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Abstract: Diffusion tensor imaging (DTI) allows the in vivo imaging of pathological white matter
alterations, either with unbiased voxel-wise or hypothesis-guided tract-based analysis. Alterations of
diffusion metrics are indicative of the cerebral status of patients with amyotrophic lateral sclerosis
(ALS) at the individual level. Using machine learning (ML) models to analyze complex and high-
dimensional neuroimaging data sets, new opportunities for DTI-based biomarkers in ALS arise.
This review aims to summarize how different ML models based on DTI parameters can be used
for supervised diagnostic classifications and to provide individualized patient stratification with
unsupervised approaches in ALS. To capture the whole spectrum of neuropathological signatures,
DTI might be combined with additional modalities, such as structural T1w 3-D MRI in ML models.
To further improve the power of ML in ALS and enable the application of deep learning models,
standardized DTI protocols and multi-center collaborations are needed to validate multimodal DTI
biomarkers. The application of ML models to multiparametric MRI/multimodal DTI-based data
sets will enable a detailed assessment of neuropathological signatures in patients with ALS and the
development of novel neuroimaging biomarkers that could be used in the clinical workup.

Keywords: amyotrophic lateral sclerosis; diffusion tensor imaging; motor neuron disease; magnetic
resonance imaging; artificial intelligence; machine learning

1. Introduction

Neuroimaging is a standard tool in the clinical workup of neurodegenerative dis-
eases. Parameterization of imaging data enables the development of objective and reliable
biomarkers. A computational analysis of neuroimaging parameters has the potential to
provide insights into complex disease mechanisms and might close important gaps in
research [1]. As amyotrophic lateral sclerosis (ALS) is characterized by degeneration of
the upper and lower motor neurons of the cerebral cortex, brainstem, and spinal cord [2],
neuroimaging is a promising tool to assess neuropathology in vivo. The neuropathology of
ALS is associated with a regional, four-stage distribution pattern of phosphorylated TDP-43
aggregates, as confirmed in postmortem studies [3,4]. Given that it is well-established that
ALS is regarded as a multisystem disorder with extra-motor involvement [5], patients with
ALS exhibit significant clinical heterogeneity, particularly in terms of site of onset, rate of
progression, and cognitive impairment [6], which makes it difficult to effectively stratify
patients for clinical trials in the development of novel therapies. Phenotypic heterogeneity
hampers stratifying patients in early disease stages for clinical trials [7].

Magnetic resonance imaging (MRI) is part of the diagnostic procedures of ALS to
exclude structural lesions and other etiologies of the clinical presentation. Objective and
reliable in vivo neuroimaging biomarkers for early and accurate individualized prognosis
and assessment of the cerebral status in ALS are still missing. Diffusion-weighted MRI
(DWI) and diffusion tensor imaging (DTI) play a key role in this regard, as this MRI
modality can reveal alterations in white matter (WM) by measuring the differences in
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constraints on the water diffusion in the brain [8]. The widely used scalar fractional
anisotropy (FA) quantifies the degree of water diffusion anisotropy within voxels [9]. FA
values range between 0 (highly isotropic diffusion) and 1 (highly anisotropic diffusion).
Other metrics used to describe the constraints of water diffusion are the mean diffusivity
(MD), i.e., the magnitude of the mobility of water molecules independent of directionality,
the axial diffusivity (AD), i.e., the magnitude of diffusion parallel to axonal fiber tracts, and
radial diffusivity (RD), i.e., diffusion in the direction perpendicular to the axonal fibers [9].
While FA is a summary measure of microstructural integrity and, thus, highly sensitive to
microstructural changes, it is less specific to the type of change. MD is an inverse measure
of the membrane density, AD tends to be variable in WM changes and axonal injury, and
RD increases in WM with dysmyelination. Changes in the axonal diameters or density may
also influence RD [10]. At the group level, WM alterations in neurodegenerative diseases
can be assessed by unbiased whole-brain-based voxel-wise comparison of DTI metrics
(e.g., [11]) or, after fiber tract reconstruction, by hypothesis-guided tract-wise analysis of
DTI metrics (e.g., [11]).

In ALS, extensive regional alterations in diffusion metrics in the brain have been
demonstrated [12,13]. Consistent findings are reductions in the FA along the corticospinal
tract (CST) [14,15] and in the corpus callosum (CC) [16]. Longitudinally, the decrease in
FA in the CST is associated with the disease severity [17]; recently, a prospective multicen-
ter study demonstrated the feasibility of this regional diffusion metric as a progression
marker [11].

The in vivo analysis of specific WM neuronal tracts allows for the neuropathological
staging pattern to be translated to a DTI staging scheme for patients with ALS via a
hypothesis-driven tract-of-interest-based approach [11]. During the progression of ALS,
microstructural alterations indicated by decreased FA values occurring sequentially in
the following tracts: the CST is affected first (stage 1), followed by the corticorubral
and corticopontine tracts in stage 2 and the corticostriatal pathway in stage 3, while the
involvement of the proximal part of the perforant pathway marks stage 4. The longitudinal
applicability of this individualized staging system was confirmed [11].

In the evaluation of new therapeutic approaches in ALS, the current focus is on survival
and loss of functionality as endpoints in clinical trials [18]. For example, fluid markers,
such as neurofilaments (NF) [19], have proven successful in their use as biomarkers; here,
DTI-based neuroimaging could be a valuable addition given that, ideally, a longitudinal
biomarker should represent the (regional) progression of neuropathology. However, clinical
scores are not fully able to capture cerebral alterations. In addition, functionality might
temporarily not deteriorate under the influence of a drug without a change in the actual
disease progression. Objective and reliable neuroimaging biomarkers that are sensitive to
the progression of neuropathology in vivo might rectify this situation and potentially serve
as endpoints in clinical trials.

This review summarizes the advantages and the potential of machine learning (ML)-
based DTI methods for patient diagnosis and monitoring, and the future design of clinical
DTI applications to ALS is conceptualized. As univariate neuroimaging methods have
been successful at the group level but are of restricted usefulness at the individual level in
providing definitive clinically useful biomarkers, ML approaches could also be employed
for improving individual differential diagnosis.

2. Diagnostic Models

The clinical relevance of FA alterations along the CST is limited in the light of a meta-
analysis of 30 studies which showed a pooled sensitivity of 65% for differentiating between
patients with ALS and healthy persons [20]. Sensitivity varied little between studies,
although regional FA quantification differed between region of interest (ROI)-based and
tractography approaches and different field strengths. However, other regional ALS-
associated FA alterations do not outperform the discrimination power of the CST [16,20,21].
Multivariate analysis approaches are promising to overcome the limitations of individually
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used DTI parameters for diagnostic predictions. Traditional statistical multivariate methods,
such as z-score approaches, allow quantitative interpretation at the level of the individual
subject in ALS [22], but capturing and accounting for the complex interactions between
individual parameters remains difficult in these attempts. By analyzing high-dimensional
data sets using ML models, novel opportunities are emerging for developing multivariate
DTI biomarkers in ALS. As a branch of artificial intelligence (AI), ML algorithms and
models automatically extract information from data to identify undiscovered patterns
and relationships between different features and provide individualized predictions in
healthcare settings [23]. Supervised ML is suitable for a wide range of binary classifications,
such as predicting group membership in ‘patient vs. healthy controls’ scenarios, based
on biomedical features in ALS research [24]. In clinical neuroimaging with sometimes
limited sample sizes, standard supervised models, such as support vector machines (SVMs)
and random forests (RFs), have been used in diagnostic settings and demonstrated their
usefulness by retrieving robust results [1,25]. SVMs provide a robust classification algorithm
by transforming data into a high-dimensional feature space, where a margin is maximized
to separate classes [26]. Due to the transformation of the data, the underlying decision-
making logic of the SVM cannot be interpreted directly. Decision trees provide better
interpretability by classifying based on numerous binary decisions obtained from the
data. An RF combines the results of an ensemble of decision trees, which increases the
accuracy [27]. Overfitting (or underfitting) of ML algorithms is likely to occur with a limited
number of samples per feature, i.e., parameter, in the model processing [24]. A minimum
sample-to-feature ratio (SFR) of 10–15 is proposed as necessary based on historical statistical
models, but modern algorithms may provide good fitting results with a lower SFR [28].
The implementation of standard ML models on DTI data is illustrated in Figure 1.
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Figure 1. Schematic setup of a diffusion tensor imaging (DTI)-based supervised machine learning
application in amyotrophic lateral sclerosis (ALS). Relevant features for classification are extracted
from labeled data sets of patients and controls; for example, using tract-based analysis approaches.
Standard machine learning models are trained on the labeled data and can subsequently also make
diagnostic predictions for new data sets. An extension of the DTI features by parameter structural
MRI is feasible.

In addition to the prediction outcomes, most ML models also determine the importance
of the features used, which enables data-driven feature selection. For such an unbiased
approach to diagnostic classification in ALS, an SVM was used with all voxels of the FA
maps as features (at a sample size of about 20 per group) [29]. Although an accuracy of
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83% could be achieved after reducing the features to the 2400~3400 most discriminating
ones in a second step, this result should be considered with caution due to the very low
SFR and without validation on an independent test sample. Since ALS is a relatively rare
disease, the sample size in (monocentric) clinical trials is often limited. Therefore, it might
be useful to determine features a priori based on previous results in ALS from group studies
and/or neuropathological considerations to address the SFR with the typically limited
sample sizes [13]. The CST, therefore, is brought into focus as a predominant finding in
group comparisons. Thus, RFs on all four diffusion metrics (FA, MD, RD, and AD) of the
voxels assigned to the CST enabled inferences on the overall profile of the CST, leading to
a diagnostic accuracy of 80% [30]. An addition of diffusion parameters of motor callosal
tracts to CST diffusion metrics achieved a similar accuracy of 78% in predicting patients
with SVM, based on the training data set [31]. An overview is presented in Table 1.

Table 1. Diffusion tensor imaging (DTI)-based machine learning models in amyotrophic lateral
sclerosis (ALS). AD—axial diffusivity, CC—corpus callosum, CST—corticospinal tract, FA—fractional
anisotropy, FAS—flail arm syndrome, HC—healthy controls, LMND—lower motor neuron disease,
MD—mean diffusivity, PBP—progressive bulbar palsy, PLS—primary lateral sclerosis, PUMN—pure
upper motor neuron, RD—radial diffusivity, RF—random forest, SVM—support vector machine.

Study Algorithm Task Features Sample Size Model Validation Accuracy

Chen et al. [29] SVM Diagnostic
prediction

FA values of all white
matter voxels

22 patients with ALS;
26 HC

Leave-one-out
cross-validation 83%

Ferraro et al. [31] SVM Diagnostic
prediction

FA, MD, AD, and RD of
CST and motor callosal

tracts

123 patients with ALS;
44 patients with PUMN;

20 ALS-mimics;
78 HC

Independent test
sample 78%

Kocar et al. [32] SVM Diagnostic
prediction

FA of CST, corticopontine
tract, corticorubral tract,
corticostriatal pathway,

proximal perforant path,
CC area II, and CC area III

98 patients with ALS;
98 HC

Leave-one-out
cross-validation 66%

Münch et al. [33] SVM Diagnostic
prediction FA of CC area I–III

432 patients with ALS;
55 patients with PLS;
45 patients with FAS;
22 patients with PBP;

21 patients with LMND;
112 HC

Independent test
sample 65%

Li et al. [34] SVM Prediction of
progression

White matter network
matrices 73 patients with ALS Nested

cross-validation 85%

Sarica et al. [30] RF Diagnostic
prediction

FA, MD, AD, and RD of
CST voxels

24 patients with ALS;
24 HC

5-fold
cross-validation 80%

Fratello et al. [35]
Multi-view

models with
RF

Diagnostic
prediction whole-brain FA maps

41 patients with ALS;
37 patients with

Parkinson’s disease;
43 HC

n/a 58%

Gabel et al. [36] Event-based
modeling

Ordering of events,
i.e., regional
involvement

FA of CST (infe-
rior/middle/superior), CC

(genu/body/splenium),
cingulum (dorsal section),

superior longitudinal
fasciculus, inferior

longitudinal fasciculus,
inferior fronto-occipital
fasciculus, and uncinate

fasciculus

154 patients with ALS;
128 HC Cross-validation n/a

Behler et al. [37]
Multivariate

Bayesian
classification

Cerebral stage
prediction

FA of CST, corticopontine
tract, corticorubral tract,
corticostriatal pathway,
and proximal perforant

path

325 patients with ALS;
130 HC

Comparison to
threshold-based

DTI staging
n/a

Bede et al. [38] Multilayer
perceptron

Diagnostic
prediction

FA, MD, AD, and RD of 30
white matter regions

214 patients with ALS;
37 patients with a non-ALS

neurodegenerative
diagnosis;

127 HC

Independent test
sample 79%

In addition to diagnostic classifications, there are a few other ML applications on DTI
data (see Figure 2).
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Figure 2. Pie plot displaying the percentage of studies using diffusion tensor imaging (DTI)-based
feature sets or combinations of DTI with other modalities in machine learning and deep learning
models for different research tasks in amyotrophic lateral sclerosis.

It could be shown by ML model applications to DWI that the WM network can be used
as a biomarker to predict the progression rate in ALS patients at the single-subject level [34].
Additional computational algorithms may enable the modeling of sequential processes
from cross-sectional data without prior theoretical assumptions about the progression of
neuropathology. Thus, event-based modeling identified the CST and the CC as the WM
structures first impacted in ALS [36]. This is consistent with the inclusion of the CST as
the first stage in the DTI staging scheme [11] and its use in diagnostic ML models. By
extending the feature selection for diagnostic predictions with diffusion metrics of the
tracts associated with the neuropathological stages 2–4, the accuracy of an SVM could be
slightly improved [32]. However, even extending the classification with features associated
with advanced disease stages could not overcome the fact that unimodal brain imaging
analyses cannot fully assess the complex neuropathology in patients with ALS [13,39].
Indications of restricted diagnostic accuracy of other MRI modalities are also evident in
SVM classifications based solely on structural MRI parameters [31,32] or on resting-state
functional MRI (fMRI) [40]. Based on multiparametric MRI assessments, feature sets
combined from diffusion metrics and structural parameters, such as cortical thickness or
texture properties, uniformly lead to an increase in the diagnostic accuracy of SVMs [31,32].
The superiority of such multiparametric MRI feature sets with WM and grey matter (GM)
parameters over uniparametric approaches was also evident when a canonical discriminant
function [41] or multilayer perceptrons [32,38], i.e., state-of-the-art artificial neural networks,
were used for diagnostic classifications. The combination of DTI data with (resting state)
fMRI is less studied. Nevertheless, the integration of patients’ FA maps together with their
default-mode networks in RF models demonstrated a higher discriminative power for the
classification of ALS than feature sets from the two individual MRI modalities [35]. An
overview is presented in Table 2.

The neuroimaging signatures of patients with ALS might be confounded by disease
duration or gender differences [47]. To address such sources of potential bias in classifica-
tion models, one study selected anatomical domains as features that showed statistically
significant differences in group comparisons between patients and healthy controls after ad-
justment for age, sex, and disease duration [42]. The multivariate binary logistic regression
classifier then achieved a diagnostic accuracy of only 78% in an independent validation
sample. Although feature selection based on statistical tests is apparently attractive, it has
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already been highlighted that high statistical significance does not automatically imply
high discriminatory power in ML models [48].

Table 2. Multimodal diffusion tensor imaging (DTI)-based machine learning models in amyotrophic
lateral sclerosis. AD—axial diffusivity, CC—corpus callosum, CST—corticospinal tract, FA—fractional
anisotropy, FAS—flail arm syndrome, HC—healthy controls, LMND—lower motor neuron disease,
MD—mean diffusivity, PBP—progressive bulbar palsy, PLS—primary lateral sclerosis, PUMN—pure
upper motor neuron, RD—radial diffusivity, RF—random forest, SVM—support vector machine.

Study Algorithm Task Modalities Sample Size Model
Validation Accuracy

Ferraro et al.
[31] SVM Diagnostic prediction

DTI (tract-based diffusion
metrics) + T1w MRI
(cortical thickness)

123 patients with
ALS, 44 patients
with PUMN, 20
ALS mimics; 78

HC

Independent test
sample 91%

Kocar et al.
[32] SVM Diagnostic prediction

DTI (tract-based diffusion
metrics) + T1w MRI
(texture parameters)

98 patients with
ALS; 98 HC

Leave-one-out
cross-validation 80%

Münch et al.
[33] SVM Diagnostic prediction

DTI (tract-based diffusion
metrics) + T1w MRI
(texture parameters)

432 patients with
ALS, 55 patients

with PLS, 45
patients with FAS,
22 patients with
PBP, 21 patients

with LMND; 112
HC

Independent test
sample 84%

Bede et al.
[41]

Canonical
discriminant

function
Diagnostic prediction

DTI (ROI-based diffusion
metrics) + T1w MRI
(ROI-based signal

intensity + basal ganglia
volumetrics)

75 patients with
ALS; 75 HC

Independent test
sample 90%

Fratello et al.
[35]

Multi-view
models with RF Diagnostic prediction

DTI (whole-brain FA
maps) + fMRI
(whole-brain

default-mode networks)

41 patients with
ALS, 37 patients
with Parkinson’s

disease; 43 HC

5-fold
cross-validation 67%

Schuster et al.
[42]

Binary logistic
regression Diagnostic prediction

DTI (ROI-based diffusion
metrics) + T1w MRI

(regional grey matter
densities)

81 patients with
ALS; 66 HC

Independent test
sample 78%

Schuster et al.
[43]

Binary logistic
ridge regression Survival prediction

DTI (regional diffusion
metrics) + T1w MRI

(regional cortical
thickness)

60 patients with
ALS; 69 HC

Independent test
sample 58%

Kocar et al.
[32]

Multilayer
perceptron Diagnostic prediction

DTI (tract-based diffusion
metrics) + T1w MRI
(texture parameters)

98 patients with
ALS; 98 HC

Independent test
sample 72%

Bede et al.
[38]

Multilayer
perceptron

model
Diagnostic prediction

DTI (ROI-based diffusion
metrics) + T1w MRI
(cerebral volumes +
cortical thicknesses)

214 patients with
ALS, 37 patients
with a non-ALS
neurodegenera-
tive diagnosis;

127 HC

Independent test
sample 75%

Van der
Burgh et al.

[44]

Deep learning
networks Survival prediction

DTI (tract-based FA) +
T1w MRI (cortical

thicknesses + subcortical
volumes) + clinical

parameters

135 patients with
ALS

Independent test
sample 84%

Tan et al. [45]
Probabilistic

network-based
clustering

Divide patients into
subgroups of similar
neurodegeneration

patterns

DTI (white matter
connectome FA) + T1w

MRI (whole-brain cortical
thickness)

488 patients with
ALS; 338 HC

Longitudinal
subsample

90% in the
validation

sample

Behler et al.
[46]

Hierarchical
clustering

Divide patients into
subgroups of similar
neurodegeneration

patterns

DTI (tract-based FA) +
video-oculography +

cognitive scores

245 patients with
ALS No n/a
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Overall, the combination of DTI parameters with parameters from other MRI modali-
ties significantly increases diagnostic sensitivity. Nevertheless, a perfect identification of all
patients with ALS in a group mixed with healthy people seems to remain unachievable
solely on DTI metrics.

3. Phenotypic Differentiation

Although diagnostic approaches are most important in the use of ML in clinical
neuroimaging, the diagnosis of ALS is based on clinical criteria, such as the El Escorial
diagnostic criteria [49] and the Gold Coast Criteria [50,51], is well-established for ALS. Still,
there are diagnostic pitfalls (especially in patients with so-called mimic disorders [52])—the
discussion of the clinical criteria is beyond the scope of this review. In diagnostic classifica-
tion neuroimaging-based models, the issue of the differentiation of mimic disorders can be
addressed by having the model decide not between ‘diseased’ and ‘healthy’ but between
different patient categories. RF achieved an accuracy of 87% for ALS vs. clinical mimics
based on diffusion features [31]. The revision of the El Escorial diagnostic criteria from 2015
included restricted phenotypes, i.e., primary lateral sclerosis (PLS), flail arm syndrome
(FAS), progressive bulbar palsy (PBP), and progressive muscular atrophy (PMA)/lower
motor neuron disease (LMND) [53]. However, this concept of the restricted phenotypes
of ALS remains discussed [54,55]. With DTI, unbiased, quantitative statements about WM
alterations in phenotypes are possible to contribute to these discussions. Fast-progressing
LMND, PBP, PLS, and FAS show microstructural alterations whose patterns are identical to
‘classical’ ALS [56–58]. In a large-scale study with 575 patients with ALS including different
phenotypes, texture properties of all five areas of the CC and diffusion metrics of the associ-
ated tracts were investigated and, subsequently, the discriminating value of those CC MRI
metrics was evaluated by an SVM [59]. The model trained solely on patients with ‘classical’
ALS was also able to identify patients with different phenotypes with a sensitivity between
80% and 86% in independent test data sets. The results of this unbiased approach support
the classification of clinical phenotypes as ALS variants and highlight the discriminating
power of CC features which may contribute to further combined neuroimaging markers
with high biomarker potential. Clustering algorithms as unsupervised ML models are
appropriate to provide insights into similarities of neurodegeneration patterns between
patients without prior hypotheses. In particular, clustering models with multimodal feature
sets might be a valuable contribution to dissecting the heterogeneity of ALS. Thus, based
on multiparametric MRI features obtained from structural MRI and DTI, a probabilistic
network-based clustering algorithm reliably divided patients into three clusters with simi-
lar patterns of cerebral involvement [33]; these three clusters could be interpreted as patient
subgroups. Across clusters, patients showed distinct clinical features and cognitive profiles.
Therefore, each cluster might indicate a different neuroimaging phenotype of ALS which
can be described as a pure motor, a frontotemporal, and a cingulate-parietal-temporal
variant of ALS [45]. In the context of ALS phenotypes and variants, neuroimaging-based
ML models might potentially be an effective tool to stratify patients aside from ‘classical’
ALS for clinical trials.

For individualized patient stratification in ALS, models predicting disease progression
and survival are of specific interest. Similar to a diagnostic approach [42], a multivariate
binary logistic regression approach with a combination of GM and WM features could
be used to predict the survival of more or less than 18 months of patients with ALS [46].
This categorical model achieved an accuracy of 77% on the training data set. However,
underperformance on the validation data set suggests overfitting of the model. A deep
learning network reached an accuracy of 63% in the prediction of short-, medium-, and
long-term survival of patients with ALS based on WM connectivity in terms of FA [43].
Systematic validation studies of such prognostic models on larger multi-site data sets are
urgently needed.
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Combinations with Non-Imaging Parameters

Instead of multiparametric MRI analysis, DTI parameters can also be extended by
clinical measurements in the feature sets of classification tasks. In categorical survival
predictions, such combinations of imaging features with clinical parameters may lead to
improvement in the model accuracy compared to predictions solely based on diffusion
metrics [43,46]. A study investigating the biomarker value of cortical thickness from
structural MRI, functional scores, and neurophysiological parameters revealed different
temporal dynamics of the modalities longitudinally which may lead to differences in the
sensitivity to disease progression [44]. Differences between neuroimaging, functional rating,
and neurophysiological measures in the sensitivity to cerebral progression might imply
that by combining MRI, and specifically DTI, with non-imaging modalities, the disease
status of patients might be characterized in detail and monitored longitudinally.

As clustering algorithms are frequently applied to the identification of patterns in
unlabeled data sets, a multiparametric data set from WM, an oculomotor, and cognitive
parameters associated with neuropathological stages of ALS could be analyzed in a data-
driven manner without prior inclusion of the patient’s disease status [45]. In this study,
hierarchical agglomerative clustering indicated a division of a heterogeneous group of
patients with ALS into four clusters, each with similar multimodal parameters. Statisti-
cal analysis revealed differences in all parameters across clusters. Patients in one cluster
showed the highest FA values and best performance in executive oculomotor tasks and
cognitive tests, whereas patients in the most distant cluster showed the lowest FA values,
lowest cognitive scores, and worst executive oculomotor performance across all clusters.
Thus, the clustering approach showed high congruence of DTI, executive oculomotor func-
tion, and neuropsychological performance in patients with ALS. It seemed safe to conclude
that the four clusters are in vivo correlates of neuropathological spreading stages. The
development of an in vivo staging concept considering different brain function parameters
could compensate for each modality’s limitations and lead to an in-depth characterization
of patients with ALS. A multivariate DTI staging algorithm based on Bayesian statistics
might provide the computational framework for such an approach. Such a classifier was
superior to the classical threshold-based method in staging patients with ALS at the indi-
vidual level [37]. The significant advantage of Bayesian statistics for multimodal issues
is the ability to incorporate prior knowledge about the patient into the algorithm directly.
With Bayesian statistics, the transition to statements expressing a degree of belief in how
likely a specific event is has also proven useful for other research questions in ALS, such as
hypothesis testing or complex networks [60,61].

Fluid markers from CSF or plasma are also conceivable combination parameters in
comprehensive multimodal models. Neurofilament (NF) concentrations have previously
been shown to have prognostic and predictive value [19] that might favor their inclusion
together with DTI parameters in models for diagnostic classification or prediction of disease
progression. MRI, which is able to regionally map the disease-related stages of ALS in vivo,
has a differential part than fluid markers, such as the NF light chain, which correlates
with disease progression rate and is negatively associated with survival and thus provides
prognostic information [19].

4. Longitudinal Monitoring
4.1. Study Conceptualization

For longitudinal monitoring and clinical trials, reliable markers sensitive to cerebral
progression are needed. Although alterations of the FA in the CST could be monitored
longitudinally [11,17] and correlated with the loss of functionality [11,62], some studies
reported negative results [63,64]. To obtain sensible and reproducible results in longitudinal
DTI studies in ALS, it is essential to establish standards for study conceptualization. The
main limitation of longitudinal DTI studies is insufficient sample size leading to insufficient
statistical power. Under-powered studies hamper the investigation of the therapeutic
effects of DTI [65]. Reports of sample sizes needed for 80% power with 25% treatment effect
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differ between 263 [17] and 567 subjects [66] per arm. In addition, 128 per arm for 50%
treatment effect and 70% power were reported [11]. In all these studies, statistical power
and sample size calculations were performed post hoc; therefore, the results might differ
from the true power [67]. Monte Carlo simulations can be used in study conceptualization
to calculate statistical power and sample size requirements under various study conditions.
In addition to sample size, the power of a longitudinal DTI study is influenced by other
factors such as the number of visits and time between them, data quality, between-subject
variability, class probabilities, and the number of study drop-outs. For different decrease
rates of FA in CST, Monte Carlo simulations showed that longitudinal group studies benefit
from a second DTI scan at each visit [68]. Specifically, it was revealed that a second scan
can reduce the required sample size or that sufficient statistical power could be achieved
after shorter time intervals, respectively. The positive effect of repeated scans per visit
was particularly pronounced with high measurement noise which is likely to occur with
pronounced disease severity.

The scheduling of more than two visits is especially critical to the validity of imaging
parameter trend analyses in longitudinal studies with an odd number of visits in total,
e.g., one baseline and two follow-up visits [69]. With the simulation of outliers due to
noise, it was shown that equidistant time intervals should be avoided to strengthen the
trend analysis results in these specific scenarios. Although the study was based on the
longitudinal striatum atrophy in T1w MRI data of patients with Huntington’s disease, the
methodological limitations of longitudinal trend analysis are also valid for DTI studies in
patients with other progressive neurodegenerative conditions, such as ALS.

A reliable assessment of (small) longitudinal WM alterations is essential in ALS for
a timely determination of progression rate and enhances the stratification of patients for
enrolment in clinical trials. Additionally, studies monitoring asymptomatic carriers of
ALS-associated gene mutations for possible conversion to symptomatic disease might
benefit from optimized study protocols to detect even subclinical cerebral alterations.
For the conceptualization of clinical neuroimaging studies, considering sample numbers,
measurement noise, and visit scheduling, simulations have proven to be useful [68,69]. In
order to minimize the stress on patients and save time and money, meticulous planning of
neuroimaging scans in advance may prevent the generation of incorrect findings.

4.2. Influences of Aging

In longitudinal studies, it is necessary to be aware that diffusion metrics are subject
to physiological aging effects [70,71] and to what extent aging-associated alterations can
be expected during the study period. To distinguish the proportion of physiological
aging effects from neuropathological changes at the group level, it is recommended to
longitudinally assess healthy control subjects according to the same study protocol as
patients with ALS in prospective studies [72]. A tract-specific age correction, adjusted for
the age of the study participants, could then be used to computationally eliminate the
covariate age in the diffusion metrics, as in cross-sectional studies [73].

The modeling of the complex trajectories of healthy brain aging with ML approaches
based on neuroimaging data has been established for clinical questions in recent years [74,75].
Such a brain age prediction is also possible when it is exclusively based on DTI data [76,77].
In principle, age correction of diffusion metrics in healthy study participants could be per-
formed with an algorithmic inversion of brain age prediction based on an artificial neural
network [77]. However, in addition to its role as a confounding covariate in a longitudinal
setting, age is also a significant risk factor in sporadic ALS [78]. Brain age predictions have
already been applied to ALS based on structural MRI, offering insights into a potential brain
reserve against behavioral and/or cognitive decline and faster disease progression [79].
Based on these findings, multimodal MRI brain age models might offer promising ap-
proaches to investigate other risk factors regarding the personal environment since many
lifestyle and biomedical parameters are associated with brain age [80–82].
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5. Limitations

One major limitation of DTI-based ML approaches in ALS is the limited availability
of data sets of patients. Longitudinal studies often experience high drop-out rates due to
the rapid and often not predictable clinical disease progression. However, the number of
data sets available often leads to a low SFR and is crucial in the choice of a classification
model. While well-regularized standard ML models, such as SVMs or RFs, might be on the
edge of overfitting given the typical sample size in ALS of around 20 to 200, i.e., an order of
magnitude 101 to 102, deep learning models require several orders of magnitude in sample
size more to perform optimally [1]. On the one hand, the risk of overfitting in standard
ML models can be reduced with a priori feature selection based on neuroanatomical con-
siderations. On the other hand, limiting features only to DTI and T1w metrics of specific
neuroanatomical regions also appears to restrict the discriminating power of standard ML
models, as different ML approaches with similar preselected multiparametric MRI features
led to similar accuracies in diagnostic classifications.

In the context of the performance of DTI-based ML models, the physiological inter-
subject variability of diffusion metrics should be discussed in addition to the limited sample
sizes in ALS. Many lifestyle factors such as smoking [83], alcohol consumption [84], or sleep
duration [85], have been reported to result in regional WM alterations. A more detailed
description of healthy controls with respect to certain lifestyle circumstances might allow
a better assessment of diffusion metrics and thus possibly a more accurate separation of
patients and controls by adding confounding lifestyle parameters in ML models.

6. Further Perspectives

For the implementation of ML in ALS research, different perspectives arise, as shown
in Figure 3. Most DTI-based ML publications in ALS focused on diagnostic classifications,
i.e., patient vs. healthy control scenarios. Apart from the limited accuracy, the practical
value of diagnostic classification models might be limited since the ground truth of the
classifications is a diagnosis based on clinical criteria. The focus should, therefore, turn
toward models representing the cerebral status or addressing the heterogeneity of ALS
by phenotype classifications or individual disease trajectory predictions. Clustering as a
method of unsupervised ML is suitable for the identification of unbiased subgroups in data.
The required sample size to detect subgrouping with sufficient power is about 20 to 30 per
expected cluster [86]; sample sizes that are realistically achievable in ALS research, even in
monocenter settings.
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Figure 3. Strategies for the implementation of machine learning models on diffusion tensor imaging
(DTI) data in amyotrophic lateral sclerosis. For several clinical questions, standard machine learning
algorithms can provide reliable results even with limited sample sizes. Validating models with an
independent test sample is essential for good modeling practice. Deep learning can be implemented
with well-curated international data repositories. In addition to more complex algorithms, augment-
ing DTI features with other magnetic resonance imaging (MRI) parameters or neurophysiological
measures can also add value in acquiring knowledge about the progression of the disease.
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To advance the power to discriminate patients from controls and thus contribute truly
to faster diagnosis in ALS, normative deep learning models should find their way into ALS
imaging. Deep learning models can encode meaningful representations of brain function
in a data-driven manner and determine whether an unknown data set belongs to a group
of healthy controls in normative modeling [87]. To advance the use of deep learning in
ALS in the future, prospective multicenter neuroimaging studies and international reposi-
tories (such as those provided by the Neuroimaging Society in ALS (NiSALS) [15,88,89])
are needed. Thereby, the focus should also be put on longitudinal data collection with
standardized protocols. DTI data sets from different centers and scanners should then be
harmonized prior to model training, as differences in diffusion metrics may occur from dif-
ferent scanner and data acquisition factors [90]. It was shown that inter-scanner differences
could be compensated with harmonization approaches, whereas biological inter-subject
differences were preserved in healthy controls, as well as in patients with pathologically
altered diffusion properties [15]. Due to inter-scanner differences, ML models need to be
validated between centers and scanners for prospective clinical use. Novel techniques,
such as deep and transfer learning [91] and few-shot learning [92], offer new possibilities
and applications in the characterization and monitoring of ALS patients. Approaches with
federated deep learning in multicenter design can be regarded as a perspective.

Diffusion kurtosis imaging (DKI) is a promising tool to be used as a biomarker in
neurodegenerative diseases and, thus, also in ALS [93]. The DKI metrics alterations indicate
decreased microstructural complexity in ALS, involving motor regions, extramotor regions,
and callosal regions at early stage ALS [94,95]. Thus, DKI metrics can serve as potential
biomarkers for assessing disease severity [96]. Multiparametric MRI assessments in patients
with ALS are promising for enhanced individual phenotyping and may help with the
stratification of therapeutic trials, provided that robust ML models will be used. Combining
DTI with modalities beyond MRI, such as radioligand imaging with positron emission
tomography or measures of neurophysiology [97,98], is a helpful technical approach to deep
phenotyping of a given patient’s disease status. Because such approaches will continue to
become more important for in vivo ALS staging systems in the future, patients with ALS
should be evaluated in studies by use of a variety of clinical and cognitive parameters in
addition to MRI [88,99].

An integration of DTI into clinical trials spans two different aspects: stratifying patients
into prognostic groups and providing reliable markers sensitive to cerebral progression.
DTI-based ML models that predict progression rate and assess phenotype might be ap-
propriate for stratifying patients for clinical trial enrollment. For the establishment of
longitudinal DTI biomarkers in clinical trials, the standardization and optimization of
study protocols are essential to enhance longitudinal sensitivity and reliability. The use
of DTI as a longitudinal monitoring tool could allow objective monitoring of cerebral
progression and might be considered to be an endpoint in clinical trials.

7. Summary

The current state of research demonstrates the enormous academic and clinical poten-
tial of ML models in the development of DTI-based neuroimaging biomarkers in ALS. A
more accurate assessment of cerebral changes seems possible with multiparametric MRI
feature sets than with DTI metrics alone. To capture the full spectrum of pathological signa-
tures in ALS, combining DTI with other modalities, e.g., neurophysiology, is promising
to guide individualized ML-based patient characterizations. As multimodal integration
of diffusion-weighted MRI techniques will be an essential element in the development of
neuroimaging biomarkers in ALS, future research should focus on establishing standard-
ized protocols for full patient characterization and multicenter transnational collaborations.
Large, well-characterized cohorts enable a profound performance of ML algorithms and,
therefore, gain new insights into the complex interplay between neuroimaging and other
clinical measures to characterize patients with ALS and its phenotypes.
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