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abstract

PURPOSE Peripheral T-cell lymphoma (PTCL) includes heterogeneous clinicopathologic entities with numerous
diagnostic and treatment challenges. We previously defined robust transcriptomic signatures that distinguish
common PTCL entities and identified two novel biologic and prognostic PTCL-not otherwise specified subtypes
(PTCL-TBX21 and PTCL-GATA3). We aimed to consolidate a gene expression–based subclassification using
formalin-fixed, paraffin-embedded (FFPE) tissues to improve the accuracy and precision in PTCL diagnosis.

MATERIALS AND METHODS We assembled a well-characterized PTCL training cohort (n 5 105) with gene ex-
pression profiling data to derive a diagnostic signature using fresh-frozen tissue on the HG-U133plus2.0 platform
(Affymetrix, Inc, Santa Clara, CA) subsequently validated using matched FFPE tissues in a digital gene expression
profiling platform (nCounter, NanoString Technologies, Inc, Seattle, WA). Statistical filtering approaches were
applied to refine the transcriptomic signatures and then validated in another PTCL cohort (n5 140) with rigorous
pathology review and ancillary assays.

RESULTS In the training cohort, the refined transcriptomic classifier in FFPE tissues showed high sensitivity (. 80%),
specificity (. 95%), and accuracy (. 94%) for PTCL subclassification compared with the fresh-frozen–derived
diagnostic model and showed high reproducibility between three independent laboratories. In the validation cohort,
the transcriptional classifier matched the pathology diagnosis rendered by three expert hematopathologists in 85%
(n5 119) of the cases, showed borderline association with the molecular signatures in 6% (n5 8), and disagreed in
8% (n 5 11). The classifier improved the pathology diagnosis in two cases, validated by clinical findings. Of the 11
cases with disagreements, four had a molecular classification that may provide an improvement over pathology
diagnosis on the basis of overall transcriptomic andmorphological features. Themolecular subclassification provided a
comprehensive molecular characterization of PTCL subtypes, including viral etiologic factors and translocation
partners.

CONCLUSION We developed a novel transcriptomic approach for PTCL subclassification that facilitates trans-
lation into clinical practice with higher precision and uniformity than conventional pathology diagnosis.

J Clin Oncol 40:4261-4275. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Peripheral T-cell lymphoma (PTCL) represents ap-
proximately 10%-15% of non-Hodgkin lymphoma1

with numerous challenges in diagnosis even for ex-
pert hematopathologists.2-4 The WHO classification
identifies more than 25 different subtypes of PTCLs,
with angioimmunoblastic T-cell lymphoma (AITL),
anaplastic large cell lymphoma (ALCL), adult T-cell
leukemia/lymphoma (ATLL), and extranodal natural
killer (NK)/T-cell lymphoma of nasal type (ENKTCL) as

the most frequent entities with geographic variations.5

However, 30% of PTCL cannot be classified into any of
the specific entities in the WHO classification, and
these are categorized as PTCL, not otherwise specified
(PTCL-NOS).6,7 Tumor-defining abnormalities, such as
translocations involving the ALK gene in ALK-positive
ALCL (ALK1 ALCL),8 human T-lymphotropic virus in-
fection in ATLL,9 Epstein-Barr virus (EBV) positivity in
ENKTCL, and IDH2R172 mutations in AITL, are generally
uncommon in PTCL. PTCLs generally have a poor
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prognosis with current therapies,2 and more intensive regi-
mens have not been proven to be superior.10 However, novel
targeted therapies are now being tested, with some re-
markable results.11,12

The subclassification is more challenging for PTCL com-
pared with B-cell lymphomas because of the complexity of
T-cell biology with numerous functional subsets and
functional plasticity. Gene expression profiling (GEP) has
aided in delineating novel biologic subtypes and in the
identification of oncogenic pathways in several B-non–
Hodgkin lymphomas.13-18 Similar approaches in PTCLs
resulted in robust molecular classifiers for the common
PTCL entities and identified two biologic and prognostic
subgroups within PTCL-NOS (PTCL-GATA3 and PTCL-
TBX21).19-21 However, these studies were performed on
fresh-frozen (FF) samples with transcriptome-wide arrays,
thus limiting the application to routine clinical practice.22,23

Formalin-fixed, paraffin-embedded (FFPE) tissue samples
are widely used in routine diagnosis, but formalin fixation
leads to fragmentation, cross-linking, and chemical mod-
ifications of RNA and DNA.24 Therefore, the effective
translation of our highly accurate RNA-based PTCL diag-
nostic signatures to FFPE tissue is challenging but essential
to implement an assay with wide clinical application.25

Using digital quantification of RNA, as in diffuse large
B-cell lymphoma,26-28 we consolidated our PTCL diagnostic
signatures from FF RNA into a single technical platform
for the accurate diagnosis across major PTCL entities.19-21

We used a training (n 5 105) and an independent vali-
dation (n5 140) PTCL cohort, representing the largest well-
characterized PTCL series investigated on a single platform
for subclassification. Several viral transcripts were added to
improve diagnostic accuracy, and we report a diagnostic

algorithm that attained high sensitivity, specificity, and
accuracy in distinguishing PTCL entities, including the
novel molecular biologic subtypes of PTCL-GATA3 and
PTCL-TBX21.20,21

MATERIALS AND METHODS

Patient Information

We included 249 diagnostic PTCL cases from multiple
institutions, which after the exclusion of 4 cases with poor
RNA quality, were divided into a training cohort (105 cases)
with previously generated GEP19-21 with matched FF and
FFPE samples and a validation cohort (140 cases) that had
not been previously analyzed (Table 1 and Fig 1A). The
basic clinical and pathologic characteristics of the cases
are shown in the Data Supplement (online only). Inclusion
and exclusion criteria of PTCL cases are detailed in the Data
Supplement.

Histopathology/Immunomorphological Features of the

PTCL Cohorts

PTCL cases were centrally reviewed and diagnosed
according to the current WHO classification.6 The validation
cohort was thoroughly re-evaluated by three hematopatholo-
gists (C.A., D.D.W., and W.C.C.) with a comprehensive im-
munostaining panel and T-cell receptor gene rearrangement
analysis when needed. A consensus diagnosis was reached
when there was unanimous agreement on the diagnosis (see
the Data Supplement).

RNA Extraction and Digital Gene Expression for

PTCL Subclassification

The details about RNA extraction protocols, quality control
measures, NanoString assay (NanoString Technologies,

CONTEXT

Key Objective
To evaluate the role of digital gene expression signatures for the classification of peripheral T-cell lymphoma (PTCL) using

formalin-fixed, paraffin-embedded tissue and to develop a highly accurate and reproducible diagnostic assay applicable
for routine clinical practice.

Knowledge Generated
Using digital quantitation of transcripts, we have defined robust transcriptomic signatures that can distinguish common

PTCL subtypes according to the WHO classification, including two novel biologic and prognostic subgroups within PTCL-
not otherwise specified. We refined the classification algorithm and standardized the assay procedure for a robust
diagnostic assay that was validated in an independent PTCL cohort. This assay was reproducible across institutions and
showed high classification accuracy.

Relevance (J.W. Friedberg)
The digital transcriptomic assay resulted in robust molecular classification of PTCL using mRNA from formalin-fixed,

paraffin-embedded tissue. This classifier may enable development of precision medicine trials in PTCL and ultimately
may be incorporated into diagnostic classification systems for lymphoma.*

*Relevance section written by JCO Editor-in-Chief Jonathan W. Friedberg, MD.
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TABLE 1. Performance of the PTCL Diagnostic Algorithm in Training and Validation Cohorts

Diagnosis

Training (n 5 105) Validation (n 5 140)

No.
Sensitivity 95% CI
(upper to lower)

Specificity 95% CI
(upper to lower)

Accuracy 95% CI
(upper to lower) No.

Sensitivity 95% CI
(upper to lower)

Specificity 95% CI
(upper to lower)

Accuracy 95% CI
(upper to lower)

AITL 24 0.96a (0.79 to 0.99) 0.96a (0.90 to 0.99) 0.96a (0.91 to 0.99) 19 1a (0.82 to 1) 0.98a (0.94 to 1) 0.99a (0.95 to 1)

ALK2 ALCL 15 0.87 (0.60 to 0.98) 1 (0.96 to 1) 0.98 (0.93 to 1) 16 0.75 (0.48 to 0.93) 0.99 (0.96 to 1) 0.96 (0.92 to 0.99)

ALK1 ALCL 14 0.93 (0.66 to 1) 0.98 (0.92 to 1) 0.97 (0.92 to 0.99) 20 0.9 (0.68 to 0.99) 0.98 (0.94 to 1) 0.97 (0.93 to 0.99)

ENKTCL 10 0.9 (0.55 to 1) 1 (0.96 to 1) 0.99 (0.95 to 1) 22 0.95 (0.77 to 0.99) 1 (0.97 to 1) 0.99 (0.96 to 1)

ATLL 7 1 (0.59 to 1) 1 (0.96 to 1) 1 (0.97 to 1) 12 0.83 (0.52 to 0.98) 0.98 (0.94 to 1) 0.97 (0.93 to 0.99)

PTCL-NOS — — — — 51 0.92a (0.81 to 0.98) 0.93a (0.86 to 0.97) 0.93a (0.87 to 0.97)

PTCL-GATA3 15 0.93a (0.68 to 1) 0.97a (0.91 to 0.99) 0.96a (0.91 to 0.99)

PTCL-TBX21 20 0.8a (0.56 to 0.94) 0.98a (0.92 to 1) 0.94a (0.88 to 0.98)

Abbreviations: AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ATLL, adult T-cell lymphoma/leukemia; ENKTCL, extranodal NK/T-cell lymphoma; PTCL-NOS,
peripheral T-cell lymphoma, not otherwise specified.

aIntermediate cases were not considered as discrepant.
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FIG 1. PTCLmolecular classifier. (A) Study design and schematics of themolecular diagnosis of PTCL. A molecular classifier for PTCL subclassification
was derived using HG-U133plus2.0 array data from PTCL with FF tissue (n5 109), designated as the training cohort. This molecular classifier had 442
distinct genes, including housekeeping and other genes involved in T-cell biology. This transcriptomic signature was considered for NanoString analysis
using corresponding matched FFPE samples. Transcripts that showed a high correlation between FF and FFPE data were selected. The algorithm was
further refined to have the minimum number of transcripts for subclassification and mimic the FF predictor score with (continued on following page)
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Inc, Seattle, WA), data processing, cross-validation, and
reproducibility assessment are given in the Data Supple-
ment and in Figure 1A. The data analysis and normalization
were designed to process samples individually, rather than
in batches, so that the protocol would be suitable for
processing patient samples on an as-needed basis. Class
prediction was based on a series of binary comparisons that
were combined for a final classification call for each sample
(Fig 1A and Data Supplement). The detailed materials and
methods are included in the Data Supplement.

Survival Analysis

The survival data were analyzed using the survival, surv-
miner, and coin packages in R and are detailed in the Data
Supplement.

RESULTS

Patient Characteristics in the Training and

Validation Cohorts

The training cohort (n 5 105), which had previously
generated GEP data in FF19-21 and matched FFPE tissues,
was used to select the classifier genes for the nCounter
platform. The PTCL validation cohort (n 5 140) without FF
transcriptomic data was rigorously diagnosed by three
expert hematopathologists using current WHO diagnostic
criteria6 (Fig 1A and Table 1). Of note, PTCL-NOS cases
were evaluated with T follicular helper (TFH) markers for
exclusion of nodal PTCL-TFH cases and subsequently
subclassified into PTCL-GATA3 and PTCL-TBX21 using the
recently published IHC algorithm.29

The clinicopathologic characteristics of the training and vali-
dation cohorts are summarized in theData Supplement. There
was no significant difference in sex, age, and overall survival
(OS; Fig 1C) between the validation and training cohorts. The
median follow-up for survivors was 3.5 years (range, 0.01-24
years) for patients with available survival data. ALK1 ALCL
cases showed a superior outcome than the other entities,
consistent with published studies (Figs 1D and 1E).2,21

Development of Transcriptomic Signatures for

FFPE Tissue

FFPE tissue blocks were selected on the basis of the presence
of adequate tumor tissue and RNA quality assessed as shown
in the Data Supplement. Transcriptomic signatures assessed
between two platforms, HG-U133plus2.0 (Affymetrix, Inc,
Santa Clara, CA) versus the nCounter platform, revealed high
correlation (correlation coefficient r . 0.4) in the majority
(approximately 60%) of signature-specified genes (Data
Supplement). We performed recursive filtering analysis
to exclude transcripts with correlation coefficients # 0.4
using Pearson correlation (except three transcripts)
to generate 11-20 diagnostic transcripts per PTCL
subtype and 16 housekeeping genes (Data Supple-
ment). Using these well-performing transcripts on
the nCounter did not affect the classification accuracy,
sensitivity, and specificity, either in FF RNA (HG-
U133plus2.0) or matched FFPE RNA (nCounter, Nano-
String Technologies, Inc) in the training cohort (n5 105).
The molecular subclassification using FFPE samples was
highly comparable with the FF gold standard with an error
rate of , 5% across the various PTCL subtypes.

Accuracy of PTCL Classification and Interlaboratory

Reproducibility Using the Refined Signature

The reduced transcript signature retained the accuracy in
classification in the HG-U133 plus2.0 platform data19-21

(Data Supplement). Therefore, the reduced diagnostic
transcripts were considered the gold standard for sub-
sequent comparisons with the nCounter assay in the
training set (Fig 1B, left panel). The classification of the
FFPE training cohort was recapitulated on the nCounter
platform in 90% (95 of 105) of the cases (Table 1 and Data
Supplement). We observed the prognostic difference
between PTCL-GATA3 and PTCL-TBX21 (Data Supple-
ment), but the number of samples was too small to reach
statistical significance. Since we transitioned from a larger
panel to a smaller panel of diagnostic transcripts, seven
cases from different PTCL subtypes were re-evaluated with
the reduced transcript set versus the original larger panel
on the nCounter platform. They demonstrated concordant

FIG 1. (Continued). the nCounter platform (see theMethods andMaterials for details). The final diagnosticmodel resulted in 153 transcripts (99 diagnostic,
five viral, 16 housekeeping, and 33 T-cell biology–related) and was validated in an independent cohort of PTCL cases rigorously characterized by pathology
and other ancillarymethods. The classification algorithmwas based on a series of several binary predictors to distinguish one entity from another, as detailed
in the Data Supplement. (B) Heatmap of the finalized NanoString classifier in the training and validation cohorts. EBV and HTLV-1 viral transcripts
commonly expressed in specific PTCL subtypes are shown, and housekeeping genes used for normalization and that do not vary between PTCL subtypes
are displayed for comparison. (C) Kaplan-Meier curve of OS for 89 of the 105 training cohort cases and66 of the 140 validation cases with available outcome
data. (D) Kaplan-Meier curve of OS of PTCL subtypes included in the training cohort (molecular classification by the HG-U133plus2.0 array). (E) Kaplan-
Meier curve of OS of PTCL entities included in the validation cohort (pathology classification). aFour cases excluded because of poor RNA quality. bIncludes
classification, housekeeping, and important T-cell biology genes. cTwelve cases excluded because of reclassification as n-PTCL-TFH. AITL, angioim-
munoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ATLL, adult T-cell lymphoma/leukemia; EBV, Epstein-Barr virus; ENKTCL, extranodal
natural killer/T-cell lymphoma; FF, fresh-frozen; FFPE, formalin-fixed, paraffin-embedded; GEP, gene expression profiling; HBZ, HTLV-1 bZIP factor; HTLV-1,
human T-lymphotropic virus; NOS, not otherwise specified; OS, overall survival; PTCL, peripheral T-cell lymphoma; TFH, T follicular helper.
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results, maintaining similar diagnostic accuracy (Data
Supplement). When the assay was performed at two ad-
ditional Clinical Laboratory Improvement Amendments
sites to assess the reproducibility, we observed highly
concordant results and the same classification as at
the original site for all 24 PTCL cases studied (Data
Supplement).

Refined Diagnostic Algorithm Across Different PTCL

Entities and the Validation Cohort

To assess diagnostic performance, the molecular classifi-
cation obtained with the nCounter platform was compared
with the consensus pathologic diagnosis in an independent
validation cohort (n 5 140). This cohort had a similar
clinical outcome and distribution of PTCL subtypes as the
training cohort (Figs 1A and 1C). The classification ob-
tained with the nCounter platform was highly comparable
with the diagnosis rendered by expert pathologists, with an
overall concordance of 91% (127 of 140, 95% CI, 0.85 to
0.95) in the validation cases, and refined the classification
of challenging PTCL cases as indicated below (Table 1,
Fig 1B, right panel, and Data Supplement).

AITL. Average expression of the diagnostic signature
significantly correlated with a pan T-FH gene expression
signature (ie, six transcripts defined in WHO as TFH
markers6; Figs 2A and 2B). The cases molecularly
classified as AITL in the training and validation cohorts by
nCounter showed immunomorphological features com-
monly associated with AITL. Consistent with previous
studies, high expression of CD20 was associated with a
better OS,20,21,30 which was validated using immuno-
histochemistry (Fig 2C). An AITL mutation spectrum (ie,
TET2, DNMT3A, RHOAGI7V, and IDH2R172) was seen in
89% of the cases with available sequencing data
(Fig 2D).

Using the nCounter platform, AITL was classified with an
83% concordance in the training cohort (20 of 24) and
74% in the validation cohort (14 of 19), whereas the
remaining cases (three in training and five in validation)
showed the borderline model score between AITL and
PTCL-NOS (Table 1, Fig 2E, and Data Supplement). These
cases missed the AITL molecular diagnosis on the basis of
the threshold or cut point. Upon re-review, these cases
were confirmed to have classical AITL immunomorpho-
logical features, and mutation analysis supported the di-
agnosis, with a classical AITL mutation spectrum including
TET2, RHOAG17V, and IDH2R172 as shown in Figure 2D.
These cases showed an AITL diagnostic signature ex-
pression at comparatively higher levels than other PTCLs,
marginally lower than AITL, and a higher expression of
the TFH signature (Figs 2A and 2F). As expected, the three
follicular T-cell lymphoma cases were all classified as AITL.
Two PTCL-NOS cases were molecularly classified as
AITL. These cases showed focal positivity of the TFH
markers B-cell lymphoma 6 (BCL-6) and inducible T cell

co-stimulator (ICOS) (Figs 2G-2I), but criteria for nodal
PTCL-TFH were not met. Although these two cases (Fig 2F)
clearly expressed AITL signature genes and TFH mRNA
signatures higher than most other PTCL-NOS cases, mu-
tations in the genes commonly seen in AITL (TET2,
IDH2R172, RHOAG17V, and DNMT3A) were not present.
These two cases may represent PTCL-TFH that were not
classified by the immunostains performed.

ALCL subtypes. Initial analysis of ALCL versus other PTCLs
showed an 83% (30 of 36, 95% CI, 0.67 to 0.94) con-
cordance in the validation cohort, which was comparable
with the training cohort (26 of 29; 90%, 95% CI, 0.73 to
0.98) using the refined signature (Fig 3A). The validation cohort
(Table 1 and Fig 3B) showed a 90% (18 of 20) concordance in
ALK1 ALCL and 75% (12 of 16) in ALK-negative ALCL (ALK2
ALCL). Interestingly, two ALK2 ALCLs were classified as ALK1
ALCL because of a high ALK1 ALCL signature, but ALK
mRNA expression was low (Fig 3C), and IHC did not detect
ALK protein expression. As expected, ALCL-classified cases
by ALK status showed that ALK1 ALCL cases had a better
OS (Fig 3D). Remarkably, none of the PTCL-NOS cases,
including those with strong CD30 positivity by IHC, were
misclassified into ALCL. However, four ALCL (two ALK1
ALCLs and two ALK2 ALCLs) showed a comparatively lower
ALCL signature expression although the two ALK1ALCLs had
a high ALK signature (Fig 3C). The two ALK2 ALCL cases with
a low ALCL signature did not express CD30 mRNA, and the
failure to classify these cases may be attributed to inadequate
RNA quality or low tumor content (Fig 3E). These findings
suggest that the occasional cases with a low diagnostic sig-
nature should be diagnosed with caution.

ATLL. The ATLL molecular signature detected 100% of
ATLL cases in the training cohort (7 of 7, 95% CI, 0.59 to 1)
and 83% of the validation cohort cases (10 of 12, 95% CI,
0.52 to 0.98; Fig 4A). The two cases showing disagreement
had marginal expression of the ATLL diagnostic signature,
but both were confirmed to be positive for HTLV1 mRNA
expression (ie, HTLV-1 bZIP factor [HBZ] by quantitative
real-time polymerase chain reaction [qRT-PCR]) although
in one, the expression of HBZ measured by the nCounter
was lower than other ATLLs (Figs 4B and 4C). Of the two
HTLV1 transcripts (HBZ and Tax-1), HBZ was consistently
expressed at higher levels in ATLL cases compared with
Tax-1 and showed a positive correlation with the ATLL
signature (Figs 4D and 4E) and a significant correlation with
HBZ expression measured by qRT-PCR (Fig 4F). Inter-
estingly, two PTCL-NOS cases from the validation cohort
were molecularly classified as ATLL (Fig 4A). Re-evaluation
of these cases using HBZ-specific qRT-PCR confirmed the
expression of HBZ (Fig 4E), and subsequent review of the
clinical chart indicated serologic positivity for HTLV1 and a
clinical presentation compatible with ATLL, unknown at the
time of the initial diagnosis. Morphologically, these cases
consisted of CD4-positive monomorphic T-cell lymphomas,
which, in the absence of an appropriate clinical history,
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blood examination, and serologic testing, were mis-
diagnosed as PTCL-NOS7 (Fig 4B). Therefore, these two
cases were reclassified as ATLL.

ENKTCL. The ENKTCL molecular classifier was able to
identify 90% (9 of 10) of ENKTCL cases in the training
cohort and 95% (21 of 22) in the validation cohort (Table 1

FIG 2. (Continued). NanoString classifier are noted with an asterisk. (E) Violin and dot plot of AITL classification diagnostic scores in AITL and PTCL-
NOS cases profiled on the nCounter. Cases that were discordant between AITL and PTCL-NOS are given in red, and intermediate AITL cases in gray.
(F) Heatmaps of AITL showing disagreement by NanoString classification in the validation cohort. The mean signature of the concordant cases is
shown. For cases labeled intermediate, those diagnosed as AITL by consensus pathology review are on the left and intermediate cases diagnosed as
PTCL-NOS are on the right. Two PTCL-NOS classified as AITL by nCounter. (G-I) Shown focal expression of BCL-6 and ICOS (400x; G, H, and I; G,
H&E, H, BCL-6 and I, ICOS) seen in a PTCL-NOS case that was classified as AITL by the nCounter platform. AITL, angioimmunoblastic T-cell
lymphoma;BCL-6, B-cell lymphoma 6; ENKTCL, extranodal natural killer/T-cell lymphoma; ICOS, inducible T cell co-stimulator; NOS, not otherwise
specified; OS, overall survival; PTCL, peripheral T-cell lymphoma; TFH, T follicular helper; WT, wild type.
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and Figs 4F and 4G). A subset of cases had elevated
expression of CD3g and CD3d relative to other cases
(Fig 4H) and may be derived from the T-lineage. Two cases
were diagnosed according to current WHO classification as
primary EBV-positive nodal T/NK-cell lymphoma. These
cases resemble ENKTCL but with a primarily nodal pre-
sentation, and both were classified as ENKTCL by the
molecular assay (Data Supplement). One molecularly
classified ENTKCL case uniquely showed both ALCL and
ENKTCL signatures but strong expression of EBV tran-
scripts (Fig 4I).

Refinement and Validation of Two Novel PTCL-NOS

Subtypes (PTCL-GATA3 and PTCL-TBX21)

Of the PTCL-NOS cases in the training cohort, we separated
two novel molecular subgroups with an 87% concordance
(ie, PTCL-GATA3 or PTCL-TBX21) with a reduced number of
transcripts (19). Of the remaining PTCL-NOS groups in the
validation, 40% (21 of 52) were classified as the PTCL-
GATA3 subtype and 52% (27 of 52) as the PTCL-TBX21
subtype using the nCounter platform (Table 1 and Fig 5A).
This classification showed good concordance with our IHC
algorithm classification (overall concordance: 80%). To
further validate our transcriptomic signature classification,
we compared sequencing data in these two groups. We
observed that genetic alterations like TET2 mutation were
frequent in the PTCL-TBX21 subtype, whereas TP53 mu-
tations were enriched in the PTCL-GATA3 subgroup, con-
cordant with our previous findings31 (Fig 5B).

Consistent with our previous observations,21,29 cases with
the expression of cytotoxic transcripts were significantly
enriched in the PTCL-TBX21 subtype (Fig 5C) and vali-
dated by a more frequent cytotoxic immunophenotype in
the PTCL-TBX21 subtype than in the PTCL-GATA3 subtype
(52% v 16%, P5 .013; Fig 5C). An inverse correlation was
noted between the average cytotoxic CD81 T-cell signature
and the pan B-cell CD20 transcripts (Fig 5D). Consistent
with our previous observation,29 PTCL-TBX21 cases fre-
quently had an enriched inflammatory background irre-
spective of the cytotoxic phenotype (Fig 5E). Since the
clinical outcome of the PTCL-NOS was available only in a
limited number of cases, the combined cohort showed a
trend of inferior OS associated with cases classified as

PTCL-GATA3 versus PTCL-TBX21 (median OS: 0.57 v 1.4
years; Fig 5F).

Evaluation of the PTCL-TFH Cases, Excluded from the

Validation Cohort

PTCL-TFH (n5 12) cases were analyzed using the nCounter
platform, and only two (17%) showed a significant associ-
ation with the AITL molecular signature, whereas four cases
had borderline scores between AITL and PTCL-NOS and
six cases showed a clear association with the PTCL-NOS,
resembling PTCL-TBX21 cases (n 5 3) or PTCL-GATA3
(n 5 3). When we specifically examined the TFH signature,
the PTCL-TFH cases with high AITL signatures also showed
higher TFH signatures than the rest (Data Supplement). We
also included 10 cases of reactive hyperplasia, and none of
them showed expression of the diagnostic signatures for
subtypes of PTCL included in the assay.

DISCUSSION

The diagnosis of PTCL is one of themost challenging among
lymphomas and more often results in an inconclusive, in-
consistent, or incorrect diagnosis.19-21,32,33 Recently, novel
therapeutic approaches have shown striking benefits in
subgroups of PTCL, including brentuximab vedotin on
CD301 PTCL, particularly ALCL34; crizotinib in ALK1
ALCL35,36; mogamulizumab in ATLL37; HDACi and deme-
thylating agents in AITL or TFH-PTCL38; and possibly ena-
sidenib in IDH2-mutant AITL.39 Thus, accurate diagnosis
may be important for patient treatment and in clinical trials
of new drugs.40-42 We have performed extensive GEP studies
on PTCL, constructed RNA-based molecular diagnostic
signatures and predictors of survival, and delineated critical
oncogenic mechanisms.19-21 Some of these findings have
been included in the 2016 WHO classification.6 To translate
this molecular information to a platform suitable for clinical
application,25 we performed a systematic analysis to identify
RNAs from FFPE tissues using the nCounter platform that
correlated well with GEP data from FF tissues. This digital
quantitation technology is more tolerant of degraded RNA
typical of FFPE materials. In addition, we developed a di-
agnostic transcriptomic signature with a minimum number
of transcripts that performed comparably in the training set
with the previous GEP-derived diagnosis.13-15 In the pre-
analytical assessment, RNA yield and quality (ie, DV200 [% of

FIG 4. (Continued). staining for a case diagnosed as PTCL-NOS but classified at ATLL by nCounter (lower panel). (C) Scatterplot of
expression of the HTLV-1–specific transcriptsHBZ versus ATLL score in training and validation ATLL cases. The solid fitted line represents
training data, and the dashed line validation data. (D) Heatmap of HBZ and Tax-1 expression in the ATLL and PTCL-NOS validation cohorts.
The discrepant cases are noted by a red asterisk. (E) Scatterplot of HBZ expression measured by qRT-PCR versus nCounter. (F and G)
Violin and dot plots of (F) ENKTCL classification scores or (G) EBER scores in ENKTCLs and PTCL-NOS cases profiled in the training and
validation cohorts on the nCounter. Discordant cases are given in red. (H) Heatmap of expression of CD3 gamma and delta and EBV
transcripts in ENKTCL and PTCL-NOS cases in the training and validation cohorts. (I) Heatmap of expression of relevant signatures in the
ENKTCL-discordant case compared with average signatures in the validation cohort. ATLL, adult T-cell leukemia/lymphoma; EBV, Epstein-
Barr virus; ENKTCL, extranodal natural killer/T-cell lymphoma; H&E, hematoxylin and eosin; HBZ, HTLV-1 bZIP factor; HTLV-1, human
T-lymphotropic virus; NOS, not otherwise specified; PTCL, peripheral T-cell lymphoma; qRT-PCT, quantitative real-time polymerase chain
reaction.
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RNA fragments above 200 nucleotides] . 50%) of older
specimens were improved using the RNAstorm kit. However,
in recently acquired FFPE tissues, other isolation methods
may also provide good-quality RNA. In addition, this assay
could be performed using limited RNA quantities (minimum
required 200ng), usually obtained from a few unstained
slides depending on the size of the tissue. However, we were
able to have an adequate classification even using RNA
extracted from core needle biopsies, which represented
approximately 10% of the study samples. The interlaboratory
comparison of variability and reproducibility across three
Clinical Laboratory Improvement Amendments–certified
laboratories also correlated very well.

As we do not have GEP data on cases for validation, we
only included cases with a firm pathology diagnosis after
extensive IHC studies and stringent review. The findings
were very similar to those of the training set (Fig 1),
maintaining high sensitivity, specificity, and accuracy. In
some cases, the signature score fell just outside the cutoff
points, and these were considered as borderline cases. It
is worth noting that in a few cases, the molecular assay
made the correct diagnosis on a retrospective analysis.
However, frank discrepancies were also observed. This
could be partly due to technical reasons such as tumor
content and heterogeneity of the tumor, but some may be
related to biology that was not known yet, such as a strong
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ALK signature in some ALK2 ALCL cases that may represent
the recently reported ALK1-like ALCL.43 Similarly, two PTCL-
NOS showed significant association with AITL and TFH
transcriptomics signatures, which upon review, showed focal
expression of TFH markers by immunohistochemistry (BCL-6
and ICOS). The strong TFH expression signature may indicate
that these cases are more similar to PTCL-TFH but did not
meet the current criteria of strong expression of at least two
TFH markers. In these cases, the molecular assay revealed
the complex and overlapping biology between PTCL-NOS
and AITL and their poorly defined borders. We also found that
the addition of EBV and HTLV1 transcripts enhanced the
diagnostic performance of the molecular assay in ENTKCL
and ATLL, respectively. One important contribution of this
approach was the robust definition of the PTCL-GATA3 and
PTCL-TBX21 cases, which have different biology and
prognosis as supported by recent genetic findings.31 Al-
though it is possible to simulate the GEP classification using
an IHC panel, the stains can be challenging to optimize and
interpret, which may lead to substantial variability among

institutions. The assay reported here was highly reproducible
among laboratories and, thus, presents a major advantage.

The GEP study that initially defined the diagnostic signatures
was performed before the definition of the provisional entity
of PTCL-TFH was not formally included in this study.
However, the 12 PTCL-TFH cases explored with the
nCounter assay showed higher mean AITL and TFH signa-
tures, and individual signatures overlapped with the mo-
lecular signatures for AITL or PTCL subtypes, similar to the
study by Dobay et al.44 These exploratory studies indicated
that PTCL-TFH is unlikely to be a single entity as currently
defined and needs further evaluation to determine how best
it should be characterized. Similarly, our previous GEP
studies20,21 indicated a cytotoxic PTCL variant within the
PTCL-TBX21 subgroup. Consistent with that observation,
we found 25% of the cases in PTCL-TBX21 to have a
cytotoxic signature and validated an association with the
CD81 phenotype by IHC. Because of the small number of
cases studied, further investigations are necessary to
develop a robust signature for this group of cases.
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In summary, we described an approach to translate the
PTCL diagnostic signatures into a clinically applicable assay,
which we envision to be a useful tool for general and aca-
demic pathologists in the diagnostically challenging field of
PTCL. In addition, we believe that it can facilitate a better

definition of cases for research studies and ensure more
uniform cohorts for clinical trials. PTCL classification is an
evolving area, and as our understanding of the underlying
biology and available technology improves, modifications will
be instituted to make the classification clinically relevant.
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