Skip to main content
[Preprint]. 2023 Feb 2:2023.01.31.23285223. [Version 1] doi: 10.1101/2023.01.31.23285223

Table 2.

Performance of models with and without AD on hold-out test set. Bolded values highlight the model with the best performance on a certain

Image-Wide
Average Across Positive Images
Model Name DSCall Precision Recall F1 DSC + IoU
UNet-AD 0.775±0.357 0.807 0.822 0.814 0.609±0.340 0.514±0.316
NestedUNet-AD 0.762±0.364 0.795 0.850 0.821 0.597±0.335 0.498±0.308
SResUNet-AD 0.754±0.362 0.793 0.832 0.812 0.575±0.321 0.469±0.290
Wang et al.-AD 0.755±0.385 0.755 0.768 0.761 0.609±0.379 0.533±0.355
SGUNet-AD 0.722±0.390 0.731 0.811 0.769 0.571±0.344 0.474±0.313
AttUNet-AD 0.776±0.355 0.804 0.846 0.824 0.623±0.334 0.527±0.313
MSU-Net-AD 0.782±0.354 0.812 0.847 0.829 0.627±0.343 0.537±0.323

UNet 0.544±0.445 0.512 0.946 0.665 0.711±0.276 0.610±0.277
NestedUNet 0.539±0.444 0.508 0.944 0.661 0.710±0.271 0.606±0.271
SResUNet 0.259±0.369 0.369 0.941 0.530 0.673±0.277 0.563±0.271
Wang et al. 0.299±0.402 0.377 0.961 0.541 0.757±0.248 0.660±0.258
SGUNet 0.442±0.435 0.458 0.920 0.611 0.621±0.289 0.506±0.273
AttUNet 0.547±0.444 0.515 0.945 0.667 0.707±0.277 0.606±0.279
MSU-Net 0.581±0.442 0.535 0.944 0.683 0.726±0.271 0.628±0.273