMISQ ECOEMISQ

lndigital 0.7386 *** −0.0722 * −0.5373 ** −0.3466 *
(0.2696) (0.2998) (0.2243) (0.2941)

lngpatent −1.3677 *** −1.3681 ***
(0.1151) (0.1157)

lnSA 1.1031 *** 1.1009 ***
(0.0342) (0.0346)

lnage 0.1361 *** 0.1492 ** 0.1493 ** −0.1403 *** 0.1176 * 0.1175 *
(0.0311) (0.0737) (0.0737) (0.0231) (0.0697) (0.0696)

lnsize −0.0306 0.0242 * 0.0142 0.0252 −0.0197 ** 0.0283
(0.0364) (0.0128) (0.0366) (0.0300) (0.0094) (0.0389)

lnsale −0.0742 *** −0.0194 −0.0193 0.0387 *** 0.0402 *** 0.0396 ***
(0.0078) (0.0137) (0.0135) (0.0058) (0.0102) (0.0099)

lncash 0.2136 *** 0.0004 0.0007 −0.1451 *** −0.1304 *** −0.1318 ***
(0.0289) (0.0355) (0.0359) (0.0205) (0.0388) (0.0390)

HHI 0.1334 * 0.0344 0.0344 −0.0831 −0.0570 −0.0567
(0.0747) (0.0280) (0.0279) (0.0747) (0.0564) (0.0565)

TFP 0.0113 *** −0.0051 −0.0050 −0.0086 *** −0.0108 −0.0110
(0.0036) (0.0073) (0.0073) (0.0029) (0.0086) (0.0086)

Constant −0.2001 −0.1512 −0.2233 1.1198 *** −1.5309 *** −1.1824 ***
(0.3224) (0.1801) (0.2943) (0.2619) (0.2162) (0.3212)

i.company
√ √ √ √ √ √

i.year
√ √ √ √ √ √

Obs 12,162 12,162 12,162 12,162 12,162 12,162
R-squared 0.1827 0.2699 0.2699 0.1476 0.1278 0.1279

*** p < 0.01, ** p < 0.05, * p < 0.1.

7.3. Further Analysis
7.3.1. Moderating Model

According to the theoretical analysis, regional digital information resources serve as
the foundation of enterprise digital transformation and provide digital resource support for
digital transformation. To test, whether digital information resource regulation positively
moderates the effect of enterprise digital transformation on carbon emission intensity, we
constructed the moderation effect model, as shown in Equation (11).

ECOEMISQit = α0 + α1digitalit + α2digitalit × accessit + α3accessit + αcXit
+companyi + yeart + εit

(11)

Model (11) access represents the moderating variable of digital information resources.
Model (11) is based on model (1) with the addition of digital information resources and
digital interaction terms. We focused on the interaction term coefficient α3 sign positive or
negative and significance. Significantly positive indicates that digital information resources
play a positive moderating role, and vice versa for the negative moderating role.

7.3.2. Digital Information Resource Measure

Digital information resources: we used the index of information accessibility to repre-
sent digital information resources. Information accessibility generally refers to the degree
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of information interaction or connectivity between individuals or regions [96]. According to
theoretical analysis, the improvement of enterprise digitalization can help reduce enterprise
information costs, improve enterprise specialization and cooperation levels, strengthen
information sharing and knowledge spillover, and thus improve carbon emission intensity.
Under the digital economy, information transmission features a digital encoding pathway.
The information accessibility level of a region is closely related to its information infrastruc-
ture supply capacity and information resources. Based on the practice of existing studies,
we constructed a comprehensive evaluation system of urban information accessibility from
three dimensions: Internet information resources, digital industrialization information, and
industrial digitalization information, as shown in Table 11. The entropy method is used
for the calculation, and to avoid heteroscedasticity, we took the natural logarithm of the
composite index (lnaccess). Finally, the city-enterprise matching is conducted according to
the enterprise registration location.

Table 11. Comprehensive index system of information accessibility.

Level 1 Indicators Level 2 Indicators

Internet information resources

Number of domain names with ten thousand people
(person/ten thousand) +

Number of mobile Internet users (10,000) +

Internet access ports (10,000) +

Internet penetration rate +

Mobile phone penetration rate +

Digital industrialization information

Sales revenue of software technology (ten thousand) +

E-commerce sales (10,000) +

E-commerce purchase amount (10,000) +

Number of e-commerce enterprises (10,000) +

Industrial digitalization information

Digital-inclusive Financial Development Index +

Number of 5G patents authorized +

Number of industrial Internet patents authorized +

Number of e-commerce patents authorized +

Note: the plus sign "+" in the table represents a positive impact on the composite index.

7.3.3. Moderating Effect Test

Table 12 reports the results of the estimation of the moderating effect. The coefficient
of the interaction term in column (1) is negative and significant at the 1% statistical level,
indicating that the inhibitory effect of digitalization on the carbon emission intensity of
enterprises strengthens with the increase of digital information resources. Therefore, ur-
ban government department should provide digital information resources support for
enterprises to accelerate digital transformation to reduce carbon emissions. Hypothesis
H5 is verified, and digital information resources positively moderate the inhibitory ef-
fect of digital transition on carbon emission intensity. To show the moderating effect of
digital information resources more visually, we created a map of the moderating effect
(Figure 2). The moderating effect plot shows that the slope is steeper when the level of digi-
tal information resources increases. This indicates that the suppressive effect of enterprise
digitalization on carbon emission intensity is strengthened.
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Table 12. Moderating effect of digital information resources.

Variables (1) (2) (3) (4) (5)

ECOEMISQ lnasymme lnenergy lngpatent lnSA

lndigital −0.6624 * −0.1235 −0.4479 0.6038 ** −0.3225
(0.3957) (0.1960) (0.3677) (0.2897) (0.2346)

lndigital_lnaccess −0.2941 ** −0.0405 * −0.0259 0.1479 ** −0.2246 ***
(0.1446) (0.0627) (0.0321) (0.0906) (0.0721)

lnaccess 0.5245 * 0.0605 −0.0611 −0.2462 0.4198 ***
(0.3093) (0.1315) (0.0713) (0.1912) (0.1518)

lnage −0.0209 −0.0411 * 0.0229 ** 0.1272 *** −0.1290 ***
(0.0785) (0.0232) (0.0097) (0.0314) (0.0234)

lnsize 0.0468 0.0125 0.0543 −0.0265 0.0174
(0.0490) (0.0255) (0.0464) (0.0368) (0.0300)

lnsale 0.0813 *** 0.0044 −0.0094 −0.0738 *** 0.0380 ***
(0.0123) (0.0050) (0.0059) (0.0078) (0.0057)

lncash −0.2842 *** 0.0514 *** −0.0033 0.2095 *** −0.1399 ***
(0.0489) (0.0159) (0.0035) (0.0288) (0.0205)

HHI −0.1475 * −0.0828 ** −0.0060 0.1331 * −0.0826
(0.0804) (0.0386) (0.0066) (0.0748) (0.0737)

TFP −0.0211 ** 0.0007 −0.0006 0.0116 *** −0.0092 ***
(0.0093) (0.0028) (0.0004) (0.0036) (0.0029)

Constant −0.3972 0.3425 0.6716 0.0086 0.7601 ***
(0.5229) (0.2388) (0.4919) (0.3725) (0.2938)

i.company
√ √ √ √ √

i.year
√ √ √ √ √

Obs 12,162 12,162 12,162 12,162 12,162
R-squared 0.0394 0.0119 0.0742 0.1851 0.1524

*** p < 0.01, ** p < 0.05, * p < 0.1.
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Figure 2. Reconciliation of digital information resources.

Although existing studies analyzed the impact path of the micro-digitalization transi-
tion on carbon emissions from a micro perspective, they did not consider the regulatory
role of macro-digital information resources [5,92]. This is because the digital information re-
sources of the city where the enterprise is located will affect the efficiency of the enterprise’s
digital application. For example, enterprises have carried out digital transformation, but the
failure of broadband information facilities will reduce the efficiency of digital equipment
operation. Therefore, it is necessary to explore the extent to which the influence path is
affected by digital information resources. To further explore the path of moderating effects,
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we analyzed whether digital information resources have a moderating effect on the mediat-
ing variables. We replaced the explanatory variables in the moderating effect model with
the mediating variables for testing. The estimated results are shown in columns (2) to (5)
in Table 12. Because the coefficients of the interaction term in column (2) are consistent
and significant, it can be seen that digital information resources can enhance the mitigating
effect of digitalization of enterprises on enterprise information asymmetry. The coefficient
of the interaction term in column (3) is negative but insignificant. The coefficient of the
interaction term in column (4) shows that digital information resources can strengthen the
promoting effect of digital transformation of enterprises on green technological innova-
tion. The coefficient of the interaction term in column (5) shows that digital information
resources strengthen the mitigating effect of digital transformation on corporate financing
constraints. In summary, the moderating effect of digital information resources is mainly
realized through three channels: financing constraint > green technology innovation > and
information asymmetry. The moderating effect of digital information resources on energy
use efficiency is not obvious, which is different from the existing research conclusions [97].
Therefore, the improvement of digital information resources can help strengthen the carbon
reduction effect of digital transformation.

8. Conclusions and Implication
8.1. Conclusions

The text mining and IPCC method were used to measure the manufacturing enter-
prise digitalization and the level of enterprise carbon emission intensity from 2011 to
2021, respectively. This paper explores the influence and mechanism of digitalization on
carbon intensity. We verify the reliability of the conclusion by using a series of methods
such as the instrumental variable method and the GGM method. In addition, based on
information theory, we comprehensively discuss the mechanism of digitalization—carbon
reduction from four dimensions of information asymmetry, financing constraints, energy
efficiency, and financing constraints—and explore the regulatory role of digital information
resources in each influence path according to the characteristics of the digital economy.
Finally, we further analyze the applicability conditions of digitalization-related carbon
reduction. The conclusions are as follows: (1) digitalization can reduce enterprise carbon
emission intensity significantly, and the influence shows the characteristic of a “marginal
increase”. (2) The mechanism analysis shows that green technology innovation, financing
constraints, energy efficiency, and information asymmetry play the role of intermediary
mechanism. Interestingly, digital information resources positively moderate the positive
effect of digitalization on carbon emission intensity through three paths: financing con-
straint, green technology innovation, information asymmetry; and (3) The influence has
evident heterogeneity—as environmental regulation, financial development, executive
education and R&D quality advance, the inhibitory effect of digitalization on enterprise
carbon emission intensity increases.

8.2. Policy Implications

(1) Government departments increase the improvement of digital economy infrastruc-
ture. In particular, we will accelerate the integration of artificial intelligence, 5G, and the
Internet of Things into the real economy. Enriching the city’s digital information resources
and actively developing systems and methods to support the digital transformation of
enterprises will help release digital technology dividends and realize low-carbon and
high-quality development of manufacturing enterprises.

(2) Local governments actively respond to the national call to develop environmental
regulation policies, vigorously develop the capital market, improve financial development,
and provide richer channels for enterprise financing by raising R&D subsidy requirements
to encourage enterprises to innovate with high quality. Always adhere to the strategy of
developing the country through science and education, increase investment in education,
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expand postgraduate enrollment and provide intellectual support for the development
of enterprises.

(3) The government should formulate incentive policies for enterprises’ digital trans-
formation. The government reduces business operating costs through tax cuts and fee
reductions, increases digital support for small and medium-sized enterprises and private
enterprises, and ensures that enterprises have sufficient resources for digital transforma-
tion. Deepen the reform of the fiscal and taxation mechanism, gradually eliminate market
segmentation, and provide institutional support for the flow of factors and information
between regions and industries. Develop policies for the introduction of technical talents
to improve the R&D capability of enterprises. Accelerate the digitalization reform of tradi-
tional finance and establish a multi-level capital market. The government should actively
streamline financing procedures, and lower financing costs and financing thresholds to
provide financial support for enterprises’ green R&D.

This paper is still inadequate: (1) Although this paper uses crawler technology to
construct the digitalization index of enterprises by capturing the keywords of the digital
economy in the annual reports of listed companies, which is scientific and reasonable.
However, the annual report data are forward-looking and summarized, which may lead to
bias in the estimation results.

The potential areas for further research: on the one hand, we need to consider whether
the relationship between digitalization and carbon emissions is necessarily linear. Is there
a nonlinear or threshold effect? This requires us to collect more complete data. On the
other hand, whether the mechanism between digitalization and carbon emission has a
superposition effect or extrusion effect is worthy of further analysis.
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