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Abstract

An important step for any causal inference study design is understanding the distribution of the 

subjects in terms of measured baseline covariates. However, not all baseline variation is equally 

important. We propose a set of visualizations that reduce the space of measured covariates into 

two components of baseline variation important to the design of an observational causal inference 

study: a propensity score summarizing baseline variation associated with treatment assignment, 

and prognostic score summarizing baseline variation associated with the untreated potential 

outcome. These assignment-control plots and variations thereof visualize study design trade-offs 

and illustrate core methodological concepts in causal inference. As a practical demonstration, we 

apply assignment-control plots to a hypothetical study of cardiothoracic surgery. To demonstrate 

how these plots can be used to illustrate nuanced concepts, we use them to visualize unmeasured 

confounding and to consider the relationship between propensity scores and instrumental 

variables. While the family of visualization tools for studies of causality is relatively sparse, 

simple visual tools can be an asset to education, application, and methods development.
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1 INTRODUCTION

In an observational study, individuals “self-select” into treated and untreated groups, 

rather than being randomly assigned by an experimenter. Thus, in order to make claims 

about causal effects, the researcher must address the possibility of bias due to systematic 

differences in the baseline characteristics of treated and untreated individuals. A host 
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of matching and conditioning methods have been proposed to do just this (Stuart 2010, 

Rosenbaum 2020, Imbens and Rubin 2015). A question fundamental to these approaches is: 

How should the compared treated and untreated samples be similar (or different) in order to 

obtain a clear understanding of the causal effect? What different types of baseline variation – 

in general – are important to a causal inference study?

One popular candidate is the propensity score. Many subclassification or adjustment 

procedures apply an estimated propensity score, which summarizes the measured baseline 

variation influencing the probability of assignment. Intuitively, propensity score methods 

model the treatment assignment mechanism based on observed covariates, so that it 

can be adjusted for. Under suitable assumptions (including no unmeasured confounding), 

matching exactly on the propensity score recapitulates a completely randomized controlled 

experiment, allowing for identification and unbiased estimation of treatment effect. 

However, critics of propensity score matching note that the propensity score tends to neglect 

baseline variation that is less associated with treatment assignment but influential on the 

potential outcomes of the study subjects, potentially resulting in unfavorably high variance 

and low statistical power (King and Nielsen 2019).

The less-commonly discussed prognostic score, formalized by Hansen (2008), models the 

expected outcome of each subject in the absence of treatment, based on the observed 

covariates. Interestingly, under suitable assumptions, balancing on the prognostic score 

results in a form of covariate balance that leads to unbiased estimation of the causal effect, 

analogous to the propensity score (Hansen 2008). Balancing on a prognostic score may also 

convey additional statistical benefits: increasing precision and yielding results less easily 

explained away by unobserved confounding (Rosenbaum 2005 a, Aikens et al. 2020). A 

small but growing body of literature suggests that matching methods which apply both a 

prognostic score and a propensity score may be a favorable approach in some observational 

contexts (Leacy and Stuart 2014, Antonelli et al. 2018, Aikens et al. 2020).

Assignment-control plots (AC plots), introduced briefly by Aikens et al. (2020), visualize 

each subject in an observational data set in terms of their propensity and prognostic 

score. These are two (often interrelated) summaries of baseline variation that are directly 

relevant to observational studies of causality: propensity score similarity between compared 

individuals reduces bias (Rosenbaum and Rubin 1983), while prognostic score similarity 

between compared individuals reduces bias as well as variance and increases power in 

sensitivity analyses of unobserved confounding (Hansen 2004, Leacy and Stuart 2014, 

Antonelli et al. 2018, Aikens et al. 2020). Akin to a dimensionality reduction, propensity 

and prognostic scores can digest a potentially complex data set – real or simulated – into 

distinct components which are statistically and practically meaningful. AC plots are scatter 

plots visualizing how these components of baseline variation are jointly distributed in a data 

set.

Assignment-control plots are both a multipurpose diagnostic in application and a versatile 

conceptual illustration for methods development and education. In this paper, we showcase 

several examples of assignment-control plots, ranging from applied diagnostic visualizations 

(Sections 3.1, 3.2) to conceptual illustrations of primary interest to educators and causal 
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inference methodologists (Sections 3.3 and 3.4). From an applied perspective, clear 

visualizations can guide conversations on design trade-offs with non-technical collaborators, 

either as an early data diagnostic (Section 3.1) or while comparing matching schemes 

(Section 3.2). In the latter half of this paper, we showcase how AC plots can help frame 

relevant topics in methodological research, including unobserved confounding (Section 3.3), 

and the relationship between propensity score and instrumental variable approaches (Section 

3.4). By visualizing core causal inference concepts, each of these sections also suggest 

the educational potential of AC plots. Most examples in this report are illustrations from 

simulated data, and we conclude with an example of assignment-control diagnostic plots in a 

hypothetical study of cardiothoracic surgery.

2 METHODS

2.1 Notation and background

We adopt the Neyman-Rubin potential outcomes framework, in which a sample is described 

by

D = {(Xi, Ti, Y i)}i = 1
n ,

where the triplet (Xi, Ti, Yi) describes an individual with measured covariates Xi, binary 

treatment assignment indicator Ti, and observed outcome Yi. Often, Xi is a vector of many 

characteristics. We take Yi(t) to represent the potential outcome of individual i under a 

specific treatment assignment, t. The fundamental problem of causal inference is that it is 

impossible to observe both potential outcomes, Yi(0) and Yi(1) for any individual.

The propensity score is defined as e(X) = P(T = 1∣X). The popularity of the propensity score 

in observational studies stems primarily from its use as a balancing score, i.e.

T ⊥ X ∣ e(X) (1)

That is, within level-sets of the propensity score, the treatment assignment is independent of 

the measured covariates. Under the assumption of strongly ignorable treatment assignment, 

exact matching on the propensity score allows for unbiased estimation of the treatment effect 

(Rosenbaum and Rubin 1983).

The prognostic score is defined by Hansen as any quantity Ψ(X) such that

Y (0) ⊥ X ∣ Ψ(X) (2)

In essence, a prognostic score is any function of the measured covariates that – through 

conditioning – induces independence between the potential outcome in the absence of 

treatment (Y(0)) and the measured covariates. It is thus, by definition, a balancing score as 

well. Under regularity conditions analogous to those for the propensity score, conditioning 

on the prognostic score also allows for unbiased estimation of the treatment effect, as 

described in more detail by Hansen (2008). When Y(0)∣X follows a generalized linear model 
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Ψ(X) = E[Y(0) ∣ X]. In the literature, the prognostic score is often treated more informally 

as the expected outcome in the absence of treatment given the observed covariates.

2.2 Set-up

The demonstrations that follow depict several simulated data sets. In keeping with Aikens et 

al. (2020), the primary generative model for these is as follows:

Xi ∼ Normal(0, I10)

Ti ∼ Bernoulli 1
1 + exp( − ϕ(Xi))

Y i(0) = Ψ(Xi) + ϵi

ϵi ∼ N(0, σ2),

where ϕ(X) and Ψ(X) represent the true propensity and prognostic score functions. In 

general, these will be given by:

ϕ(Xi) = c1Xi1 − c0

Ψ(Xi) = ρXi1 + (1 − ρ2)Xi2,

where c1, c0, σ2 and ρ are constants. In particular, the form for the prognostic function 

above guarantees that ρ=Corr(ϕ(X),Ψ(X)) (see the supplementary mathematics notes for a 

proof). Note that X is a vector of 10 independent, normally distributed random variables, 

representing 10 baseline covariates measured for each individual. However, only the first 

two components of Xi (denoted Xi1 and Xi2) are important to either the outcome or the 

treatment assignment. We will also briefly suggest some other possible assignment-control 

plots generated using different forms for ϕ and Ψ (quadratic and discontinuous, figure 2). 

The code for this project is available on github at https://github.com/raikens1/RACplots.

2.3 Fitting the score models

In observational studies in practice, the propensity and prognostic score models are not 

known. Conventionally, the propensity scores are often estimated from a logistic regression 

of the baseline covariates on treatment assignment, fit on the entire study sample. Fitting 

the prognostic score may be somewhat more nuanced (Aikens et al. 2020). First, since the 

prognostic model is meant to predict the outcome in the absence of treatment, the prognostic 

model is fit only on untreated individuals. Thus, all prognostic score estimates on the treated 
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individuals are necessarily extrapolations. Second, fitting the prognostic model on the entire 

untreated sample raises concerns of overfitting (Hansen 2004, Abadie and Imbens 2006, 

Antonelli et al. 2018). To address these concerns and preserve the separation of the design 

and analysis phases of the study, Aikens et al. (2020), propose a pilot design, in which 

a subset of the untreated individuals is selected and held aside for the purpose of fitting 

the prognostic model. These untreated individuals – comprising a pilot data set are then 

discarded, so that the observational units used to train the prognostic model are disjoint from 

the set used in the final analysis (the analysis set). The question of how to appropriately 

select the untreated observations for the pilot set is a difficult one, described in more detail 

elsewhere (Aikens et al. 2020, 2021).

For conceptual clarity, the theoretical examples that follow bypass the problem of score 

estimation by using the ground-truth propensity and prognostic scores, as specified by 

our simulation set-up. In section 3.5, we consider an applied example in cardiothoracic 

surgery in which the true propensity and prognostic score models are not known and must 

be estimated in order to create an assignment-control plot. For detailed discussion on the 

realities of fitting the score models, see Aikens et al. (2020).

2.4 Applied example

As a demonstration of assignment-control plots in practice, we consider an applied 

example comparing 30 day mortality between female coronary artery bypass grafting 

(CABG) patients with and without a female primary surgeon. This work is included as a 

conceptual example; a more thorough consideration of this question might include more 

nuanced corrections and methods not considered here. Patient covariates and outcomes were 

extracted from medicare claims data for 1,155,903 CABG surgeries from 1998 to 2016. 

The gender of the primary surgeon was obtained from the National Plan and Provider 

Enumeration System records. When more than one surgeon was involved in a procedure, the 

primary surgeon was considered to be the one with the highest volume of prior surgeries. 

One limitation of this study design was that patient information included only “sex ” and 

provider information included only “gender.” In addition, many providers had missing 

gender information. To protect patient privacy, random noise was added to patient age and 

surgery year, and medicare qualification status, race, admission type, and admission day 

were shuffled within groups of patients with the same outcome and exposure.

382,688 surgeries were performed on patients whose sex was recorded as female. After 

excluding surgeries with missing outcome information (17 observations) or missing gender 

information for the primary surgeon (81,233 observations), a total of 301,438 surgeries 

remained. We fit a logistic propensity score model from the entire data set of 301,438 

surgeries. The prognostic model was fit using a logistic lasso on a pilot set of 5% of the 

untreated patients (nonfemale primary surgeon, 14,726 observations), leaving an analysis set 

of 286,712 surgeries for the remainder of the analysis. This size of a pilot set is probably 

unnecessarily large for most practical studies but facilitates straightforward fitting of the 

prognostic score for demonstration. In particular, since the outcome is known to be quite 

rare (30-day mortality for CABG is less than 5%)(Hansen et al. 2015), fitting the prognostic 

score effectively for this particular outcome is a somewhat difficult task. A more formal 
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consideration of the study question might consider more thorough curation and imputation 

of covariate information and more sophisticated modeling techniques for addressing the 

large covariate space. In the supplement, we include an additional example in which both 

male and female patients were considered and the treatment of interest was considered to be 

sex-gender concordance between patient and primary surgeon. All aspects of study design 

are the same, except that all 908,158 surgeries on male or female patients with recorded 

surgery date and primary surgeon gender are used (Supplementary Figure S2).

Love plots were constructed using the cobalt package (v 4.3.1) (Greifer 2021), and the pilot 

set was extracted using the stratamatch package (v0.1.7) (Aikens et al. 2020). The lasso 

prognostic model was fit using the glmnet package (v 4.0) (Friedman et al. 2010). Matches 

were created with DOS2 (v 0.5.2)(Rosenbaum 2019) and the optmatch package (v0.9-13) 

(Hansen and Klopfer 2006), which uses work from Bertsekas and Tseng (1988).

3 RESULTS

3.1 In application: Assignment-control plots and design diagnostics

At the onset of a study, it is relatively commonplace to consider the distribution of 

a propensity score among observational study subjects. Researchers are often cautioned 

to check that the treated and untreated groups overlap in propensity score and that no 

individuals have propensity scores of approximately 0 or 1, since these conditions are 

necessary (though not sufficient) to ensure that the treatment effect is identifiable and that 

some aspect of the treatment assignment is random Zhu et al. (2021), Petersen et al. (2012). 

Less attention is often paid to the distribution of the prognostic score and the relationship 

between propensity and prognosis in the data set. However, the connection between 

the likelihood of treatment and the expected untreated outcome can contain important 

information not captured in examinations of the propensity score alone. Informally, the 

relationship between propensity and prognostic scores might be said to characterize the 

overall nature of confounding of treatment and outcomes arising from the measured 
covariates. For example, in a medical setting where the outcome of interest is mortality 

(and high prognostic score means higher risk), a tight association between high propensity 

scores and high prognostic scores might suggest that the sickest patients are more likely to 

be treated.

Figure 1 shows example assignment-control plots (A-C) and propensity score density 

histograms (D-F) for three different simulated observational data sets from the setting in 

section 2.2 with different underlying levels of correlation between the true propensity and 

prognostic scores (ρ =0, 0.9, and −0.9). Notably, the marginal distribution of the propensity 

score is identical across the three simulated scenarios, and the corresponding propensity 

score histograms (D-F) are qualitatively equivalent. However, panels A-C reveal that the 

three settings are in fact quite different. In setting A, treated individuals are no different 

from untreated individuals in terms of their prognosis (Here, ρ = 0, so none of the measured 

covariates are actually confounders). This means that even a naive comparison of treated and 

untreated subjects may give an unbiased treatment effect estimate under suitable conditions. 

In settings B and C, propensity and prognostic scores are highly correlated (the measured 

covariate, X1 is a confounder), suggesting that such a naive comparison might be highly 
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biased. Moreover, the direction of the correlation between propensity and prognosis suggests 

the direction of the bias from a naive comparison: If the individuals with the worst prognosis 

are the least likely to be treated (Figure 1B), we are more likely to overestimate the 

effectiveness of the treatment in producing a more positive outcome. If the individuals with 

the worst prognosis are the most likely to be treated (Figure 1C), we are liable to err 

in the opposite direction. Future work might consider whether this correlation indicates a 

tendency toward bias not only in naive comparisons, but for adjustment or subclassification 

approaches in which the score models or matches are imperfect.

Figure 1 also evokes a discussion of the generalizability of the estimated treatment effect 

to different populations. For example, many matching studies focus on estimating the 

sample average treatment effect among the treated individuals. However, in scenarios B 

and C, the treated and untreated groups are systematically quite different in terms of 

their prognostic score. A researcher in this position should be prepared to ask:“Can a 

treatment effect estimated among the healthiest individuals in my sample generalize to 

the sickest individuals in a population?”and vise-versa. Likewise, researchers seeking to 

estimate a sample average treatment effect or conditional average treatment effect might 

question whether such estimands can really be understood in settings in which treatment and 

prognosis are tightly linked (e.g. strongly correlated), and overlap between the treated and 

untreated samples is sparse. If, for example, few to none of the sampled treated individuals 

are among the sickest members of the population, this calls into question whether any 
method – however sophisticated – can confidently estimate a treatment effect that applies to 

this group without additional assumptions (Tipton 2014).

Table 1 lists several possible characteristics of an assignment-control plot and summarizes 

how these might inform the design or interpretation of a study. Since these visualizations 

are semi-exploratory, they can help researchers identify anomalies they might not have 

otherwise anticipated. For example, propensity and prognostic scores in the data may 

have a nonlinear relationship (Supplementary Figure S1A). This may occur in medical 

settings, for example, where standard treatment procedures change for patients who are the 

most ill. These scenarios suggest that there may be subgroups of individuals for whom 

treatment considerations differ, demanding especially careful consideration of treatment 

effect heterogeneity and generalizability. Alternatively, there may be strong sub-grouping 

in the data, owing to some discrete covariate (e.g., sex, recorded race, smoking status) 

which is strongly associated with the expected potential outcome in the absence of treatment 

(Supplementary Figure S1B) or the treatment assignment (Supplementary Figure S2, section 

3.5). In scenarios like these, a researcher might consider stratifying or matching exactly 

within these groups. They might also consider whether this discrete covariate could be 

an important treatment effect modifier, or whether the mechanisms for prognosis and 

propensity are so different between these groups that they should be considered entirely 

separate samples with separate score models or even separate study designs.

Table 1 is not an exhaustive list. One of the greatest strengths of a scatter plot diagnostic 

is its versatility: myriad other possible joint distributions of propensity and prognostic 

scores may arise in practice, each with ramifications for study design and generalizability. 

For example, AC plots may also help characterize outliers in propensity or prognosis 
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(Supplementary Figure S3, section 3.5). Note that in many cases, a problem identified in 

an assignment control plot may not have a single agreed-upon solution or interpretation 

(for example, there are many alternative approaches for addressing poor overlap (Zhu et al. 

2021, Petersen et al. 2012)). Where AC plots help is by allowing the researcher to diagnose 

problems and communicate with stakeholders in order to decide their own next steps.

3.2 In application: Assignment-control plots and matching

As described in the introduction, matches which are close in terms of the propensity score 

have different statistical properties than matches which are close in terms of a prognostic 

score. Thus, assignment control plots can be used to visualize the trade-offs between 

matching approaches (Figure 2). Prior work suggests that jointly applying the propensity and 

prognostic score to matching studies in suitable scenarios may reduce variance and increase 

power in gamma sensitivity analyses while increasing robustness in the case that one of 

the models is mis-specified (i.e. enabling doubly-robust estimation) (Aikens et al. 2020, 

Antonelli et al. 2018, Leacy and Stuart 2014). These findings suggest that a desirable quality 

for an observational study design is that matched pairs are close together in assignment-

control space.

In Mahalanobis distance matching, all covariates are weighted equally in a statistical sense. 

When there is an abundance of uninformative covariates, Mahalanobis distance matching 

can select matches that may actually be quite distant in the assignment-control space (Figure 

2A) (Aikens et al. 2020). On the other hand, propensity score matching optimizes directly 

for matches that are nearby in terms of the variation associated with the treatment (the 

“assignment” axis), but it is entirely agnostic to variation associated with the outcome 

(Figure 2B). This can result in high variance in estimated treatment effect (King and Nielsen 

2019).

One interesting approach, investigated by Leacy and Stuart (2014), is to match treated 

and untreated individuals based on Mahalanobis distance on the full covariate space, while 

enforcing calipers on the prognostic and propensity scores. The two caliper methods in 

Figure 2 impose constraints on the matching process to ensure that matches are close in 

terms of propensity score (Figure 2C) or both propensity and prognostic score (Figure 

2D). Figure 2D underscores why comparing prognostically similar treated and untreated 

individuals can make a study’s results less easily explained away in gamma sensitivity 

analyses for unobserved confounding. Intuitively, gamma sensitivity analyses imagines 

some “unobserved confounding” adversary who, with a strength of Γ, shifts the treatment 

probabilities of matched individuals in order to bias our results. If our matched individuals 

are very close in terms of their likely outcomes, such an adversary can do less harm.

Assignment-control plots also visualize how matching quality can degrade when propensity 

score overlap between treated and untreated individuals is poor (Figure 3). If there are some 

levels of the propensity score at which there are many treated individuals and few untreated 

ones, the matching algorithm may have to reach very far away in assignment-control space 

in order to find adequate matches for the treated observations (Figure 3B). When this 

happens, the matched untreated individual is likely to be not only distant in propensity score 

but systematically different in prognostic score, especially when propensity and prognosis 
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are highly correlated. This systematic deviation can lead to bias in the effect estimate. 

Researchers observing AC plots like Figure 3B should consider alternatives which mitigate 

against poor overlap (Zhu et al. 2021, Petersen et al. 2012).

3.3 Illustration: Assignment-control plots and unmeasured confounding

The examples in this and the following section have a methodological focus, using 

assignment-control plots to illustrate key causal inference concepts, beginning with the 

problem of unmeasured confounding. A wide and increasing variety of causal inference 

methods for observational studies – in particular propensity score approaches – depend 

on the absence of unmeasured confounding. For matching studies, this dependence can be 

visually illustrated with assignment-control plots from simulated data.

Figure 4 illustrates the behavior of two pair-matching approaches in a scenario with 

unobserved confounding. We add to our data-generating set-up an unobserved confounder, 

U, such that:

ϕ(Xi) = c1Xi1 + ηU − c0,

Ψ(Xi) = ρXi1 + (1 − ρ2)Xi2 + ηU,

Where η is a constant determining the strength of U. Suppose the researcher somehow 

ascertained exactly the correct relationships between the two score models and the observed 
covariates, so that their propensity and prognostic models are precisely ϕ(Xi) = c1Xi1 − c0

and Ψ(Xi) = ρXi1 + (1 − ρ2)Xi2, respectively. That is, the score models are exactly correct, 

except that they do not include the unobserved confounder. Figure 4 panels A-B depict 

the assignment-control plots this researcher might make and the matchings they might 

produce using these score models, ϕ and Ψ. Since both the assignment-control plots and 

the matchings use only the observed covariates and exclude unmeasured confounding, 

propensity matches appear quite close in ϕ (Figure 4A) and a Mahalanobis distance 

matching on the informative measured covariates (X1 and X2) appear quite close in the 

assignment-control space defined by ϕ × Ψ (Figure 4B).

However, panels C-D in Figure 4 show the same matches in the true assignment-control 

space, in which ϕ and Ψ are known to depend on the unobserved confounder, U. In each 

matching, pairs tend to differ from each other due to baseline variations in the unobserved 

confounder that were not accounted for in the matching process. The contrast between 

Figures 4B and 4D most cleanly illustrate how failing to account for U results in systematic 

error: in the true assignment-control space, one matched individual in each pair tends to 

have both higher prognostic score and higher propensity score than its partner. Since this 

individual is more often the treated individual than the untreated individual, estimates of 

treatment effect based on this matching will be biased (See Supplementary Figure S5A for 

a schematic). A similar narrative is true for the propensity score match, although the image 

is not as clear because there is a large amount of prognostic variation between matched 
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pairs. Thus the unmeasured confounder, U, induces systematic differences between paired 

individuals, even after matching. In simulations a stronger confounder, this visual pattern 

is exaggerated, whereas it is milder when the confounding is more mild (Supplementary 

Figure S4). These graphics illustrate visually why a variety of matching approaches still 

produce biased results when unmeasured confounding is at play, and may be a useful visual 

complement to sensitivity analyses (Rosenbaum 2005 b).

3.4 Illustration: Randomization-assignment-control plots and instrumental variables

Propensity and prognostic scores are by no means the only characterizations of baseline 

variation important to a causal question. Extensions of assignment-control plots might 

visualize some combination of propensity and prognostic score with other axes of 

variation important to a study design. Here, we consider one candidate: an additional axis 

summarizing instrumental variation. Briefly, an instrumental variable (IV) is a measured 

covariate that is associated with the treatment, but that has no effect on the outcome except 

through the treatment (for an introduction, see (Baiocchi et al. 2014)). IV study designs rest 

on their own set of assumptions that require care and skepticism (for example, that a valid 

instrument can be isolated from measured baseline variation). However, unlike propensity 

score approaches, IV study designs do not require the absence of unmeasured confounding, 

creating an interesting orthogonality between these methods. Here, we consider an 

illustration which breaks down the treatment assignment mechanism into propensity score 

and IV components in order to create the randomization-assignment-control plot, interfacing 

with methodological discussions of propensity scores and instruments (Bhattacharya and 

Vogt 2007, Wooldridge 2009, Myers et al. 2011).

Implicit in both instrumental variable and propensity score designs is the supposition that 

there are two components influencing each individual’s treatment assignment: confounding 

variation and randomizing variation. A subject’s “decision” to be treated (or not) is 

directed by influences that are associated with their likely outcome (which we treat as 

“confounders”) and influences that are unrelated to their outcome (which we may treat 

as “ randomizers”). These components can be further broken down into measured and 

unmeasured variation. Informally,

treatment assignment‘‘ = ’’ measured confounding variation
propensityscore

‘‘ + ’’unmeasured confounding variation ‘‘ + ’’

measured randomizing variation
IV

‘‘ + ’’unmeasured randomizing variation

Randomizing variation is essential and desirable; it underlies the warrant for inference 

from randomized trials and well-designed observational studies. Confounding variation – 

which is inherent to observational studies – generally causes bias and must be addressed 

by any observational study design. The propensity score methods seek to neutralize 

measured confounding variation so that all that remains is the implicit randomizing 

variation (unmeasured confounding variation is assumed to be absent). IV designs seek to 

directly isolate the measured randomizing variation, so that confounding variation (measured 

and unmeasured) is balanced by the law of large numbers. Much of the propensity 

score literature implicitly treats randomizing variation as unmeasured, whereas an explicit 
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requirement of instrumental variable studies is that some randomizing variation can be 

isolated from the measured covariates.

Confounding and randomizing variation play distinct roles in an observational study, 

which motivates visualizing them separately and treating them differently. For instance, 

observations from theory and simulation suggest that IVs should not be included in 

propensity score models – even though they are associated with treatment assignment – 

since this may actually increase the bias and variance of the causal effect estimates in 

the absence of strong ignorability (Bhattacharya and Vogt 2007, Wooldridge 2009, Myers 

et al. 2011). As an illustrative example, consider the simulation set-up with unobserved 

confounding from section 3.3, except that now a new measured covariate, Z, is present in the 

treatment assignment function as an instrumental variable (IV):

ϕ(Xi, Zi) = c1Xi1 + c2Zi + ηU − c0,

Ψ(Xi) = ρXi1 + (1 − ρ2)Xi2 + ηU .

where c2, c1, c0, η and ρ are constants, and U is an unmeasured confounder. Notice 

that ϕ(Xi, Zi), in spite of capturing the true assignment process, is no longer an ideal 

“propensity score” for the purposes of matching. Instead, the ideal (somewhat modified) 

score, ϕ would summarize just the variation in X1 and omit any variation in Z. In some 

ways this is a departure from the conventional description of the propensity score, in that ϕ
should summarize confounding variation and exclude randomizing variation (i.e. Z). Instead, 

Z(the IV) could be summarized in its own randomization axis. Figure 5 visualizes of this 

randomization-assignment-control space, which – for simplicity – visualizes each individual 

projected down onto each pair of axes (ϕ × Ψ, Ψ × IV  and ϕ × IV ). Like Figure 4C-D, these 

plots show the true match distances in light of the unmeasured confounder, U.

Figure 5 shows randomization-assignment-control plots for two study designs. The first 

(Figure 5A) performs Mahalanobis distance matching on just X1 and X2. This matching 

pairs individuals based on measured confounding variation (X1) and variation important to 

the potential outcome (X2), ignoring the measured randomizing variation (the IV, Z). The 

second design (Figure 5B) performs nearfar matching, a matching design that directly uses 

the instrumental variable (Baiocchi et al. 2012, 2014).

The leftmost panel of Figure 5A is an assignment-control plot. This plot shows the 

unmeasured confounder, U, at work: although the measured confounding and prognostic 

variation has been efficiently matched upon, there is no way to ensure that matched 

individuals are close in terms of U. This results in the “ slanting” pattern previously shown 

in Figure 4D: since matched individuals differ in U in a way that is beyond our control, 

one individual (the one with the higher U value) will tend to be diagonal of the other. 

This slant in the assignment-control space is for the most part unavoidable: when all of 

the measured confounding and prognostic variation is matched for, the contribution of 

unobserved confounders must remain.
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How does randomizing variation, then, protect against the bias from unobserved 

confounding? Assignment-control plots make this easier to visualize. Recall that there are 

two visual components to bias from unobserved confounding: (1) matched individuals are 

vertically distant from one another in the assignment-control plot (2) the treated individual is 

systematically more often the upper (or, for the opposite direction of bias, lower) individual 

of the pair. Randomizing variation – measured and unmeasured – may protect against 

unobserved confounding by disrupting component (2). In the rightmost panel of Figure 5A, 

the upper (higher prognostic score) member of each matched pair is the treated individual 

more often than the untreated individual, a pattern that will cause bias in a treatment effect 

estimate from these matched pairs. This is due to the pressure imposed by the unobserved 

confounder, U. However, the upper member of the match is occasionally the untreated 

individual rather than the treated one. This is possible because of randomizing variation, 

occasionally overcoming the pressure exerted by unmeasured confounding variation. In 

this way, the randomizing variation partially disrupts the tendency towards bias when an 

unobserved confounder is at work (see Supplementary Figure S5 for a schematic). This is 

why including an IV in a propensity score – or indeed, any matching scheme which seeks 

to minimize IV distances within a matched set – can be harmful: randomizing variation 

between individuals can actually be helpful, so removing it by matching or regression 

adjustment makes for worse estimation (Supplementary Figures S6-S9).

The Mahalanobis distance matching example suggests how randomizing variation can 

be protective against bias even when it is ignored. Well-used IV designs, however, 

directly leverage measured randomizing variation to combat the influences of unobserved 

confounding. Nearfar matching designs (Figure 5B) are an IV approach that explicitly 

takes advantage of measured instrumental variation by pairing individuals who are “near” 

in important non-instrumental covariates (Figure 5B, left panel), but “far” in terms of 

a measured instrument (Baiocchi et al. 2012) (Figure 5B, center and right panels). An 

important nuance to this study design is that paired individuals must be divergent in their 

IV but need not have the opposite treatment assignment. Instead of comparing treated 

individuals to untreated ones, the nearfar design compares those “encouraged” into the 

treatment group (i.e. by the IV) with those who were not (Baiocchi et al. 2010, 2012). 

This design directly disrupts the systematic tendency for treated individuals to deviate from 

matched untreated individuals by changing the criteria for who can be matched with whom 

in light of a measured IV.

Figure 5 is intended as an illustration to facilitate the preceding methodological discussion. 

Randomization-assignment-control plots need further development before they should 

be directly applied in general, particularly in designs which use instrumental variation 

explicitly. In specific, the process of fitting the propensity score may be nuanced in study 

designs using the IV, because selections of treatment assignment are “post-randomization” 

information in that they occur after the IV takes effect. Pilot design approaches may be 

a potential tool to avoid overfitting the propensity score in this scenario. With additional 

work, a visualization similar to Figure 5 may be an especially useful companion to nearfar 

matching designs (Baiocchi et al. 2012). This may also be of use for other IV study designs 

for assessing the relationships between a candidate IV (or a set of weak IVs) and other 

covariates. More broadly, it is important to emphasize that assignment-control plots can and 

Aikens and Baiocchi Page 12

Am Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



should be extended to include other relevant aspects of baseline variation beyond propensity 

and prognostic scores, since these extensions may yield new methodological insights. For 

example, a related plot may be useful in the randomized experiment setting, wherein the 

prognostic score is visualized alongside an axis (or axes) summarizing compliance behavior.

3.5 In application: Demonstration and practical considerations

Here, we walk through an illustrative example of assignment-control plots applied to a 

hypothetical study of cardiothoracic surgery outcomes, and discuss some considerations for 

using assignment-control plots in practice.

3.5.1 A case study of cardiothoracic surgery outcomes—An ongoing concern in 

cardiology is that female patients tend to have worse outcomes for various cardiovascular 

events and surgeries. Recent work suggests that, in settings, patient-physician gender 

concordance may play a role (Greenwood et al. 2018, Wallis et al. 2022). Greenwood et 

al. (2018) found that female patients exhibit increased mortality from acute myocardial 

infarction when their physician is male. Observing that women also exhibit higher 

operative mortality in coronary artery bypass grafting (CABG) surgeries (Blankstein et al. 

2005, Mannacio and Mannacio 2018), we consider the question whether patient-physician 

concordance plays a role in 30-day mortality for CABG procedures. In this illustrative 

example, we consider the comparison of 30 day mortality between female patients whose 

primary surgeons identified as female and those whose primary surgeons did not identify as 

female in a large data set of coronary artery bypass grafting (CABG) surgeries on Medicare 

patients from 1998 to 2016. Note that a more thorough study of this question would need 

to address several alternative hypotheses, for example the possibility that differences in 

outcomes may be explained by different performances between male and female surgeons 

(Tsugawa et al. 2017). Some of these nuances are discussed by Greenwood et al. (2018).

Prior to most study design or analysis, diagnostic plots can reveal underlying characteristics 

of the data (Supplementary Figures S2-S3) that inform next steps. These diagnostics 

may reveal problematic patterns in the data that the researcher might not have otherwise 

anticipated. For example, rather than focusing solely on female patients, a researcher 

might have instead begun this work by pooling surgeries on male and female patients, 

intending to study patient-physician concordance across sexes. However, the diagnostic 

assignment-control plots and propensity histograms for the data under such an approach 

are show strong sub-grouping by patient sex (Supplementary Figure 2), suggesting that 

such an approach might inappropriately pool across two groups (male and female patients) 

with naturally very different underlying probabilities of assignment to a concordant surgeon 

(owing to the fact that a large majority of cardiovascular surgeons in the data are men). An 

assignment-control plot can also characterize outliers; While the propensity score histogram 

for this data set shows that there is a small group of observations with very high propensity 

score (Supplementary Figure S3C), the AC plot shows that these outliers are similar in 

prognostic score to the rest of the observations in the data set, an insight which can 

inform decisions to trim these observations (Supplementary Figure S3B, also see Zhu et 

al. (2021) for suggestions). Finally, estimated prognostic scores and propensity scores are 

mildly correlated (Pearson’s correlation between estimated scores ≈ 0.2) suggesting that 
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patients with higher probability of being assigned a female surgeon based on their baseline 

characteristics (higher propensity score) also appear to be at higher risk based on those 

characteristics (higher prognostic score). This may be driven by the fact that operations 

performed by female surgeons in the data are more likely to involve an older patient or an 

emergency admission (Supplementary Figure S3A). An applied researcher can use this AC 

plot to open discussions with colleagues of how measured confounding in the data overall 

may tend to bias towards underestimation of the performance of female surgeons unless 

properly addressed. The stronger the association between propensity and prognostic scores, 

the more severe this issue may be.

Figure 6 suggests diagnostics for comparing matching schemes on a subset of the data. 

A Love plot (Figure 6AB) compares the standardized mean differences in each covariate 

between the treatment groups before and after matching. Assignment-control plots (Figure 

6CD) depict how close the matched pairs are in terms of propensity scores and prognostic 

scores. Comparing the left and right sides of figure 6, we see that adding a propensity score 

caliper helps ensure that matched pairs are closer in terms of treatment probability based 

on the measured covariates, but covariate balance overall may be slightly worse compared 

to Mahalanobis distance matching without a caliper. This is an important trade-off: matches 

which are close in propensity score allow for identification of the treatment effect after 

Rosenbaum and Rubin (1983), however overall covariate balance – to one view – is the 

primary goal of matching methods (see, for example King and Nielsen (2019), Imai and 

Ratkovic (2014)). While these debates exist in the methodological literature, these visuals 

facilitate practical discussions about design trade-offs of different matching schemes with 

collaborators who have varying technical backgrounds.

3.5.2 Considerations for assignment-control plots in practice—Love plots and 

assignment-control plots are a valuable diagnostic pairing for observational studies. Love 

plots allow the researcher to consider each covariate separately to identify individual 

covariate imbalances. However, they do not directly convey information about which 

covariates are most important to the potential outcomes, which may make it difficult 

to quickly assess which covariate imbalances are worth extra attention, especially when 

many covariates are at play. Assignment-control plots allow the researcher to assess the 

relationship between propensity and prognosis, identify potential violations of assumptions, 

and assess match quality in terms of propensity and prognosis simultaneously (Table 1).

Importantly, assignment-control plots in application are vulnerable to many of the same 

weaknesses as propensity and prognostic score methods in general. An assignment-control 

plot is only as reliable as the propensity and prognostic scores from which it is constructed. 

If model fit to the analysis set is poor, or if there is unobserved confounding at play 

(section 3.3), assignment-control plots may be misleading. Future work might consider how 

uncertainty bounds around propensity and prognostic scores might be estimated, displayed, 

and interpreted, or how assignment-control plots might be used as a diagnostic for the fitted 

score models themselves. Additionally, when using the prognostic score, it may be advisable 

to hold aside a subsample of the untreated observations for estimating the prognostic model 

in order to avoid overfitting. Aikens et al (Aikens et al. 2020) discuss some considerations 
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for when a “Pilot Design” such as this is most useful, and when it may be too costly of a 

data sacrifice.

If the study plan already includes using a prognostic score, there is low cost and potential 

benefit to generating assignment-control plots. First, no additional data sacrifice is necessary 

to make the plots if the fitting the prognostic score was already in the study plan. Second, 

a researcher who has selected a study design that uses prognostic and propensity scores is 

already making the implicit assumption that the estimated scores are adequate, and checking 

an assignment-control plot can be a responsible way ensure that nothing anomalous or 

concerning appears in the marginal or joint distribution of the scores. Assignment-control 

plots may also be useful in scenarios where propensity or prognostic scores are not a 

planned part of study design, although this requires more judgement regarding whether the 

data sacrifice to build a prognostic score solely for visualization is a worthwhile trade-off for 

potential insights gained from the plot.

4 DISCUSSION

Assignment-control plots are nested in a broader conversation about the differing types of 

baseline variation and their differing significances to a causal question Hansen and Klopfer 

(2006), King and Nielsen (2019), Bhattacharya and Vogt (2007), Wooldridge (2009), Bang 

and Robins (2005). The ways these sources of variation interact and how they can be 

leveraged or mitigated against comprise an implicit focal point of causal inference research, 

both methodological and applied. The greater clarity our community has in defining and 

characterizing these concepts, the more effectively we can communicate, teach, design 

studies, and generate new methodological insights.

A modern shift towards an emphasis on large, passively collected data sets presents a host 

of challenges and opportunities for researchers interested in causality. As we collect wider 

data sets with more measured covariates, it will be increasingly important to prioritize 

the baseline variation that is most important to the causal question – correctly leveraging 

measured covariates that are useful while deprioritizing measured covariates that are 

uninformative. The complementary tools of the propensity and prognostic scores are a useful 

starting place because they summarize two important aspects of baseline variation in the 

measured covariates: variation associated with the assignment mechanism, and variation 

associated with the potential outcomes. Sections 3.1, 3.2, and 3.5 illustrate some of the 

potential uses of assignment-control plots in applied studies. In particular, visual tools 

such as these may be especially useful in facilitating discussions of study design trade-offs 

between collaborators from different technical backgrounds.

However, propensity and prognostic scores are not the only important sources of variation 

in a causal inference study. Other study designs may depend on an instrumental variable, 

a score summarizing the probability of inclusion in the sample, a summary of baseline 

variation associated with treatment effect heterogeneity, or compliance information in a 

randomized encouragement design. Considering how these different types of variation 

interplay may reveal new methodological possibilities. In section 3.4, we illustrate one 

extension of the assignment-control plot which adds a ‘randomization’ axis, inviting 

Aikens and Baiocchi Page 15

Am Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a methodological discussion of the role of randomizing variation in protecting against 

unmeasured confounding.

Assignment-control plots and variations thereof can be thought of as dimensionality 

reduction tools in that they digest a possibly very large covariate space into a meaningful 

reduced space that is easier to use and understand. While the possible variations on this 

theme are numerous, they are fundamentally driven by the same insight: a principled 

understanding of the different types of baseline variation and their differing significances 

to a causal question can enable researchers to improve the design of causal inference studies 

and clarify the way we communicate about them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Assignment-control plots (A-C) and propensity score density histograms (D-F) for three 

simulated observational data sets. Red points represent treated observations, blue points 

represent untreated.
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Fig. 2. 
Assignment-control plots depicting four different 1-to-1 matching schemes on the same 

simulated data set. Red points represent treated observations, blue points represent untreated. 

Dotted lines connect matched individuals. (A) Mahalanobis distance matching, (B), 

propensity score matching, (C) Mahalanobis distance matching with a propensity score 

caliper, (D) Mahalanobis distance matching with propensity and prognostic score calipers.
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Fig. 3. 
Assignment-control plots of propensity score matches in scenarios with good (A) or poor 

(B) propensity score overlap.

Aikens and Baiocchi Page 21

Am Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Assignment-control plots for two matching schemes on a data set with unobserved 

confounding. A-B depict the assignment-control space as ascertained without knowledge 

of the unobserved confounder. C-D depict the true assignment-control space and the true 

match distances.
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Fig. 5. 
Randomization-assignment-control plots. Each panel in a trio depicts a different 2-D 

projection of the same data set within the randomization-assignment-control space. Red 

points represent treated observations, blue points represent untreated. Dotted lines connect 

matched pairs (A) Depicts Mahalanobis distance matching on X1 and X2, while (B) depicts 

a nearfar matching of the same dataset. For visual clarity, only a subsample of 40 matches is 

shown.
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Fig. 6. 
Diagnostic plots for a subsample of 2,000 CABG surgeries with and without female primary 

surgeons. Love plots for a subset of covariates after matching using Mahalanobis distance 

only (A) versus Mahalanobis distance with a propensity score caliper (B). Assignment-

control plots showing matched (dotted lines) pairs of patients with (red) and without (blue) 

female primary surgeons for the matching scheme without (C) and with the caliper (D). 

(“ESRD”: “End Stage Renal Disease”)
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