Table 2.
Performance of models with and without AD on hold-out test set. Bolded values highlight the model with the best performance on a certain
| Image-Wide |
Average Across Positive Images |
|||||
|---|---|---|---|---|---|---|
| Model Name | DSCall | Precision | Recall | F1 | DSC + | IoU |
| UNet-AD | 0.775±0.357 | 0.807 | 0.822 | 0.814 | 0.609±0.340 | 0.514±0.316 |
| NestedUNet-AD | 0.762±0.364 | 0.795 | 0.850 | 0.821 | 0.597±0.335 | 0.498±0.308 |
| SResUNet-AD | 0.754±0.362 | 0.793 | 0.832 | 0.812 | 0.575±0.321 | 0.469±0.290 |
| Wang et al.-AD | 0.755±0.385 | 0.755 | 0.768 | 0.761 | 0.609±0.379 | 0.533±0.355 |
| SGUNet-AD | 0.722±0.390 | 0.731 | 0.811 | 0.769 | 0.571±0.344 | 0.474±0.313 |
| AttUNet-AD | 0.776±0.355 | 0.804 | 0.846 | 0.824 | 0.623±0.334 | 0.527±0.313 |
| MSU-Net-AD | 0.782±0.354 | 0.812 | 0.847 | 0.829 | 0.627±0.343 | 0.537±0.323 |
|
| ||||||
| UNet | 0.544±0.445 | 0.512 | 0.946 | 0.665 | 0.711±0.276 | 0.610±0.277 |
| NestedUNet | 0.539±0.444 | 0.508 | 0.944 | 0.661 | 0.710±0.271 | 0.606±0.271 |
| SResUNet | 0.259±0.369 | 0.369 | 0.941 | 0.530 | 0.673±0.277 | 0.563±0.271 |
| Wang et al. | 0.299±0.402 | 0.377 | 0.961 | 0.541 | 0.757±0.248 | 0.660±0.258 |
| SGUNet | 0.442±0.435 | 0.458 | 0.920 | 0.611 | 0.621±0.289 | 0.506±0.273 |
| AttUNet | 0.547±0.444 | 0.515 | 0.945 | 0.667 | 0.707±0.277 | 0.606±0.279 |
| MSU-Net | 0.581±0.442 | 0.535 | 0.944 | 0.683 | 0.726±0.271 | 0.628±0.273 |