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Abstract: Since December 2019, the coronavirus disease has significantly affected millions of people.
Given the effect this disease has on the pulmonary systems of humans, there is a need for chest
radiographic imaging (CXR) for monitoring the disease and preventing further deaths. Several
studies have been shown that Deep Learning models can achieve promising results for COVID-19
diagnosis towards the CXR perspective. In this study, five deep learning models were analyzed and
evaluated with the aim of identifying COVID-19 from chest X-ray images. The scope of this study
is to highlight the significance and potential of individual deep learning models in COVID-19 CXR
images. More specifically, we utilized the ResNet50, ResNet101, DenseNet121, DenseNet169 and
InceptionV3 using Transfer Learning. All models were trained and validated on the largest publicly
available repository for COVID-19 CXR images. Furthermore, they were evaluated on unknown data
that was not used for training or validation, authenticating their performance and clarifying their
usage in a medical scenario. All models achieved satisfactory performance where ResNet101 was the
superior model achieving 96% in Precision, Recall and Accuracy, respectively. Our outcomes show
the potential of deep learning models on COVID-19 medical offering a promising way for the deeper
understanding of COVID-19.

Keywords: deep learning; COVID-19; ResNet50; ResNet101; DenseNet121; DenseNet169; Incep-
tionV3; transfer learning; chest X-rays

1. Introduction

In December 2019, the first case of Coronavirus 2019 (COVID019) was reported in
Wuhan, China. Until now, the virus affected millions of people, showing almost 630 million
cases and 6.5 million deaths worldwide [1]. The most common symptoms of COVID-19
are fever, cough, fatigue, headache, dizziness, sputum and dyspnea. Consequently, some
patients sustained further damage to their respiratory system; specifically, lesions were
detected in the lower lobes of both lungs. Severe cases of COVID-19 can result in acute
respiratory distress syndrome or complete respiratory failure [2].

Given the solemnity of COVID-19, reliable and swift diagnosis is extremely important.
There have been numerous methods for the detection of COVID-19. The primary method
is reverse-transcription polymerase chain reaction (RT-PCR) [3]. These tests suffer from
high false-positives or false-negatives due to sample contamination, virus mutations or
user error during sample extraction [4]. As a result, several studies [5,6] suggested on
using Computed Tomography (CT-Scans) for performing diagnosis, since it showed higher
accuracy. Consequently, it was shown that the majority of COVID-19 cases share similar
radiographic features, such as bilateral abnormalities and multifocal ground-glass opacities,
mostly at the lower lung lobes during the early stages for the disease and at the final stages
pulmonary consolidation was observed [7]. However, compared to CT-Scans, chest X-rays
are cheaper and faster in image generation; furthermore, it is an accessible method for
medical imaging and the body gets exposed to less radiation during the procedure [8].
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Chest X-rays are already used as a diagnostic tool for COVID-19 [9]. Furthermore, there
are some regarding the radiation exposure to patients during COVID screening. On the
other hand, reducing the radiation dose lowers the image quality bringing noise and
artifacts to the produced images, compromising the diagnosis. In [10], they used U-Net
based discriminators in the GANs framework that enabled it to learn both global and local
differences between the denoised and normal-dose images. Results based on simulated
and real-world datasets showed excellent performance on denoising low-dose CT (LDCT)
images, which consequently enables safer ways for patient screening. On a different
study [11], they applied Neural Network Architecture Search (NAS) to LDCT and proposed
a multi-scale and multi-level memory efficient NAS for LDCT denoising. Their proposed
method showed better results using fewer parameters than other state-of-the-art methods.

There has been an immense growth in Machine Learning the past few years. Specif-
ically, in medicine, it is used for various tasks, such as classification of cardiovascular
diseases, diabetic retinopathy and others [12–14]. The revolutionary performance of the
convolutional neural network (CNN), has enabled medical experts to use it on many tasks,
such as the diagnosis of skin lesions, detection of brain tumors and breast cancer [15–17].

Applying Deep Learning models on chest X-ray (CXR) images has proven beneficial
where various researchers showed auspicious results in the diagnosis of pulmonary diseases
including COVID-19 pneumonia. Notably, Rajpurkar et al. [18] developed a new CNN
architecture called CheXNet based on DenseNet121 for the classification of 14 different
pulmonary diseases by training it on over 100,000 X-ray images. They reported that their
method exceeds average radiologist performance on the F1 metric. Similarly, in [19] the
authors proposed a method for automatic detection of COVID-19 pneumonia from CXR
images using pre-trained convolutional neural networks, reaching accuracy ~99%. In
addition, Keidar et al. [20] proposed a deep learning model for the detection of COVID-19
from CXR images and clustering of similar images to the model’s result. Lastly, in [21] a
method for the detection of COVID-19 is proposed using various Deep Learning models
and a support vector machine (SVM) as a classifier.

Correspondingly, additional studies proposed methods for the automatic diagnosis
of COVID-19, from CXR images using Deep Learning [22–25]. Their methods revealed
high performance in detecting COVID-19; although, they possess a few flaws. Foremost,
all the mentioned studies had finite number of COVID-19 CXR images. This can affect the
training and evaluation performance of these methods, resulting in improper generalization
for future data. In addition, they did not use external unseen data for evaluation of
their methods.

The goal of this study is the comparative evaluation of Deep Learning methods on
COVID-19 CXR image classification and their potential to be used as decision-making
tools for COVID-19 diagnosis. Our analysis is performed using five deep learning models
covering various state-of-the-art architectures. We also applied all models in the largest
dataset (at the time of writing and to the best of our knowledge) [26].

2. Materials and Methods

The COVID-QU dataset [26] is used for this study and it consists of 33,920 CXR
images from three different classes. More specifically, COVID-19 contains 11,956 images of
coronavirus positive patients, non-COVID-19 contains 11,263 images of viral or bacterial
pneumonia patients and lastly, Normal contains 10,701 healthy images. Moreover, COVID-
QU contains only posterior to anterior (PA) and anterior to posterior (AP) X-ray images.
Furthermore, this dataset contains the corresponding lung masks of each image, they were
not used for this study. Lastly, the COVID-QU dataset was compiled and used in [27] where
the team performed infection localization and severity grading from CXR images. Then,
the team decided to upload their data online making it more accessible to other researchers.
The sources that were used for the compilation of this dataset are found below in detail:
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2.1. COVID-19 CXR Dataset

This dataset consists of 11,956 COVID-19 positive X-ray images. To compile this
dataset, various sources were accessed. Specifically, 10,814 images were taken from the
BIMCV-COVID19+ [28] database, then 183 images were taken from a German medical
school [29], 559 images were taken from SIRM [30], GitHub [31], Kaggle [32] and Euro-
rad [33]. Lastly, 400 images were taken from another COVID-19 repository [34].

2.2. RSNA CXR Dataset

This dataset consists of 8851 healthy and 6012 lung opacity X-ray images from the
RSNA CXR [35] repository, where the lung opacity images belong in the non-COVID-19
class of the COVID-QU dataset.

2.3. Chest X-ray Pneumonia Dataset

The Chest X-ray Pneumonia [36] dataset was used to access 1300 viral pneumonia,
1700 bacterial pneumonia and 1000 healthy X-ray images. Viral and bacterial pneumonia
images belong to the non-COVID-19 class of the COVID-QU dataset.

2.4. PadChest Dataset

From the PadChest [37] dataset, 4000 healthy and 4000 pneumonia X-ray images
were used. The 4000 pneumonia images belong to the non-COVID-19 class of the COVID-
QU dataset.

2.5. Montgomery and Shenzhen CXR Lung Masks Datasets

The Montgomery dataset [38] consists of 80 healthy and 58 tuberculosis X-ray images,
along with their lung masks, and the Shenzhen dataset [39] consists of 326 normal and
336 tuberculosis X-ray images, where 566 of the total 662 images are accompanied by their
lung masks.

2.6. QaTa-Cov19 CXR Infection Mask Dataset

The QaTa-Cov19 [40] dataset consists of almost 120,000 CXR images with their ground-
truth infection masks. The researchers who created COVID-QU used these masks to train
and evaluate their segmentation models that generated the rest of the segmentation masks.

Table 1 presents the distribution of data across three subsets grouped into three
classes. In detail, the train subset consists of 21,715 CXR images, split into: COVID-19 with
7658 images, non-COVID-19 with 7208 images and Normal with 6849 images. Furthermore,
the validation set consists of 5417 CXR images, split into: COVID-19 with 1903 images, non-
COVID-19 with 1802 images and Normal with 1712 images. Lastly, the test set consists of
6788 CXR images, split into: COVID-19 with 2395 images, non-COVID-19 with 2253 images,
and Normal with 2140 images.

Table 1. Overall distribution of the data used in this study.

# Subset COVID-19 Non-COVID-19 Normal Total

1 Train 7658—35% 7208—33% 6849—32% 21,715—64%

2 Validation 1903—35% 1802—33% 1712—32% 5417—16%

3 Test 2395—35% 2253—33% 2140—32% 6788—20%

The proposed approach for this study is demonstrated on COVID-19 classification
from CXR images. In Figure 1, the general pipeline for the classification system is shown,
where the first step is the configuration of the dataset into three subsets, i.e., train, validation
and test sets. Step 2 consists of defining the model and all its functions where data is loaded,
augmented and pre-processed and all the layers are frozen expect the classifier. Afterwards,
metrics, optimizer and callbacks are defined and the model gets compiled. Step 3 consists
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of training only the classifier using the pre-trained weights of each model, respectively.
Thereafter in step 4, fine-tuning is performed where a specific number of layers are unfrozen,
and the models are trained again. Lastly, in step 5 the models are evaluated on the test set.
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2.6.1. Setup and Tools

The programming language that was used for the project is Python 3.10.2 in combi-
nation with Visual Studio Code version 1.69.2 as a code editor. Furthermore, regarding
software version control, GitHub along with SourceTree version 3.4.9 was used. Tensorflow
version 2.10 and Keras version 2.10.0 are used for the creation and training of these models.
Training was performed on a personal computer with the following specs: AMD Ryzen
5600X, 16 GB RAM 3200 MHz, an RX Vega 64 and Windows 10. Since the graphics card is
not compatible with Tensorflow, the training process was performed on the CPU.

Models and Architectures for COVID-19 Classification

Regarding COVID-19 classification, five state-of-the-art Convolutional Neural Net-
works (CNNs) were evaluated on COVID-19 classification from CXR images: two variants
based on the ResNet [41] architecture; ResNet50 and ResNet101, then two based on the
DenseNet [42] architecture; DenseNet121, and DenseNet169 and lastly, one based on the
InceptionV3 [43] architecture. All models were pre-trained on the ImageNet dataset that
consists of 1000 classes and millions of images.

2.6.2. ResNet—Residual Network

The ResNet—Residual Network architecture [41] was proposed as a solution to the
vanishing/exploding gradients problem that deep neural networks suffer. This architecture
consists mostly of residual blocks and batch normalization layers, where each residual
block contains convolution layers and shortcut connections.

2.6.3. DenseNet

The DenseNet architecture [42], was introduced by G. Huang et al. in 2018, where
each layer is connected to every other layer in a feed-forward manner. Furthermore, for
each layer, the feature maps of all former layers are used as inputs and its own feature
maps are used as inputs for the succeeding layers. Lastly, DenseNet solves the problem of
vanishing gradients and reduces the number of parameters considerably.

2.6.4. InceptionV3

InceptionV3 [43] was introduced by Szegedy et al., in 2015. The fundamental char-
acteristic of this network is the Inception Module. This module consists of convolutions
in various sizes such as 1 × 1, 3 × 3 and 5 × 5. Lastly, a pooling and concatenation layer
is included.
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2.6.5. Image Pre-Processing

We utilized data augmentation methods, such as random rotation (±10◦) and random
horizontal flip (Figure 2), to deal with overfitting issues. The augmentations were applied
randomly on each image, meaning that some images will only be rotated, flipped hori-
zontally or both, as it is shown on Figure 2. These methods were applied on each image
during model training on the training set and not before, leaving the original dataset intact
without changes. Each architecture requires a specific image size; therefore, all images were
resized to 224 × 224 for the ResNet and DenseNet models using bilinear interpolation. On
the other hand, InceptionV3 can work with various sizes, therefore no resizing was needed.
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2.6.6. Model Definition

As previously mentioned, five models are trained and evaluated on CXR images. Ergo,
a template was created and used for all models with only a few changes in each instance.
Foremost, the base model is defined with the pre-trained weights of ImageNet and without
the included classifier since a custom one is added later. Following, all layers of the base
model were frozen. The model’s input is defined, then data augmentation is applied and
lastly, it is pre-processed where the values of the input image are normalized to 0 and 1 or
−1 and 1, depending on the architecture.

The last step is to define the new classifier. In detail, the classifier consists of 3 layers.
The first one is a Global Average Pooling layer, or in the case of InceptionV3 a flatten layer,
followed by a Dropout layer with a factor of 0.2, and lastly, a 3-unit Dense layer with
the softmax activation function show in Equation (1) and the HeNormal kernel initializer.
Regarding Equation (1), Z represents the values from the output layer and K is the number
of classes / possible outcomes.

σ
(→

z
)

i
=

expzi

∑K
j=1 expzj

(1)

2.6.7. Evaluation Metrics and Callbacks

Several metrics were used to monitor the performance of each model. Specifically,
Categorical Accuracy, Precision, Recall and F1-Score as shown in Equations (2)–(5), along
with True Positives, True Negatives, False Positives and False Negatives. Regarding the
optimization method, Adam was used with an initial learning rate of 4 × 10−3, 0.9 for beta
1, 0.999 for beta 2 and 1 × 10−7 for epsilon. Lastly, categorical cross entropy was used as a
loss function as shown in Equation (6):

Categorical Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1 = 2
Precision × Recall
Precision + Recall

(5)

Loss = −
N

∑
i=1

yi × log ŷi (6)

Categorical Accuracy represents the number of correct predictions divided by the total
number of predictions. Precision represents the ratio of correctly classified positive samples
to the total number of classified positive samples. Recall is the ratio between the numbers
of positive samples correctly classified as positive to the total number of positive samples.
In this study, Recall was the primary metric.

Callbacks

The last task before the initial training of each model is to define all the required
callbacks. In this study, the callbacks Model Checkpoint, Early Stopping, Reduce Learning Rate
on Plateau, Tensorboard and CSVLogger were used. In detail, model checkpoint was setup to
save only the weights of each model, Early Stopping was setup with an 8-epoch patience and
to restore the model’s best weights. Afterwards, Reduce Learning Rate on Plateau was setup to
reduce the learning rate by a factor of 0.2, as shown in Equation (7), with a 3-epoch patience.

new lr = initial_lr× factor (7)

Regarding model visualization, Tensorboard was used to monitor the training perfor-
mance of each model.

2.6.8. Model Training and Fine-Tuning

After every function, parameter and callback has been setup, the initial training can
commence where all the layers are frozen expect the classifier. All models were set to be
trained for 100 epochs. Consequently, none of them were trained for 100 epochs, because the
callback Early Stopping ends their training if no improvement in performance is observed.
Following the initial model training, the fine-tuning phase takes place where some layers
of each model are unfrozen and are trained again. Table 2 shows in detail the number of
parameters of each model after layer unfreezing.

Table 2. The total parameters of each model along with the trainable and non-trainable parameters
after unfreezing some layers.

Parameters ResNet50 ResNet101 DenseNet121 DenseNet169 InceptionV3

Total 23,564,800 42,632,707 7,040,579 12,647,875 22,023,971

Trainable 14,970,880 25,040,899 5,527,299 11,059,843 17,588,163

Non-
Trainable 8,593,920 17,591,80 1,513,280 1,588,032 4,435,808

Once the layers are unfrozen, the model is trained for around 10–15 epochs with the
same callbacks, loss function and metrics. The only difference is in the optimizer function;
although Adam was used during fine-tuning, the learning was set to 4 × 10−4.

3. Results

In this chapter, the training and evaluation performance is demonstrated and com-
pared across all models. The following tables show the metrics that were discussed above
with the addition of the Support column where it shows the number of samples for each
class. It can be observed that all three classes had a similar number of samples, therefore
eliminating the problem of class imbalance.



Int. J. Environ. Res. Public Health 2023, 20, 2035 7 of 13

3.1. ResNet50

Table 3 shows that ResNet50 managed to achieve 97% Precision, Recall and F1-Score
regarding class COVID-19. Although, its performance drops significantly for the classes
non-COVID-19 and Normal. Overall, its Recall reached 95%.

Table 3. ResNet50 Evaluation results.

Precision Recall F1-Score Support

COVID-19 0.97 0.97 0.97 2395

Non-COVID-19 0.95 0.94 0.94 2253

Normal 0.94 0.94 0.94 2140

Accuracy 0.95 6788

Macro avg 0.95 0.95 0.95 6788

Weighted avg 0.95 0.95 0.95 6788

Furthermore, regarding class COVID-19, ResNet50 performed exceptionally well, as
shown in Figure 3. Although, its performance degraded regarding the other two classes,
with a similar number of errors.
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3.2. ResNet101

Furthermore, ResNet101 as shown in Table 4, managed 99% Precision, 96% Recall, and
98% F1- Score regarding class COVID-19. Similar to ResNet50, a drop in performance is
observed regarding the classes non-COVID-19 and Normal. Lastly, it reached 96% in Recall.

Table 4. Resnet101 Evaluation results.

Precision Recall F1-Score Support

COVID-19 0.99 0.96 0.98 2395

Non-COVID-19 0.95 0.95 0.95 2253

Normal 0.93 0.95 0.94 2140

Accuracy 0.96 6788

Macro avg 0.96 0.96 0.96 6788

Weighted avg 0.96 0.96 0.96 6788
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Regarding the Confusion Matrix that is shown in Figure 4, it is clear that compared to
ResNet50, ResNet101 performed equally well on class COVID-19, while it also maintaining
a balanced performance regarding the classes non-COVID-19 and Normal.
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3.3. DenseNet121

DenseNet121, as shown in Table 5, managed to achieve 99% Precision, 94% Recall and
96% F1-Score regarding the class COVID-19. Furthermore, a significant drop in Precision
and Recall is observed for class non-COVID-19 and Normal where it achieved 86% and
87%, respectively. The achieved Recall for this model is 93%.

Table 5. DenseNet121 Evaluation results.

Precision Recall F1-Score Support

COVID-19 0.99 0.94 0.96 2395

Non-COVID-19 0.86 0.97 0.91 2253

Normal 0.95 0.87 0.91 2140

Accuracy 0.93 6788

Macro avg 0.93 0.93 0.93 6788

Weighted avg 0.93 0.93 0.93 6788

The confusion matrix shown in Figure 5, DenseNet121 made many misclassifications
regarding the classes Normal and COVID-19, where the model’s prediction classified
images as non-COVID-19 in both cases. With reference to Table 5, this drop in performance
is also shown by the significant drop of Precision and Recall in the classes COVID-19 and
Normal, respectively.
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3.4. DenseNet169

DenseNet169 as shown in Table 6, had similar performance with DenseNet121 despite
having a larger computational capacity. Regarding the class COVID-19, 99% Precision,
93% Recall and 96% F1-Score were reported. Compared to DenseNet121, it managed to
surpass its performance regarding the class non-COVID-19, but had a significant drop in
its Precision regarding the class Normal. Overall, its Accuracy reached 94%.

Table 6. DenseNet169 Evaluation results.

Precision Recall F1-Score Support

COVID-19 0.99 0.93 0.96 2395

Non-COVID-19 0.95 0.92 0.94 2253

Normal 0.88 0.96 0.92 2140

Accuracy 0.94 6788

Macro avg 0.94 0.94 0.94 6788

Weighted avg 0.94 0.94 0.94 6788

Concerning the Confusion Matrix of DenseNet169 showed in Figure 6, it is evident
that misclassifications were made regarding the classes non-COVID-19 and COVID-19,
where it classified images as Normal although the correct class was either COVID-19 or
non-COVID-19.
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3.5. InceptionV3

InceptionV3 as shown in Table 7, managed 97% Precision, 97% Recall and 97% F1-Score
regarding the class COVID-19. Its performance on non-COVID-19 and Normal is slightly
lower but balanced across all metrics. The overall Accuracy of this model is 95%.

Table 7. InceptionV3 Evaluation results.

Precision Recall F1-Score Support

COVID-19 0.97 0.97 0.97 2395

Non-COVID-19 0.94 0.94 0.94 2253

Normal 0.94 0.93 0.93 2140

Accuracy 0.95 6788

Macro avg 0.95 0.95 0.95 6788

Weighted avg 0.95 0.95 0.95 6788

With reference to the Confusion Matrix of this model showed in Figure 7, its per-
formance was low regarding the class Normal, where it classified a significant number
of images as non-COVID-19. Similarly, the class non-COVID-19 is troublesome, where
many images were classified as Normal. Concerning the class COVID-19, it performed
adequately with minimal error.
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3.6. Overall Performance

In this study, the key metric for the classification is Recall, on the grounds that the
identification of COVID-19 positive images is important, hence the requirement for high
Recall on each model. All models reached high Recall values (>93%), where the top
performer was ResNet101 with 96% score on all metrics as shown on Tables 4 and 8;
notwithstanding, it had the largest number of trainable parameters which translates to a
larger computational capacity compared to the other 4 models.
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Table 8. Compiled Results from all models.

Model Accuracy Precision Recall Trainable
Parameters

ResNet50 95% 95% 95% 14,970,880

ResNet101 96% 96% 96% 25,040,899

DenseNet121 93% 93% 93% 5,527,299

DenseNet169 94% 94% 94% 11,059,843

InceptionV3 95% 95% 95% 17,588,163

4. Discussion

It is beyond doubt that COVID-19 affected millions of humans worldwide jeopardizing
their health, while at the same time pushing health care services to their limit. Fast and
accurate identification of positive COVID-19 cases is essential for the prevention of virus
spread. CXR imaging is publicly available at a low cost while producing fast results
compared to the more commonly used methods, such as RT-PCR tests and CT scans.
Furthermore, LDCT scans can be used for patient screening since recent methods have been
developed that successfully denoise the produced images.

Thus, numerous studies on COVID-19 identification from CXR images using deep
learning methods showed excellent results. However, some of them used limited data for
training and evaluation. Consequently, a model will probably not be able to generalize
well to new, unseen data with insubstantial training making its usage in a clinical scenario
deficient. In this study, a system is proposed for the automatic detection and diagnosis
of COVID-19 from CXR images using deep learning methods. To achieve this, the largest
COVID-19 CXR dataset with COVID-19 images was used to train and evaluate five different
deep learning models on COVID-19 identification.

The proposed methods of this study showed high results in COVID-19 identification
as shown in Table 8, attaining equal or more of 93% in Precision and Recall scores. The best
performer was ResNet101, achieving 96% scores across all metrics.

Henceforth, the plan for this study is to apply lung segmentation and localization
on CXR images to increase the classification accuracy of this system and also testing
an ensemble model, making it more robust and enabling it to generalize even better to
new CXR images. Furthermore, another goal is to test the system against professional
radiologists and see how well it performs. Furthermore, collaborating with professional
radiologists will also result on the acquisition of valuable feedback from them, regarding
the usability of this system in a clinical environment as a decision-making tool.

It is worth mentioning that ensemble models can be a powerful tool for improving
the performance of deep learning algorithms [44]. However, the scope of our work was to
highlight the significance and potential of individual deep learning models, rather than
to focus specifically on ensemble techniques. Therefore, we decided to evaluate each
model separately and to present their results in a comparable manner. We believe that this
approach allows us to gain a better understanding of the strengths and limitations of each
model and to provide insights into their potential for improving the accuracy and efficiency
of COVID-19 CXR image analysis.

5. Conclusions

In this study we evaluated five different Deep Learning models by training them on a
large dataset containing CXR images of lungs with COVID-19, other pulmonary diseases or
no disease at all. Our goal was to explore the potential of various Deep Learning methods
in COVID-19 identification. Our findings showed promising results where all models
achieved 93% and above in recall where the best performer was ResNet101 with 96% recall
score. All individual models performed adequately, which means implementing more
complex methods and enhancing their learning capacity could prove even more beneficial.
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Henceforth, the plan for this study is to apply lung segmentation and localization on CXR
images to increase the classification accuracy of this system and also to test an ensemble
model, making it more robust and enabling it to generalize even better to new CXR images.
Furthermore, another goal is to test the system against professional radiologists and see
how well it performs. Furthermore, collaborating with professional radiologists will also
result on the acquisition of valuable feedback from them, regarding the usability of this
system in a clinical environment as a decision-making tool.
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