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Abstract: Yaks (Bos grunniens) are the only bovine species that adapt well to the harsh high-altitude
environment in the Qinghai-Tibetan plateau. However, the reproductive adaptation to the climate of
the high elevation remains to be elucidated. Cell composition and molecular characteristics are the
foundation of normal ovary function which determines reproductive performance. So, delineating
ovarian characteristics at a cellular molecular level is conducive to elucidating the mechanism
underlying the reproductive adaption of yaks. Here, the single-cell RNA-sequencing (scRNA-seq)
was employed to depict an atlas containing different cell types with specific molecular signatures in
the yak ovary. The cell types were identified on the basis of their specifically expressed genes and
biological functions. As a result, a cellular atlas of yak ovary was established successfully containing
theca cells, stromal cells, endothelial cells, smooth muscle cells, natural killer cells, macrophages,
and proliferating cells. A cell-to-cell communication network between the distinct cell types was
constructed. The theca cells were clustered into five subtypes based on their biological functions.
Further, CYP11A1 was confirmed as a marker gene for the theca cells by immunofluorescence staining.
Our work reveals an ovarian atlas at the cellular molecular level and contributes to providing insights
into reproductive adaption in yaks.

Keywords: yak; ovary; single-cell; cellular atlas; cell communication; theca cell

1. Introduction

More than ninety percent of the global yak (Bos grunniens) population lives in the
high-altitude regions of the Qinghai-Tibetan Plateau in China [1]. They play a vital role
in the production and life of the nomads living in the plateau regions as they provide
food, shelter, fuel, and transport [2,3]. Yak is the sole bovid animal that adapts well to
the harsh ecological conditions of low oxygen, severe cold, and high ultraviolet radiation
on the plateau, which is famous for its high elevations, pristine natural environments,
and extreme seasonal variations [4]. Especially, they possess a higher adaptive capacity
for reproduction under high-altitude stress compared with other bovid breeds [5]. The
mechanism underlying reproductive adaptation remains to be illuminated.

As a crucial reproductive organ, the ovary generates sex hormones to orchestrate
female secondary sex characters, harbors developmentally competent and mature oocytes,
releases mature oocytes for fertilization, and maintains pregnancy [6–9]. An ovarian reserve
of dormant oocytes within primordial follicles determines female fertility and reproduc-
tive lifespan [10,11]. Unlike spermatogenesis starting from sexual maturity, oogenesis
begins with fetal life, suspends at the dictyate stage of meiotic prophase I, and restarts in
puberty [12,13]. Upon activation, a primordial follicle undergoes several developmental
processes to reach maturity, including theca cell generation from stromal cells, granulosa

Int. J. Mol. Sci. 2023, 24, 1839. https://doi.org/10.3390/ijms24031839 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24031839
https://doi.org/10.3390/ijms24031839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7726-3077
https://orcid.org/0000-0002-6008-4731
https://orcid.org/0000-0003-2390-4777
https://doi.org/10.3390/ijms24031839
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24031839?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 1839 2 of 18

cell proliferation and differentiation, follicle fluid accumulation in the antrum, and oocyte
meiosis restart [14,15]. However, the vast majority of ovarian follicles succumb to a degen-
erative process referred to as atresia which happens at any stage of folliculogenesis [16–18].
The primordial follicle number in a pair of yak ovaries ranges from two to three million at
birth, about 210,000 of which remain until puberty, while the rest undergo atresia before
reaching ovulation.

Delineating the cellular atlas of the ovary is essential for understanding oogene-
sis, folliculogenesis, ovulation, and pregnancy maintenance. To date, cellular molecu-
lar characteristics within the ovary have been revealed by single-cell RNA-sequencing
(scRNA-seq) technology for a few species. Comprehensive cell atlases were constructed for
humans [19,20], monkeys [21,22], drosophila [23–25], and some fish [26–28]. In the reports,
ovarian cells of the species were classified into distinct cell types which were character-
ized based on their specifically expressed genes. However, cell types and their molecular
signals that regulate ovary function remain to be uncovered in the yak ovary. Moreover,
understanding global cell communication is paramount to elucidate the mechanism of the
reproductive adaptation to plateau in yaks. Therefore, a cell atlas and its communicating
signals are expected to be delineated for the yak ovary.

In the present study, a comprehensive atlas containing various cell types was success-
fully constructed through scRNA-seq. The signature genes for each cell type were identified,
which may take part in the execution of a cellular function. Cell-to-cell communication
between the cell types was constructed based on the highly expressed ligand-receptor pairs.
The heterogeneity of the theca cells was analyzed in light of their specifically expressed
genes. The study steps first to decipher the molecular characteristics of ovarian cell types
and fill the gap between the structure and function of ovarian tissue. The results are very
helpful to decipher the mechanism underlying the plateau adaptability of reproduction
in yaks.

2. Results
2.1. Data Quality Control and Principal Component Analysis

After sequencing, scRNA-seq read raw data were converted to a Seurat object through
the Cell Ranger analysis pipeline. For quality control of the cellular gene expression, the
number of genes (nFeature), the number of unique molecular identifiers (UMIs) (nCount),
the expression ratio of hemoglobin genes (percent.HB), the distribution ratio of mitochon-
drial genes (percent.MT), and the expression ratio of ribosomal genes (percent.Ribosome)
were computed and displayed in plots (Supplementary Figure S1). Cells with unique fea-
ture counts of more than 2500 or less than 200 or possessing more than 20% of mitochondrial
genes were filtered out. After the quality control, a total of 15,333 single cells expressing
18,402 genes were retained. The scRNA-seq dataset was normalized and centered success-
fully. The cellular gene expression underwent dimensionality reduction smoothly. The top
18 PCs were considered the optimal PC number to perform downstream clustering.

2.2. Cell Clustering and Marker Gene Selecting

A K-nearest neighbor graph was constructed based on Euclidean distance in PCA
space. The cell clusters were visualized using uniform manifold approximation and
projection (UMAP) in a two-dimensional plot. All the ovarian cells were clustered into
17 cell clusters (Figure 1A) and the top 30 DEGs from each cluster were filtered by their
adjusted p-values (Wilcoxon rank sum test) (Supplementary Table S1). The expression levels
and percentages of the representative genes across the different clusters are visualized in
the dot matrix (Figure 1B), indicating that each cluster has its own specifically expressed
gene except cluster 7. The expression specificity of the top five variable genes of each cluster
is shown in a heat map (Figure 1C).
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Figure 1. Cell clusters and their signature gene features in yak ovary. (A) Uniform manifold approx-
imation and projection (UMAP) scatterplot visualizing various cell clusters. Each point corresponds 
to a single-cell color-coded according to its cluster membership. (B) Dot plot showing expression 
features of the signature genes selected for each cell cluster among the cell clusters. Gene expression 
levels from low to high are indicated by a color gradient from blue to red. Percentages of cells ex-
pressing specific gene are indicated by size of dot. (C) Heat map exhibiting distinct expression 

Figure 1. Cell clusters and their signature gene features in yak ovary. (A) Uniform manifold
approximation and projection (UMAP) scatterplot visualizing various cell clusters. Each point
corresponds to a single-cell color-coded according to its cluster membership. (B) Dot plot showing
expression features of the signature genes selected for each cell cluster among the cell clusters. Gene
expression levels from low to high are indicated by a color gradient from blue to red. Percentages of
cells expressing specific gene are indicated by size of dot. (C) Heat map exhibiting distinct expression
patterning of the top five most variable genes for each cluster among the cell clusters. Gene expression
levels from low to high are indicated by a color gradient from purple to yellow.
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2.3. Cell Type Identification

Automatic annotation of the scRNA-seq dataset was obtained by the “SingleR” pack-
age (Supplementary Figure S2). Nevertheless, it seemed that the annotation method was
not suitable for the yak ovary because cell types in the annotation could not reflect the
truth for some cell clusters. In consideration of this, manual annotation was carried out
based on the specifically expressed genes and their biological functions of each cluster
(Supplementary Table S2). Then, the 17 clusters were annotated successfully into eight
cell types including theca cells (one cluster, 4.62%), stromal cells (five clusters, 32.39%),
endothelial cells (two clusters, 21.69%), smooth muscle cells (one cluster, 1.69%), natural
killer cells (four clusters, 29.97%), macrophages (one cluster, 1.40%), proliferating cells (two
clusters, 2.20%), and unknown cells (one cluster, 6.04%) (Figure 2A). Cell numbers in each
cell type and each cluster were exhibited in a balloon plot (Figure 2B). The top 30 DEGs
from each cell type were filtered by their adjusted p-values (Supplementary Table S3).
Expression scores and percentages of the signature genes across the different cell types are
visualized in a dot matrix (Figure 2C), displaying that each cell type has its own specifically
expressed gene except the unknown cell. Cell type-specific expression of six representative
DEGs per cell type is demonstrated in a heat map (Figure 2D). Most of the DEGs express
specifically in their own cell types. The average expression levels of signature genes from
each cell type were shown in a heat map (Figure 3A). The expression features of eight cell
type-specific marker genes are demonstrated on UMAP plots including CCL5, PECAM1,
FBLN1, RPL18A, CYP11A1, RGS5, CENPF, and AIF1 (Figure 3B). As the plots indicated,
all the marker genes exhibit expression specificity in the corresponding cell types except
RPL18A which expresses highly in all the cell types. In line with the above plots, the violin
plots show that the distinct cell types exclusively express their signature genes (Figure 3C).

2.4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment for Distinct
Cell Types

Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrich-
ment results were generated based on the DEGs in each cell type (Supplementary Table S4).
Following the GO enrichment analysis, a bubble plot was produced based on the top five
biological processes with the highest enrichment FDRs per cell type, which demonstrates
the main biological functions of the eight cell types (Figure 4A). As the plot shows, the
DEGs highly expressed in natural killer cells mainly participate in leukocyte cell-cell adhe-
sion, T cell activation, and negative regulation of the immune system, etc. The theca cells
are involved in the regulation of wound healing, cholesterol homeostasis, and sterol home-
ostasis. The proliferating cells tend to be related to nuclear division, organelle fission, and
sister chromatid segregation. These cell types play crucial roles in the biological processes
coincident with their identities. However, the unknown cells cannot be identified because
the pathways in which they participate are primarily enriched in translation and ribosome
biogenesis.

2.5. Cell Communication between Ovarian Cells

The cell-to-cell interactions between cell types were derived based on the expression of a re-
ceptor by a cell type and its corresponding ligand by another cell type (Supplementary Table S5).
A cell-to-cell interaction network was constructed on the basis of the number of ligands and
their receptors (Figure 4B and Supplementary Table S6). As the network shows, the theca
cell is mainly controlled by proliferating cells, smooth muscle cells, and itself and primarily
regulates itself, proliferating cells, and smooth muscle cells. There are cell interactions
for theca cells among the cell types, indicating the theca cells play a central regulating
role in the cell network in the yak ovary. The top significant ligand-receptor interactions
via which the theca cells communicate with the other cell types are demonstrated in a
bubble plot (Figure 4C). The bubble plot indicates that there are the most ligand-receptor
interactions between theca cells and proliferating cells, suggesting that the proliferating
cells are presumably dividing granulosa cells. The theca cells regulate the stromal cells,
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proliferating cells, and smooth muscle cells mainly by their ligands IGF2, INHA, NECTIN3,
and PTN. Oppositely, the theca cells are controlled by the stromal cells, proliferating cells,
smooth muscle cells, endothelial cells, and themselves principally through the BMP family.
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Figure 2. Cell types and their signature gene features in yak ovary. (A) Uniform manifold approxi-
mation and projection (UMAP) scatterplot visualizing various cell types. Each point corresponds
to a single-cell color-coded according to its cell type membership. (B) Balloon plot demonstrating
amounts of cell clusters and cell types. Each column indicates one cell cluster and corresponding
cell number is given at the bottom of the plot. Each row represents one cell type and corresponding
cell number is given on the right side of the plot. (C) Dot plot showing expression features of the
signature genes selected for each cell type among the cell types. Gene expression levels from low to
high are indicated by a color gradient from blue to red. Percentages of cells expressing specific genes
are indicated by size of dot. (D) Heat map exhibiting distinct expression patterning of the top 6 most
variable genes for each cell type among the cell types. Gene expression levels from low to high are
indicated by a color gradient from purple to yellow.
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Figure 3. Expression characteristics of marker genes for each cell type in yak ovary. (A) Heat map
showing an average expression level of each marker gene in each cell type among the cell types. Gene
expression levels from low to high are indicated by a color gradient from blue to red. (B) Feature
plots exhibiting expression specificity of the marker genes across all the ovarian cells. Expression
level of each gene from none to high is indicated by a color gradient from light gray to red. Red
dashed lines give boundaries of the main cell type of interest. (C) Violin plots visualizing expression
specificity of the marker genes for each cell type. Expression values of the marker genes were scaled
by log-normalization. The vertical coordinate displays expression scores of the marker genes.
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Figure 4. Biological process enrichment for signature genes and cell-to-cell communication between
yak ovarian cells. (A) Bubble plot showing the top five enriched biological process (BP) terms for
each cell type from gene ontology (GO) analysis. Gene ratio in corresponding biological process is
indicated by size of bubble. Adjusted p-values from low to high are indicated by a color gradient
from red to blue. (B) Network exhibiting the cell-to-cell communication depending on significant
ligand-receptor pairing interactions and the interaction directions. Arrows start from cell types
expressing ligands and point to cell types expressing corresponding receptors. (C) Bubble plot
demonstrating the ligand-receptor interactions via which the theca cells communicate with the other
cell types. Endo, endothelial cell; Macr, macrophage; NK, natural killer cell; Prol, proliferating cell;
Smoo, smooth muscle cell; Stro, stromal cell; Thec, theca cell; Unkn, unknown cell.

2.6. Potential Functional Heterogeneity of Theca Cells

After cell clustering, the theca cells were clustered into five different subtypes (Figure 5A).
The DEGs for each subtype were identified successfully. The expression specificities of
five marker genes including SPARCL1, RASSF8, TNN1, ND2, and LAPTM5 are shown in
UMAP plots (Figure 5B) and violin plots (Figure 5D). The expression patterns of the top
five highly variable DEGs for each subtype are exhibited in a heat map (Figure 5C) and a
dot plot (Figure 5E). The average expression levels of the top 10 highly variable DEGs for
each subtype are demonstrated in a heat map (Figure 5F). As the diagrams show, subtypes
0, 1, 2, and 4 specifically express SPARCL1, RASSF8, TNN1, and LAPTM5, respectively,
while subtype 3 lacks specific DEGs. GO enrichment result for the DEGs of each subtype
is obtained (Supplementary Table S7) and shown in a bubble plot (Figure 5G). The DEGs
in subtype 0 are primarily enriched for the biological processes related to extracellular
structure organization and smooth muscle cell proliferation. The enrichment analysis
of highly expressed genes in subtype 1 indicates the subtype principally participates in
the ribosome metabolic process. The corresponding enrichment for subtype 2 shows
the subtype associated with the steroid biosynthetic process and cholesterol metabolic
process. The signature genes of subtype 3 are enriched in oxidative phosphorylation, aerobic
respiration, and ATP synthesis coupled electron transport. Subtype 4 is mainly involved in
T cell activation, leukocyte cell-cell adhesion, and regulation of the immune system.
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Figure 5. Heterogeneity of theca cells in yak ovary. (A) Uniform manifold approximation and
projection (UMAP) scatterplot visualizing subtypes of theca cells. Each point corresponds to a single-
cell color-coded according to its cell subtype membership. (B) Feature plots exhibiting the expression
specificity of marker genes across all the theca cells. Expression level of each gene from none to high
is indicated by a color gradient from light gray to red. (C) Heat map exhibiting distinct expression
patterning of the top 5 most variable genes for each theca cell subtype among the cell subtypes. Gene
expression levels from low to high are indicated by a color gradient from purple to yellow. (D) Violin
plots visualizing expression specificity of the marker genes for each theca cell subtype among the
cell subtypes. Expression values of the marker genes were scaled by log-normalization. The vertical
coordinate displays expression scores of the marker genes. (E) Dot plot showing expression features
of the signature genes selected for each theca cell subtype among the cell subtypes. Gene expression
levels from low to high are indicated by a color gradient from blue to red. Percentages of cells
expressing specific genes are indicated by size of dot. (F) Heat map showing an average expression
level of each marker gene for each theca cell subtype among the cell subtypes. Gene expression levels
from low to high are indicated by a color gradient from blue to red. (G) Bubble plot showing the
top five enriched biological process (BP) terms of each theca cell subtype from gene ontology (GO)
analysis. Gene ratio in the corresponding biological process is indicated by size of bubble. Adjusted
p-values from low to high are indicated by a color gradient from red to blue.
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2.7. Pseudotime Expression Patterns for Representative Genes in Theca Cells

The developmental trajectory of the theca cells was constructed to study the transcrip-
tomic pathways that theca cells would take during their differentiation processes. A heat
map of the representative genes of the theca cells shows their dynamic expression along
the pseudotime, indicating the temporal and progressive dynamics of the representative
genes (Figure 6A). Similar trends of the representative genes can be found in the expression
patterns of the genes along the pseudotime axis (Figure 6B). As shown in the diagrams,
the expression of the marker genes LAPTM5 and ND2 follow a relatively stable pattern.
RASSF8 starts with a low level at the initial stage, goes up in the middle stage, and then
declines in the late stage. The expression of SPARCL1 begins with a high level, gradually
goes down in the middle stage, and then keeps a stable level. TNNI1 seems to be initiated
to a transcript at the late stage. The pseudotime of the theca cells is determined by their
mapped positions along the principal curves (Figure 6C). We find that this trajectory initi-
ates in subtype 0 of theca cells, further proceeds through subtype 3, 1, and 4 in turn, and
ends in subtype 2 with continuous transitions in between.
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Figure 6. Pseudotime analysis of theca cells in yak ovary. (A) Heat map showing gene expression
dynamics along pseudotime for theca cells. Expression level of each gene from low to high is indicated
by a color gradient from blue to red. (B) Scatterplots exhibiting expression tendencies of the signature
genes for theca cell subtypes arranged along pseudotime. (C) Scatterplots exhibiting the differential
trajectories of five theca cell subtypes with pseudotime scale. The numbers in the black bubbles
represent cellular states. The cyan arrows stand for the pseudotime directions of the theca cells.

2.8. Immunofluorescence Identification of a Marker Gene of Theca Cells

The immunofluorescence technique was applied to determine whether scRNA-seq
accurately localized the specific gene expression to yak theca cells. As the immunofluo-
rescence figure exhibited, CYP11A1 is relatively highly expressed in the theca compared
to the granulosa layer and stromal area in an antral follicle (Figure 7A). The magnified
immunofluorescence section indicates that the specific expression of CYP11A1 can be suc-
cessfully detected in the theca cells (Figure 7B). In detail, the expression of the marker gene
is mainly located in the cytoplasm of the theca cells.
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Figure 7. Immunofluorescence detection for CYP11A1 of yak theca cells. (A) Immunofluorescence
section demonstrating validation of the marker CYP11A1 for a theca layer in an antral follicle.
(B) Immunofluorescence section exhibiting the magnified theca with high density of CYP11A1.
4′,6-diamidino-2-phenyl-indole (DAPI) was used as nuclear counterstain. The scale bars are
500 µm (A) and 50 µm (B) in length.

3. Discussion

In the human ovary, various cell types were identified, including oocyte, granulosa
cell, theca/stromal cell, endothelial cell, perivascular cell, smooth muscle cell, and immune
cell [19,20]. There is a striking similarity of cell types in monkey ovaries to those in human
ovaries [21,22]. Furthermore, nearly identical cell types were discovered in mice ovaries,
except epithelial cells were identified [29,30]. Our classification of yak ovarian cells is
consistent with the ovarian cell types present in the literature, including stromal cells,
theca cells, endothelial cells, smooth muscle cells, natural killer cells, and macrophages
(Figure 2A). These results indicate that cell types of the ovary are relatively conserved
between mammals, implying the consistent biological functions of the mammalian ovaries.
In the present study, granulosa cells and oocytes were not identified due to a lack of specific
marker genes for the two cell types. Canonical markers from other species were not found
in the differential expression in the granulosa cells and oocytes of yaks, reflecting the species
specificity of yaks. However, we separated theca cells from the stromal cells through the
yak ovary, which contributes to cell type identification within the yak ovary.

A mammalian ovarian follicle contains an innermost oocyte, surrounding granulosa
cells, and thecal cells of outer layers. Theca cells arise during secondary follicle formation
and synthesize androgens and progesterone simulated by LH via elevating expression
levels of CYP11A1, CYP17A1, and STAR in cattle ovaries [31–33]. Although cells with
high levels of STAR and CYP17A1 may be considered as the presence of theca cells [34],
theca cells were not distinguished from human stromal cells, even in large secondary
follicles with a visible theca cell layer [20]. This indicates the close relationship between
theca cells and general stromal cells. The molecular markers of theca cells differing from
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those of stromal cells need to be discovered. In the yak ovary, the specific expression of
CYP11A1 was found in theca cells, which can be applied to differentiate theca cells from
the stromal cells. Meanwhile, the high intensity of CYP11A1 protein was confirmed by the
immunofluorescence validation. The highly expressed CYP11A1 within yak theca cells is
coincident with that within cow theca cells, indicating the bovine specificity of theca cells
compared with other species.

As the main somatic cell types, theca and granulosa cells are the sites of action and
synthesis of a number of sex hormones that are in part responsible for the development
of ovarian follicles [35]. Steroidogenesis of granulosa cells in growing follicles is induced
by gonadotropin, which plays a crucial role in ovarian function [36]. The steroidogenic
genes CYP19A1 and CYP11A1 are remarkedly influenced by FSH in ovarian granulosa
cells [37,38]. CYP19A1 as a cytochrome P450 aromatase converts androgens to estrogens in
granulosa cells [39,40]. Conversion of cholesterol to pregnenolone is catalyzed by another
cytochrome P450 enzyme CYP11A1 located on the matrix side of the inner mitochon-
drial membrane which is the first and rate-limiting step in the synthesis of the steroid
hormones [41]. However, only high expression of CYP11A1 was found in the yak theca
cells (Figure 2C,D). The result implies that the conversion of androgens to estrogens is not
necessary and the conversion of cholesterol to pregnenolone may be required for the theca
cells in the yak ovary during anestrus in yaks.

Consistent with previous studies [42–44] and clinical studies [45] that contradict the
existence of oogonial stem cells, we did not find any marker genes for oogonial stem cells,
suggesting this was not a cell type in the yak ovary. We cannot exclude the possibility that
the oogonial stem cells were so rare that they were not able to be captured by the current
technology. Furthermore, oogonial stem cells might have been so sensitive to the tissue
treatment or cell dissociation that they were lost during the sample processing.

Most of the oocytes reside in the ovarian cortex where they are embedded in primordial
follicles [46]. Although the ovarian tissue sampled in our study was composed of cortex
and medulla, oocytes were not identified among the cell types in the yak ovary. In a
canonical process of single-cell sample treatment, the suspended cells usually are subjected
to a filtering step with a 40 µm cell strainer to clear larger particles off. The single-cell
suspension of the yak ovary underwent the same filtering protocol, the oocytes might have
been filtered out due to their relatively huge size. DDX4 resides in the cytoplasm of oocytes
and keeps a high expression level during germ-line cell development; it can be considered
a marker gene for oogonial stem cells and oocytes [44,47]. The genes GDF9, FIGLA, and
ZP3 also demonstrate highly specific expression in the oocytes of humans, monkeys, and
mice [19,22,29]. However, the expression specificity of these markers was not found in any
cluster of yak ovary. There is a possibility that the yak oocytes possess different feature
genes from other species, resulting in no oocytes discovered in the cellular atlas.

A core hub of genes that regulated the cell type-specific markers was revealed by
stage-specific regulatory networks at different stages of monkey oocyte development [22].
In humans, four clusters of fetal germ cells of female were identified on the sound ba-
sis of exclusively expressed genes, including the mitotic phase, RA signaling-responsive
phase, meiotic prophase, and oogenesis phase [48]. Although oocytes within the yak
ovary were not identified, we classified the yak theca cells into five subtypes based on the
well-characterized marker genes (Figure 5A) and the unique transcriptional landscape of
five theca cell subtypes mapped based on their unique scRNA-seq molecular signatures
(Figure 5C,F). The five cell subtypes individually participate in extracellular matrix organi-
zation, ribosome biogenesis, steroid biosynthesis, oxidative phosphorylation, and immune
regulation. These results indicated that theca cells are kept in various states in the ovary
during yak anestrus.

Although we revealed the general cellular atlas of the yak ovary, there are still some
limitations that should be taken into account. The limited number of yak ovaries selected
as the experimental sample might have biased results if the samples do not represent the
yak ovary population in anestrus. Studies with larger sample sizes will be better able
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to confirm our findings in the future. Moreover, the ovary samples collected in April
may not be representative of the yak ovary population in anestrus because the status of
the yak ovary might have altered subtly during anestrus. Furthermore, the reliability of
the signature genes for the cell types identified by our study remains to be confirmed by
other experimental methods, particularly of the new-found marker genes. Many in-depth
studies are further required to discover the functions of the marker genes for different cell
types. In addition, the cell proportions do not necessarily reflect the true cell proportions in
yak ovarian tissue, as the cells in our analyses were influenced by sampling sites, tissue
handling, and dissociation methods, which could impact different cell types differently.

4. Materials and Methods
4.1. Ovary Sample Collection

Nonpregnant female yaks, aged from four to five years, kept in anestrus, living in
regions with altitudes over 3200 m above sea level in Qinghai Province were recruited as
experimental candidates. Ovaries free of anatomical abnormities were removed immedi-
ately from yak carcasses after slaughter. The fresh ovaries were rinsed with physiological
saline to remove blood. Then, six normal ovaries from different individuals were chosen
for the HE staining experiment, three of which were subjected to an immunofluorescence
staining test, a further one of which was selected for scRNA-seq analysis.

4.2. Ovary Sample Pretreatment for Single-Cell Dissociation

The ovary was minced into approximately 3 mm cubed pieces with a sterile scalpel
blade. Five cubed pieces were obtained and flushed with phosphate-buffered saline (PBS).
Each cubed piece was separately transferred into a cryovial containing 1 mL of cell cryop-
reservation medium (80% DMEM, 10% DMSO and 10% FBS), resuspended adequately, and
balanced at room temperature (RT) for 10 min. Then, the cryovials were transferred into
a gradient freezing box containing adequate isopropanol. The gradient freezing box was
immediately buried in dry ice and underwent gradient freezing for 12 h. Subsequently, the
cryovials were transferred into liquid nitrogen for long-term cryopreservation.

4.3. Single-Cell Dissociation of Ovary Sample

The ovarian tissue pieces were dissociated for single-cell RNA sequencing. In brief,
the tissue pieces frozen in cryopreservation medium were thawed in a water bash at
37 ◦C, washed twice with cooled RPMI 1640 medium containing 0.04% bovine serum albu-
min (BSA), and further minced into approximately 0.5 mm3 pieces in RPMI 1640 medium
containing 0.04% BSA. The pieces were subjected to digestion with enzymes, 1 mg/mL
collagenase Type II (Life Technologies, Grand Island, NY, USA) and 0.25% trypsin-EDTA
(Life Technologies, USA) on ice overnight. The digestion process was stopped by adding
DMEM supplemented with 10% of fetal calf serum (Gibco, Paisley, UK). To collect the disso-
ciated cells, the cell suspension was centrifuged at 160× g for 3 min. Next, the dissociated
cells were incubated with advanced DMEM/F12 Glutamax (Life Technologies) containing
1% insulin-transferrin-selenium (Life Technologies, USA), 1% penicillin-streptomycin (Life
Technologies, USA), and 27 IU/mL RNase-free DNase I (Qiagen, Hilden, Germany) at
37 ◦C for 1 h. The cells were resuspended in DPBS containing 2% FBS and passed through
a 40 µm cell strainer (Corning, NY, USA) to remove remaining cell aggregates.

4.4. Single-Cell RNA Library Construction and Sequencing

The dead cells in the cell suspension were removed with a dead cell removal kit (MACS,
Milteny Biotec, Bergisch Gladbach, Germany) and single-cell suspensions including high
viability cells were obtained. The cell suspension was loaded into chips of a Chromium Next
GEM Single Cell 3′ Reagent Kit v3.1 (PN-1000128, 10×Genomics, Pleasanton, CA, USA) and
subjected to a Chromium Single Cell Controller (10× Genomics, USA) to generate single-
cell GEM. Then, a primer containing Illumina TruSeq Read 1 sequence, a 10× Barcode, a
UMI, and a poly-dT sequence was employed to produce barcoded full-length cDNA from
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poly-adenylated messenger RNA. The GEMs were broken and the pooled fractions were
recovered. The barcoded first-strand cDNAs were purified with silane magnetic beads and
amplified to generate sufficient mass for library construction. Enzymatic fragmentation
and size selection was used to optimize cDNA amplicon size. P5, P7, a sample index, and a
TruSeq Read 2 were added to the amplicon via end repair, A-tailing, adaptor ligation, and
PCR. Subsequently, the library synthesis and RNA-seq were completed with an Illumina
sequencing platform (Novaseq 6000) using a 300 cycles kit (Illumina, San Diego, CA,
USA) and paired-end readings of 150 bp were generated. The scRNA-seq data have been
deposited in the Gene Expression Omnibus (GEO) with the accession number GSE213989.

4.5. Single-Cell Gene Expression Matrix Generation

The raw Chromium scRNA-seq output was processed using the Cell Ranger pipeline
provided by 10× Genomics (v2.2.0) and the reads were aligned to yak genome version
BosGru3.0 using the STAR aligner [49]. Consequently, a gene expression matrix for the cells
with correctly detected cellular barcodes was generated, of which each column represented
a valid cell barcode and each row represented a gene.

4.6. Quality Control and Normalization for Single-Cell RNA-Sequencing Data

The expression matrix of cells was handled in a standard workflow of R (version 4.1.3,
Vienna, Austria) using the R package Seurat version 4.1.0 [50]. After the Cell Ranger
filtration based on correctly detected cellular barcodes, cells expressing more than 200 genes
and genes expressed in at least three cells were kept for downstream bioinformatics analyses.
Percentages of hemoglobin, mitochondrial, and ribosomal features were calculated by the
function “PercentageFeatureset”. The nFeature, nCount, percent.HB, percent.MT, and
percent.Ribosome were visualized through the function “Vlnplot”. For filtering high-
quality cells and excluding cells with extreme values indicating low complexity, duplets,
or apoptotic cells, the ovarian cells that expressed gene numbers ranging from 200 to
2500 and possessing a percentage of mitochondrial genes to total genes lower than 20%
were retained for further analysis. The remaining data were normalized using the function
“NormalizeData” of the R package Seurat. Specifically, the UMI counts of each gene in
each cell were divided by the sum of the UMI counts of that gene across all the cells. The
obtained values were multiplied by 10,000 and then transformed by a natural logarithm.
Subsequently, the top 2000 highly variable genes were identified using the Seurat function
“FindVariableFeatures” with the variance-stabilizing transformation method [51]. The
obtained variables were centered to a mean of zero and scaled to a standard deviation of
one using the function “ScaleData” based on the variable genes.

4.7. Dimensionality Reducing, Cell Clustering, and Marker Gene Finding

Dimensionality reduction was carried out on the scaled data via PCA using the
function “RunPCA” of Seurat. The number of PCs was determined by the “ScoreJackStraw”
and “Elbowplot” function to obtain the optimal condition for clustering. Cell clustering
was conducted using the “FindNeighbors” and “FindClusters” functions. The top 18 PCs
were chosen as the dimensionality of the dataset. A modularity optimization technique
(Louvain algorithm) was employed to cluster the cells, and the most optimal resolution
parameter of 0.6 was used after optimizing the parameter ranging from 0.4 to 1.2. The
cell clusters were visualized through the nonlinear dimensionality reduction algorithm
UMAP using the function “RunUMAP” with a perplexity parameter of 18, giving each
datapoint a location on a two-dimensional map. Differentially expressed genes (DEGs)
were determined using the “FindAllMarkers” function (Wilcoxon Rank Sum test). In this
process, a threshold of base 2 logarithms of fold change was set to 0.25 and minimum
percentage of cells expressing specific genes in each cluster was set to 0.25 either. Expression
specificity of the DEGs in each cluster was visualized as a heat map and a dot plot generated
by the functions “DoHeatmap” and “DotPlot”, respectively.
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4.8. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment and Cell
Type Annotation

GO and KEGG enrichment analyses on the top 200 variable DEGs in each cell cluster
were implemented by the Bioconductor packages “clusterProfiler” [52] and “org.Bt.eg.db”.
The GO enrichment was demonstrated on a bubble plot using the “doplot” function from
the R package “ggplot2”. The cell clusters were annotated based on high variable genes in
each cluster using “SingleR” package. Subsequently, the clusters were manually annotated
into distinct cell types based on the CellMarker dataset, previous relevant reports [53,54],
the GO enrichment, and the “SingleR” annotation results. The top 200 variable DEGs in each
cell types were also subjected to GO and KEGG enrichment analyses to ensure the reliability
of the cell annotation. The annotated cell types were visualized in a two-dimensional
UMAP plot by the “DimPlot” function. A dot plot, a heat map, eight feature plots, and
eight violin plots were produced by the “DotPlot”, “DoHeatmap”, “FeaturePlot”, and
“VlnPlot” functions, respectively, to display the expression specificity of the representative
genes. In addition, the average expression level of each signature gene in each cell type
was displayed in another heat map.

4.9. Cell Communication Analysis

Cell-cell communication via ligand-receptor interactions was established with the
Python package “CellPhoneDB” [55] to explore the potential interaction between different
cell types. The cell-cell interplays were inferred based on the expression of known ligand-
receptor pairs in the cell types. Only in the situation where a receptor and its ligand were
expressed in at least 10% of the corresponding tested cell population was it considered that
an interaction existed between two cell types.

4.10. Heterogeneity Analysis on Granulosa Cells and Oocytes

The gene expression matrices of granulosa cells and oocytes were extracted from the
expression matrix of all cell types. The top 200 highly variable genes were filtered out
for each cell type. The obtained variables were centered to a mean of zero and scaled to
a standard deviation of one based on the variable genes. Dimensionality reduction was
carried out on the scaled data via PCA. The number of PCs was determined to obtain the
optimal condition for clustering. Cell clustering was conducted with a resolution of 18 PCs
and a parameter set to 0.4. The cell clusters were visualized by UMAP with a perplexity
parameter of 18, giving each datapoint a location on a two-dimensional map. DEGs were
determined for the two cell types. Expression specificity of the DEGs in each cell type was
visualized as a heat map and a dot plot. GO and KEGG enrichment analyses on the top
200 variable DEGs of each cell cluster were implemented. The GO enrichment results were
demonstrated on bubble plots. Dot plots, heat maps, feature plots, and violin plots were
generated to display the expression specificity of the representative genes. In addition, the
average expression level of each signature gene in each cell type was displayed in the other
heat maps. The above data analyses were conducted as previously described in the data
generation processes of the intact expression matrix.

4.11. Construction of Developmental Trajectory for Granulosa Cells and Oocytes

Pseudotime trajectory analysis was performed to inspect the progression of continuous
cell states using the R package “monocle” based on the transcriptional dynamics that
occurred in granulosa cells and oocytes [56]. The monocle objects were created from the
Seurat objects of granulosa cells and oocytes using the function “newCellDataSet” of the
package “monocle” with a lowerDetectionLimit of 0.5. The DDRTree algorithm was applied
to visualize the pseudotime trajectory in the reduced dimensional space. Gene expression
heat maps over pseudotime were generated with the “plot_pseudotime_heatmap” function
with the highly variable genes as input. The pseudotime trajectory plots of granulosa cells
and oocytes were built using the function “plot_cell_trajectory” of the package “monocle”.
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Expression trends of the highly variable genes across pseudotime were visualized using
the function “plot_genes_in_pseudotime”.

4.12. Immunofluorescence Validation

After being washed with normal saline as previously described, the three yak ovaries
were cut into approximately 5 mm cubed pieces. The cubed pieces were immediately
rinsed with PBS, fixed overnight in 4% methanol-free paraformaldehyde, transferred to
70% ethanol, and embedded in paraffin using a Shandon Excelsior tissue processor (Thermo
Scientific, Altrincham, UK). The paraffin-embedded tissue blocks were sectioned (4 µm
thickness) using an RM2065 microtome (Leica Instruments GmbH, Wetzlar, Germany) onto
StarFrost slides. For immunostaining, the paraffin sections were deparaffinized in xylene
twice, and rehydrated in a series of ethanol baths, ending with distilled water at RT. Antigen
retrieval was performed in 0.01 M sodium citrate buffer (pH 6.0) in a steamer for 20 min.
After cooling down, the slides were rinsed three times with PBS and blocked with blocking
buffer (1% BSA, 0.05% Tween-20 in PBS) at RT for 1 h. The tissue sections were incubated
with a primary antibody rabbit anti-TOP2A (1:200, bs-1920R, Bioss, Beijing, China) at 4 ◦C
overnight. On the following day, the sections were incubated with a secondary antibody
goat anti-rabbit IgG (1:500, A16118, ThermoFisher, Waltham, MA, USA) at RT for 1 h.
The sections were washed with PBS, counterstained with 4′,6-diamidino-2-phenyl-indole
(DAPI, Life Technologies, USA), and mounted using ProLong Gold (Life Technologies,
USA) in fluorescent mounting media (Dako Agilent, USA). Immunostained slides were
scanned with a Pannoramic 250 Flash III digital scanner (3DHISTECH Ltd., Budapest,
Hungary) and representative areas were selected for imaging using “Pannoramic Viewer”
software (version 2.5.0, 3DHISTECH Ltd.).

5. Conclusions

We depicted the first cellular atlas of the yak ovary during anestrus. The specifically
expressed genes CCL5, PECAM1, FBLN1, CYP11A1, RGS5, CENPF, and AIF1 can be
considered as marker genes for natural killer cells, endothelial cells, stromal cells, theca
cells, smooth muscle cells, proliferating cells, and macrophages, respectively, in the yak
ovary. A bidirectional network of cell-to-cell communication was constructed on basis of
the highly expressed ligand-receptor pairs among the cell types. Especially, we established
a network of cell-to-cell communication to demonstrate the interactions between the theca
cells and the other cell types. In addition, the cell subtype analysis of the theca cells
indicated their heterogeneities in the yak ovary. The results obtained from this study could
be beneficial to provide insight into the mechanism underlying the reproductive adaptation
to high-altitude environments in yaks.
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