
BrainGNN: Interpretable Brain Graph Neural Network for fMRI 
Analysis

Xiaoxiao Lia,g,*, Yuan Zhouc, Nicha Dvorneka,c,1, Muhan Zhangb,1, Siyuan Gaoa,1, Juntang 
Zhuanga, Dustin Scheinostc, Lawrence H. Staiba,c, Pamela Ventolad, James S. Duncana,c,e,f

aBiomedical Engineering, Yale University, New Haven, CT, 06511, USA

bFacebook AI Research, CA, USA

cRadiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06511, USA

dChild Study Center, Yale School of Medicine, New Have, CT, 06511, USA

eElectrical Engineering, Yale University, New Haven, CT, 06511, USA

fStatistics & Data Science, Yale University, New Haven, CT, 06511, USA

gElectrical and Computer Engineering, The University of British Columbia, Vancouver, BC, 
V6T1Z4, Canada

Abstract

Understanding which brain regions are related to a specific neurological disorder or cognitive 

stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph 

neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) 

and discover neurological biomarkers. Considering the special property of brain graphs, we 

design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological 

and functional information of fMRI. Motivated by the need for transparency in medical image 

analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs 

(nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, 

we propose regularization terms—unit loss, topK pooling (TPK) loss and group-level consistency 

(GLC) loss—on pooling results to encourage reasonable ROI-selection and provide flexibility 

to encourage either fully individual- or patterns that agree with group-level data. We apply the 

BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) 

fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We 

investigate different choices of the hyper-parameters and show that BrainGNN outperforms the 

alternative fMRI image analysis methods in terms of four different evaluation metrics. The 

obtained community clustering and salient ROI detection results show a high correspondence 
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with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states 

decoded for HCP. Our code is available at https://github.com/xxlya/BrainGNN_Pytorch
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1. Introduction

The brain is an exceptionally complex system and understanding its functional organization 

is the goal of modern neuroscience. Using fMRI, large strides in understanding this 

organization have been made by modeling the brain as a graph—a mathematical construct 

describing the connections or interactions (i.e. edges) between different discrete objects 

(i.e. nodes). To create these graphs, nodes are defined as brain regions of interest (ROIs) 

and edges are defined as the functional connectivity between those ROIs, computed as 

the pairwise correlations of functional magnetic resonance imaging (fMRI) time series, as 

illustrated in Fig. 1.

Traditional graph-based analyses for fMRI have focused on two-stage methods: stage 1

—feature engineering from graphs—and stage 2—analysis on the extracted features. For 

feature engineering, studies have used graph theoretical metrics to summarize the functional 

connectivity for each node into statistical measurements (Wang et al., 2010; Karwowski 

et al., 2019). Additionally, due to the high dimensionality of fMRI data, usually ROIs are 

clustered into highly connected communities to reduce dimensionality (Moğultay et al., 

2015; Du et al., 2018) or perform data-driven feature selection (Shen et al., 2017). For these 

two-stage methods, if the results from the first stage are not reliable, significant errors can be 

induced in the second stage.

The past few years have seen growing prevalence of using graph neural networks (GNN) 

for end-to-end graph learning applications. GNNs are the state-of-the-art deep learning 

methods for most graph-structured data analysis problems. They combine node features, 

edge features, and graph structure by using a neural network to embed node information and 

pass information through edges in the graph. As such, they can be viewed as a generalization 

of the traditional convolutional neural networks (CNN) for images. Due to their superior 

performance and interpretability, GNNs have become a widely applied graph analysis 

method (Kim and Ye, 2020; Kazi et al., 2019; Yan et al., 2019; Yang et al., 2019; Gopinath 

et al., 2019; Nandakumar et al., 2019). Most existing GNNs are built on graphs that do not 

have a correspondence between the nodes of different instances, such as social networks and 

protein networks. These methods—including the current GNN methods for fMRI analysis—

use the same embedding over different nodes, which implicitly assumes brain graphs are 

translation invariant and nodes on brain graphs (brain ROIs) are identical. However, nodes 

in the same brain graph have distinct locations and unique identities. Thus, applying the 

same embedding over all nodes is problematic. In addition, although recent studies have 

investigated group-level (Li et al., 2018; Venkataraman et al., 2016; Salman et al., 2019; Yan 

et al., 2019) and individual-level (Brennan et al., 2019; Mahowald and Fedorenko, 2016; Li 
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et al., 2019) neurological biomarkers, few GNN studies have explored both individual-level 

and group-level explanations, which are critical in neuroimaging research.

In this work, we propose a graph neural network-based framework for mapping regional 

and cross-regional functional activation patterns for classification tasks, such as classifying 

neurodisorder patients versus healthy control (HC) subjects and performing cognitive 

task decoding. Unlike the existing work mentioned above, we tackle the limitations of 

considering graph nodes (brain ROIs) as identical by proposing a novel clustering-based 

embedding method in the graph convolutional layer. Further, we aim to provide users 

the flexibility to interpret different levels of biomarkers through graph node pooling and 

several innovative loss terms to regulate the pooling operation. In addition, different from 

much of the GNN literature (Parisot et al., 2018; Kazi et al., 2019) where populational 

graphs based on fMRI are modeled by treating each subject as a node on the graph, 

we model each subject’s brain as one graph and each brain ROI as a node to learn ROI-

based graph embeddings. Specifically, our framework jointly learns ROI clustering and the 

whole-brain fMRI prediction. This not only reduces preconceived errors, but also learns 

particular clustering patterns associated with the other quantitative brain image analysis 

tasks. Specifically, from estimated model parameters, we can retrieve ROI clustering 

patterns. Also, our GNN design facilitates model interpretability by regulating intermediate 

outputs with a novel loss term for enforcing similarity of pooling scores, which provides the 

flexibility to choose between individual-level and group-level explanations.

A preliminary version of this work, Pooling Regularized Graph Neural Network (PR-GNN) 

for fMRI Biomarker Analysis (Li et al., 2020) was presented at the 22st International 

Conference on Medical Image Computing and Computer Assisted Intervention. This paper 

extends the preliminary version by designing novel graph convolutional layers and analyzing 

a new dataset and task.

2. BrainGNN

2.1. Notations

First we parcellate the brain into N ROIs based on its T1 structural MRI. We define ROIs as 

graph nodes V = v1, …, vN  and the nodes are preordered. As brain ROIs can be aligned by 

brain parcellation atlases based on their locations in the structure space, we define the brain 

graphs as ordered aligned graphs. We define an undirected weighted graph as G = (V, ℰ), 
where ℰ is the edge set, i.e., a collection of (vi, vj) linking vertices from vi to vj. In our 

setting, G has an associated node feature set and can be represented as matrix H = [h1, . . ., 
hN]⊤, where hi is the feature vector associated with node vi. For every edge connecting 

two nodes, vi, vj ∈ ℰ, we have its strength eij ∈ ℝ and eij > 0. We also define eij = 0 for 

vi, vj ∉ ℰ and therefore the adjacency matrix E = eij ∈ ℝN × N is well defined. We also 

list all the notations in Table 1.

2.2. Architecture overview

Classification on graphs is achieved by first embedding node features into a low-dimensional 

space, then coarsening or pooling nodes and summarizing them. The summarized vector is 
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then fed into a multi-layer perceptron (MLP). We train the graph convolutional/pooling 

layers and the MLP in an end-to-end fashion. Our proposed network architecture is 

illustrated in Fig. (2). It is formed by three different types of layers: graph convolutional 

layers, node pooling layers and a readout layer. Generally speaking, GNNs inductively learn 

a node representation by recursively transforming and aggregating the feature vectors of its 

neighboring nodes.

A graph convolutional layer is used to probe the graph structure by using edge features, 

which contain important information about graphs. For example, the weights of the edges in 

brain fMRI graphs can represent the relationship between different ROIs.

Following Schlichtkrull et al. (2018), we define hi
(l) ∈ ℝd(l)

 as the features for the ith node in 

the lth layer, where d(l) is the dimension of the lth layer features. The propagation model for 

the forward-pass update of node representation is calculated as:

hi
(l + 1) = relu W i

(l)hi
(l) + ∑

j ∈ N(l)(i)
eij

(l)W j
(l)hj

(l) , (1)

where N(l)(i) denotes the set of indices of neighboring nodes of node vi, eij
(l) denotes the 

features associated with the edge from vi to vj, W i
(l) denotes the model’s parameters to be 

learned. The first layer is operated on the original graph, i.e.hi
(0) = hi, eij

(0) = eij. To avoid 

increasing the scale of output features, the edge features need to be normalized, as in 

GAT (Veličković et al., 2018) and GNN (Kipf and Welling, 2016). Due to the aggregation 

mechanism, we normalize the weights by eij
(l) = eij

(l)/∑j ∈ N(l)(i)eij
(l).

A node pooling layer is used to reduce the size of the graph, either by grouping the nodes 

together or pruning the original graph G to a subgraph Gs by keeping some important nodes 

only. We will focus on the pruning method, as it is more interpretable and can help detect 

biomarkers.

A readout layer is used to summarize the node feature vectors {hi
(l)} into a single vector z(l) 

which is finally fed into a classifier for graph classification.

2.3. Layers in BrainGNN

In this section, we provide insights and highlight the innovative design aspects of our 

proposed BrainGNN architecture.

2.3.1. ROI-aware Graph Convolutional Layer

Overview: We propose an ROI-aware graph convolutional layer (Ra-GConv) with two 

insights. First, when computing the node embedding, we allow Ra-GConv to learn different 

embedding weights in graph convolutional kernels conditioned on the ROI (geometrically 

distributed information of the brain), instead of using the same weights W on all the 

nodes as shown in Eq. (1). In our design, the weights W can be decomposed as a linear 
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combination of a set of basis functions, where each basis function represents a community. 

Second, we include edge weights for message filtering, as the magnitude of edge weights 

presents the connection strength between two ROIs. We assume that more closely connected 

ROIs have a larger impact on each other. Design We begin by assuming the graphs have 

additional regional information and the nodes of the same region from different graphs 

have similar properties. We propose to encode the regional information into the embedding 

kernel function for the nodes. Given node i’s regional information ri, such as the node’s 

coordinates in a mesh graph, we propose to learn the vectorized embedding kernel vec(W i
(l))

based on ri for the lth Ra-GConv layer:

vec(W i
(l)) = fMLP

(l) (ri) = Θ2
(l)relu(Θ1

(l)ri) + b(l), (2)

where the MLP with parameters {Θ1
(l), Θ2

(l)} maps ri to a d(l+1) · d(l) dimensional vector then 

reshapes the output to a d(l+1) × d(l) matrix W i
(l) and b(l) is the bias term in the MLP.

Given a brain parcellated into N ROIs, we order the ROIs in the same manner for all the 

brain graphs. Therefore, the nodes in the graphs of different subjects are aligned. However, 

the convolutional embedding should be independent of the ordering methods. Given an 

ROI ordering for all the graphs, we use one-hot encoding to represent the ROI’s location 

information, instead of using coordinates, because the nodes in the brain are aligned well. 

Specifically, for node vi, its ROI representation ri is a N-dimensional vector with 1 in the ith 

entry and 0 for the other entries. Assume that Θ1
(l) = [α1

(l), …, αN(l)
(l) ], where N(l) is the number 

of ROIs in the lth layer, αi
(l) = [αi1

(l), …, αiK(l)
(l) ]

⊤
∈ ℝK(l)

, ∀i ∈ {1, . . ., N(l)}, where K(l) can be 

seen as the number of clustered communities for the N(l) ROIs. Assume Θ2
(l) = [β1

(l), …, βK(l)
(l)

]

with βu
(l) ∈ ℝd(l + 1) ⋅ d(l)

, ∀u ∈ {1, . . ., K(l)}. Then Eq. (2) can be rewritten as

vec(W i
(l)) = ∑

u = 1

K(l)

(αiu
(l))+βu

(l) + b(l) . (3)

We can view {βu
(l): j = 1, …, K(l)} as a basis and (αiu

(l))+ as the coordinates. From another 

perspective, (αiu
(l))+ can be seen as the non-negative assignment score of ROI i to community 

u. If we train different embedding kernels for different ROIs for the lth layer, the total 

parameters to be learned will be N(l)d(l)d(l+1). Usually we have K(l) ≪ N(l). By Eq. (3), we 

can reduce the number of learnable parameters to K(l)d(l)d(l+1) + N(l)K(l) parameters, while 

still assigning a separate embedding kernel for each ROI. The ROIs in the same community 

will be embedded by the similar kernel so that nodes in different communities are embedded 

in different ways.

As the graph convolution operations in Gong and Cheng (2019), the node features will be 

multiplied by the edge weights, so that neighbors connected with stronger edges have a 

larger influence.
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2.3.2. ROI-topK pooling layer

Overview: To perform graph-level classification, a layer for dimensionality reduction is 

needed since the number of nodes and the feature dimension per node are both large. Recent 

findings have shown that some ROIs are more indicative of predicting neurological disorders 

than the others (Kaiser et al., 2010; Baker et al., 2014), suggesting that they should be kept 

in the dimensionality reduction step. Therefore the node (ROI) pooling layer (R-pool) is 

designed to keep the most indicative ROIs while removing noisy nodes, thereby reducing the 

dimensionality of the entire graph. Design To make sure that down-sampling layers behave 

idiomatically with respect to different graph sizes and structures, we adopt the approach 

in Cangea et al. (2018) and Gao and Ji (2019) for reducing graph nodes. The choice of 

which nodes to drop is determined based on projecting the node features onto a learnable 

vector w(l) ∈ ℝd(l)
. The nodes receiving lower scores will experience less feature retention. 

We denote H(l + 1) = [h1
(l + 1), …, hN(l)(l)

(l + 1)
]
⊤

, where N(l) is the number of nodes at the lth layer. 

Fully written out, the operation of this pooling layer (computing a pooled graph, (V(l + 1), 

ℰ(l + 1)), from an input graph, (V(l), ℰ(l))), is expressed as follows:

s(l) = H(l + 1)w(l)/ w(l) 2

s(l) = s(l) − μ s(l) /σ s(l)

i = topk s(l), k

H(l + 1) = (H(l + 1) ⊙ sigmoid s(l)))i, :

E(l + 1) = Ei, i
(l) .

(4)

Here ‖ · ‖ is the L2 norm, μ and σ take the input vector and output the mean and standard 

deviation of its elements. The notation topk finds the indices corresponding to the largest 

k elements in score vector s. ⊙ is (broadcasted) element-wise multiplication, and (·)i,j 

is an indexing operation which takes elements at row indices specified by i and column 

indices specified by j (colon denotes all indices). The pooling operation retains sparsity 

by requiring only a projection, a point-wise multiplication and a slicing into the original 

features and adjacency matrix. Different from Cangea et al. (2018), we added element-wise 

score normalization s(l) = s(l) − μ s(l) /σ s(l) , which is important for calculating the loss 

functions in Section 2.4.

2.3.3. Readout layer—Lastly, we seek a ǣflatteningǥ operation to preserve information 

about the input graph in a fixed-size representation. Concretely, to summarize the output 

graph of the lth conv-pool block, (V(l), ℰ(l)), we use

z(l) = meanH(l) maxH(l), (5)

where H(l) = [hi
(l): i = 1, …, N(l)], mean and max operate element-wisely, and ‖ denotes 

concatenation. To retain information of a graph in a vector, we concatenate both mean and 

max summarization for a more informative graph-level representation. The final summary 
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vector is obtained as the concatenation of all those summaries (i.e. z = z(1) ‖ z(2) ‖ · · · ‖z(L)) 

and it is submitted to a MLP for obtaining final predictions.

2.3.4. Putting layers together—All in all, the architecture (as shown in Fig. 2) 

consists of two kinds of layers — Ra-GConv layers shown in the pink blocks and R-pool 

layer shown in the yellow blocks. The input is a weighted graph with its node attributes 

constructed from fMRI. We form a two-layer GNN block starting with ROI-aware node 

embedding by the proposed Ra-GConv layer in Section 2.3.1, followed by the proposed 

R-pool layer in Section 2.3.2. The whole network sequentially concatenates these GNN 

blocks, and readout layers are added after each GNN block. The final summary vector 

concatenates all the summaries from the readout layers, and an MLP is applied after that to 

give final predictions.

2.4. Loss functions

The classification loss is the cross entropy loss:

Lce = − 1
M ∑

m = 1

M
∑

c = 1

C
ym, clog ym, c , (6)

where M is the number of instances, C is the number of classes, ymc is the ground truth label 

and ym, c is the model output.

Now we describe the loss terms designed to regulate the learning process and control 

the interpretability. Unit loss As we mentioned in Section 2.3.2, we project the node 

representation to a learnable vector w(l) ∈ ℝd(l)
. The learnable vector w(l) can be arbitrarily 

scaled while the pooling scores s(l) = H(l + 1) aw(l) / aw(l)  remain the same with non-zero 

scalar a ∈ ℝ. This suggests an identifiability issue, i.e. multiple parameters generate the 

same distribution of the observed data. To remove this issue, we add a constraint that w(l) is 

a unit vector. To avoid the problem of identifiability, we propose unit loss:

Lunit
(l) = w(l) 2 − 1 2 . (7)

Group-level consistency loss—We propose group-level consistency (GLC) loss to 

force BrainGNN to select similar ROIs in a R-pool layer for different input instances. This is 

because for some applications, users may want to find the common patterns/biomarkers for 

a certain neuro-prediction task. Note that s(l) in Eq. (4) is computed from the input H(l) and 

they change as the layer goes deeper for different instances. Therefore, for different inputs 

H(l), the selected entries of s(l) may not correspond to the same set of nodes in the original 

graph, so it is not meaningful to enforce similarity of these entries. Thus, we only use the 

GLC loss regularization for s(l) vectors after the first pooling layer.

Now, we mathematically describe the novel GLC loss. In each training batch, suppose 

there are M instances, which can be partitioned into C subsets based on the class labels, 
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ℐc = m:m = 1, …, M, ym, c = 1 , for c = 1, . . ., C. And ym,c = 1 indicates the mth instance 

belongs to class c. We form the scoring matrix for the instances belonging to class c as 

Sc
(1) = [sm

(1):m ∈ ℐc]⊤ ∈ ℝMc × N, where MC = ℐc . The GLC loss can be expressed as:

LGLC = ∑
c = 1

C
∑

m, n ∈ ℐc
sm
(1) − sn

(1) 2 = 2 ∑
c = 1

C
Tr((Sc

(1))⊤LcSc
(1)), (8)

where Lc = Dc − Wc is a symmetric positive semidefinite matrix, Wc is a Mc × Mc matrix 

with values of 1, Dc is a Mc × Mc diagonal matrix with Mc as diagonal elements (Von 

Luxburg, 2007), m and n are the indices for instances. Thus, Eq. (8) can be viewed as 

calculating pairwise pooling score similarities of the instances.

TopK pooling loss—The original TPK pooling(Gao and Ji, 2019) used in our R-pool 

layer does not have regulations on the pooling scores. Thus, the brain ROIs’ importance 

rankings may be very different for different input instances. This can be problematic if the 

objective is to find the important ROIs shared within a group. Therefore, we propose TopK 

pooling (TPK) loss to encourage reasonable node selection in R-pool layers. In other words, 

we hope the top k selected indicative ROIs should have significantly different scores than 

those of the unselected nodes. Ideally, the scores for the selected nodes should be close to 

1 and the scores for the unselected nodes should be close to 0. To achieve this, we rank 

sigmoid(sm
(l)) for the mth instance in a descending order, denote it as sm

(l) = [sm, 1
(l) , …, sm, N(l)

(l)
], 

and apply a constraint to all the M training instances to make the values of sm
(l) more 

dispersed. In practice, we define TPK loss using binary cross-entropy as:

LTPK
(l) = − 1

M ∑
m = 1

M 1
N(l) ∑

i = 1

k
log(sm, i

(l) )) + ∑
i = 1

N(l) − k
log(1 − sm, i + k

(l) ) , (9)

We show the kernel density estimate plots of normalized node pooling scores (indication 

of the importance of the nodes) changing over the training epoch in Fig. 3 when k = 1
2N(l). 

It is clear to see that the pooling scores are more dispersed over time, Hence the top 50% 

selected nodes have significantly higher importance scores than the unselected ones. In the 

experiments below, we further demonstrate the effectiveness of this loss term in an ablation 

study. For now, we finalize our loss function below.

Finally, the final loss function is formed as:

Ltotal = Lce + ∑
l = 1

L
Lunit

(l) + λ1 ∑
l = 1

L
LTPK

(l) + λ2LGLC, (10)

where λ’s are tunable hyper-parameters, l indicates the lth GNN block and L is the total 

number of GNN blocks. To maintain a concise loss function, we do not have tunable 

hyper-parameters for Lce and Lunit
(l) . We observed that the unit loss Lunit

(l)  can quickly decrease 
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to a small number close to zero. Empirically, this term and the cross entropy term Lce 

already have the same magnitude (suppose the latter ranges from −log(0.5) to −log(1)). If 

the unit loss is much larger than the cross entropy term, the entire loss function will penalize 

it more and force it to have the same magnitude as the cross entropy. Also, since w(l) can 

be arbitrarily scaled without changing the output, the optimization can scale it to reduce the 

entire loss without affecting the other terms.

2.5. Interpretation from BrainGNN

2.5.1. Community detection from convolutional layers—The important 

contribution of our proposed ROI-aware convolutional layer is the implied community 

clustering patterns in the graph. Discovering brain community patterns is critical to 

understanding co-activation and interaction in the brain. Revisiting Eq. (3) and following 

Loe and Jensen (2015), αiu
+ provides the membership of ROI i to community u. The 

community assignment is soft and overlaid. Specifically, we consider region i belongs 

to community u if αiu > μ αi
+ + σ αi

+ . This gives us a collection of community indices 

indicating region membership {iu ⊂ {1, ..., N} : u = 1, ..., K}.

2.5.2. Biomarker Detection from pooling layers—Without the added TPK loss (Eq. 

(9)), the significance of the nodes left after pooling cannot be guaranteed. With TPK loss, 

pooling scores are more dispersed over time, hence the selected nodes have significantly 

higher importance scores than the unselected ones.

The strength of the GLC loss controls the trade-off between individual-level interpretation 

and group-level interpretation. On the one hand, for precision medicine, individual-level 

biomarkers are desired for planning targeted treatment. On the other hand, group-level 

biomarkers are essential for understanding the common characteristic patterns associated 

with the disease. We can tune the coefficient λ2 to control different levels of interpretation. 

Large λ2 encourages selecting similar nodes, while small λ2 allows various node selection 

results for different instances.

3. Experiments and results

3.1. Datasets

Two independent datasets are used: the Biopoint Autism Study Dataset (Biopoint) 

(Venkataraman et al., 2016) and the Human Connectome Project (HCP) 900 Subject Release 

(Van Essen et al., 2013). For the Biopoint dataset, the aim is to classify Autism Spectrum 

Disorder (ASD) and Healthy Control (HC). For the HCP dataset, like the recent work 

(Wang et al., 2019; Yan et al., 2019; McClure et al., 2020), the aim is to decode and map 

cognitive states of the human brain. Thus, we classify 7 task states - gambling, language, 

motor, relational, social, working memory (WM), and emotion, then infer the decoded task-

related salient ROIs from interpretation. The HCP states classification task helps validate our 

interpretation results (will discuss in Section 3.5.2). These represent two key examples of 

task-based paradigms that will illustrate the power and portability of our approach.
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3.1.1. Biopoint dataset—The Biopoint Autism Study Dataset (Venkataraman et al., 

2016) contains task fMRI scans for ASD and neurotypical healthy controls (HCs). The 

subjects perform the “biopoint” task, viewing point-light animations of coherent and 

scrambled biological motion in a block design (Kaiser et al., 2010) (24s per block). The 

fMRI data are preprocessed using the pipeline described in Venkataraman et al. (2016), and 

include the removal of subjects that exhibit head motion of > 0.5 mm translation or > 0.5° 

rotation in 25% or more time points of the BOLD series. This results in 75 ASD children 

and 43 age-matched (p > 0.124) and IQ-matched (p > 0.122) neurotypical HCs. We insured 

that the head motion parameters are not significantly different between the groups. There 

are more male subjects than female samples, similar to the level of ASD prevalence in the 

population (Fombonne, 2009; Hull et al., 2020). The first few frames are discarded, resulting 

in 146 frames for each fMRI sequence.

The Desikan-Killiany (Desikan et al., 2006) atlas is used to parcellate brain images into 

84 ROIs. The mean time series for each node is extracted from a random 1/3 of voxels in 

the ROI (given an atlas) by bootstrapping. We use Pearson correlation coefficient as node 

features (i.e a vector of Pearson correlation coefficients to all ROIs). Edges are defined 

by thresholding (in practice, we use top 10% positive which guarantees no isolated nodes 

in the graph) partial correlations to achieve sparse connections. We use partial correlation 

to build edges for the following two reasons: 1) due to the over-smoothing effect of the 

general graph neural networks for densely connected graphs (Oono and Suzuki, 2019; Cai 

and Wang, 2020), it is better to avoid dense graphs and partial correlation tends to lead 

to sparse graphs; 2) Pearson correlation and partial correlation are different measures of 

fMRI connectivity; we aggregate them by using one to build edge connections and the 

other to build node features. This is motivated by recent multi-graph fusion works for 

neuroimaging analysis that aim to capture different brain activity patterns by leveraging 

different correlation matrices (Yang et al., 2016; Gan et al., 2020). Hence, node features are 

hi
(0) ∈ ℝ84. Each fMRI dataset is augmented 30 times by spatially resampling the fMRI bold 

signals (Dvornek et al., 2018). Specifically, we randomly sample 1/3 of the voxels within an 

ROI to calculate the mean time series. This sampling process is repeated 30 times, resulting 

in 30 graphs for each fMRI image instance.

3.1.2. HCP dataset—For this dataset, we restrict our analyses to those individuals who 

participated with full length of scan, whose mean frame-to-frame displacement is less than 

0.1 mm and whose maximum frame-to-frame displacement is less than 0.15 mm (n=506; 

237 males; ages 2237). This conservative threshold for exclusion due to motion is used to 

mitigate the substantial effects of motion on functional connectivity.

We process the HCP fMRI data with standard methods (see Finn et al. (2015) for more 

details) and parcellated into 268 nodes using a whole-brain, functional atlas defined in a 

separate sample (see Greene et al. (2018) for more details). For the easy of validating 

the task-related function key words, our classification focuses on task fMRI in the HCP 

dataset. Task functional connectivity is calculated based on the raw task time series: the 

mean time series of each node pair were used to calculate the Pearson correlation and partial 

correlation. We define a weighted undirected graph with 268 nodes per individual per task 
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condition resulting in 3542 = 506 × 7 graphs in total. The same graph construction method 

as for the Biopoint data is used. Hence, node feature hi
(0) ∈ ℝ268.

3.2. Experimental setup

We trained and tested the algorithm on Pytorch in the Python environment using a NVIDIA 

Geforce GTX 1080Ti with 11GB GPU memory. The model architecture was implemented 

with 2 conv layers and 2 pooling layers as shown in Fig. (2), with parameter N = 84, K(0) 

= K(1) = 8, d(0) = 84, d(1) = 16, d(2) = 16, C = 2 for the Biopoint dataset and N = 268, K(0) 

= K(1) = 8, d(0) = 268, d(1) = 32, d(2) = 32, C = 7 for HCP dataset. In our work, we set k 
in Eq 4 as half of nodes in that layer, namely the dropout rate is 0.5. The motivation of K 
= 8 comes from the eight functional networks defined by Finn et al. (2015), because these 8 

networks show key brain functionality relevant to our tasks.

We will discuss the variation of λ1 and λ2 in Section 3.3. We first hold 1/5 data as the 

testing set and then randomly split the rest of the dataset into a training set (3/5 data), and 

a validation set (1/5 data) used to determine the hyperparameters. The graphs from a single 

subject can only appear in either the training, validation or testing set. Specifically, for the 

Biopoint dataset, each training set contains 2070 graphs (69 subjects and 30 graphs per 

subject), each validation set contains 690 graphs (23 subjects and 30 graphs per subject), and 

the testing set contains 690 graphs (23 subjects, and 30 graphs per subject). For the HCP 

dataset, each training set contains 2121 or 2128 graphs (303 or 304 subjects, and 7 graphs 

per subject), each validation set contains 707 or 714 graphs (101 or 102 subjects and 714 

graphs per subject), and the testing set contains 690 graphs (102 subjects and 7 graphs per 

subject). In this section, we use training and validation sets only to study λ1 and λ2. Adam 

was used as the optimizer. We trained BrainGNN for 100 iterations with an initial learning 

rate of 0.001 and annealed to half every 20 epochs. Each batch contained 400 graphs for 

Biopoint data and 200 graphs for HCP data. The weight decay parameter was 0.005.

3.3. Hyperparameter discussion and ablation study

Hyperparameter discussion setup—To check how the hyperparameters affect the 

performance, we tune λ1 and λ2 in the loss function using the training and validation 

sets. Recalling our intuition of designing TPK loss and GLC loss described in Section 

2.4.0.3, large λ1 (TPK loss) encourages more separable node importance scores for selected 

and unselected nodes after pooling, and λ2 (GLC loss) controls the similarity of the 

nodes selected by different instances (hence controls the level of interpretability between 

individual-level and group-level). Small λ2 would result in variant individual-specific 

patterns, while large λ2 would force the model to learn common group-level patterns. As 

task classification on HCP could achieve consistently high accuracy over the parameter 

variations, we only show the results on the Biopoint validation sets generated from five 

random splits in Fig. 4.

Ablation study setup—To investigate the potential benefits of our proposed ROI-aware 

graph convolutional mechanism, we perform ablation studies. Specifically, we compare 

our proposed Ra-GConv layer with the strategy of directly learning embedding kernels W 
(without ROI-aware setting), which is denoted as vanilla-GConv.

Li et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results—We evaluate the best classification accuracy on the validation sets in the 5-fold 

cross-validation setting. Due to the expensive cost involved in training deep learning models, 

we adopt an empirical way that first tunes λ2 with λ1 fixed to 0 or 0.1 and then tunes λ1 

given the determined λ2.

First, we investigate the effects of λ2 on the accuracy with λ1 fixed to 0. The results are 

shown in Fig.. We notice that the results are stable to the variation of λ2 in the range 0–0.5. 

When λ2 = 1, the accuracy drops. The accuracy reaches the peak when λ2 = 0.1. As the 

other deep learning models behave, BrainGNN is overparameterized. Without regularization 

(λ2 = 0), the model is easier to overfit to the training set, while large regularization of GLC 

might result in underfitting to the training set.

Second, we fix λ1 = 0.1 and varied λ2 again. As the results presented in Fig. b show, the 

accuracy drops if we increase λ2 after 0.2, which follows the same trend in Fig.. However, 

the accuracy under the setting of λ2 = 0 is better than that in Fig.. This is probably because 

the λ1 terms can work as regularization and mitigate the overfitting issue.

Last, we fix λ2 = 0.1 and vary λ1 from 0 to 0.5. As the results in Fig. c show, when we 

increased λ1 to 0.2 and 0.5, the accuracy slightly dropped.

For ablation study, as the results in Fig. 4 show, we can conclude that Ra-GConv overall 

outperformed the vanilla-GConv strategy under all the parameter settings. The reason could 

be better node embedding from multiple embedding kernels in the Ra-GConv layers, as 

the vanilla-GConv strategy treats ROIs (nodes) identically and uses the same kernel for 

all the ROIs. Hence, we claim that Ra-GConv can better characterize the heterogeneous 

representations of brain ROIs.

Based on the results of tuning λ1 and λ2 on the validation sets, we choose the best setting of 

λ1 = λ2 = 0.1 for the following baseline comparison experiments. We report the results on 

the held-out testing set.

3.4. Comparison with baseline methods

We compare our method with traditional machine learning (ML) methods and state-of-the-

art deep learning (DL) methods to evaluate the classification accuracy. The ML baseline 

methods take vectorized correlation matrices as inputs, with dimension N2, where N is the 

number of parcellated ROIs. These methods included Random Forest (1000 trees), SVM 

(RBF kernel), and MLP (2 layers with 20 hidden nodes). A variety of DL methods have been 

applied to brain connectome data, e.g. long short term memory (LSTM) recurrent neural 

network (Dakka et al., 2017), and 2D CNN (Kawahara et al., 2017; Jie et al., 2020), but 

they are not designed for brain graph analysis. Here we choose to compare our method 

with BrainNetCNN (Kawahara et al., 2017), which is designed for fMRI network analysis. 

We also compare our method with other GNN methods: GAT (Veličković et al., 2018), 

GraphSAGE (Hamilton et al., 2017), and our preliminary version PR-GNN (Li et al., 2020). 

It is worth noting that GraphSAGE does not take edge weights in the aggregation step of 

the graph convolutional operation. The inputs of BrainNetCNN are correlation matrices. 

We follow the parameter settings indicated in the original paper (Kawahara et al., 2017). 
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The inputs and the settings of hidden layer nodes for the graph convolution, pooling and 

MLP layers of the alternative GNN methods are the same as BrainGNN. We also show the 

number of trainable parameters required by each method. We repeat the experiment and 

randomly split independent training, validation, and testing sets five times. Hyperparameters 

for baseline methods are also tuned on the validation sets and we report the results on the 

five testing sets in Table 2.

As shown in Table2, we report the comparison results using four different evaluation 

metrics, including accuracy, F1-score, recall and precision. We report the mean and standard 

deviation of the metrics on the five testing sets. We use validation sets to select the early 

stop epochs for the deep learning methods. On the HCP dataset, the performance of our 

BrainGNN significantly exceeds that of the alternative methods (p < 0.001 under one tail 

two-sample t-test). On the Biopoint dataset, as data augmentation are performed on all the 

data points for the consistency of cross validation and to improve prediction performance, 

we report the subject-wise metric through majority-voting on the predicted label from the 

augmented inputs. BrainGNN is significantly better than most of the alternative methods 

(p < 0.05 under one tail two-sample t-test) except for the previous version of our own 

work, PR-GNN and BrainGNN, although the mean values of all the metrics are consistently 

better than PR-GNN and BrainNetCNN. The improvement may result from two causes. 

First, due to the intrinsic complexity of fMRI, complex models with more parameters are 

desired, which also explains why CNN and GNN-based methods were better than SVM and 

random forest. Second, our model utilized the properties of fMRI and community structure 

in the brain network and thus potentially modeled the local integration more effectively. 

Compared to alternative machine learning models, BrainGNN achieved significantly better 

classification results on two independent task-fMRI datasets. Moreover, BrainGNN does 

not have the burden of feature selection, which is needed in traditional machine learning 

methods. Compared with MLP and CNN-based methods, GNN-based methods require less 

trainable parameters. Specifically, BrainGNN needs only 10 – 30% of the parameters of 

MLP and less than 3% of the parameters of BrainNetCNN. Our method requires less 

parameters and achieves higher data utility, hence it is more suitable as a deep learning tool 

for fMRI analysis, when the sample size is limited.

3.5. Interpretability of BrainGNN

A compelling advantage of BrainGNN is its built-in interpretability: (1) on the one hand, 

users can interpret salient brain regions that are informative to the prediction task at different 

levels; (2) on the other hand, BrainGNN clusters brain regions into prediction-related 

communities. We demonstrate (1) in Section 3.5.1–3.5.2 and (2) in Section 3.5.3. We 

show how our method can provide insights on the salient ROIs, which can be treated as 

disease-related biomarkers or fingerprints of cognitive states.

3.5.1. Individual- or group-level biomarker—It is essential for a pipeline to be 

able to discover personal biomarkers and group-level biomarkers in different application 

scenarios, i.e. precision medicine and disease understanding. In this section, we discuss how 

to adjust λ2, the parameter associated with GLC loss, to manipulate the level of biomarker 

interpretation through training.

Li et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our proposed R-pool can prune the uninformative nodes and their connections from the 

brain graph based on the learning tasks. In other words, only the salient nodes are 

kept/selected. We investigate how to control the similarity between the selected ROIs of 

different individuals by tuning λ2. As we discuss in Section 2.5, large λ2 encourages 

group-level interpretation (similar biomarkers across subjects) and small λ2 encourages 

individual-level interpretation (various biomarkers across subjects). But when λ2 is too 

large, the regularization might hurt the model accuracy (shown in Fig. 4). We put forth the 

hypothesis that meaningful interpretation is more likely to be derived from a model with 

high classification accuracy, as suggested in Hancox-Li (2020); Adebayo et al. (2018). 

Intuitively, interpretation is trying to understand how a model makes a right decision 

rather than a wrong one when learning from a good teacher. We take the model with the 

highest accuracy for the interpretation experiment. Hence, the interpretation is restricted to 

models with fixed λ1 = 0.1 and varying λ2 from 0 to 0.5 according to our experiments in 

Section 3.3. Without losing the generalizability, we show the salient ROI detection results 

of 3 randomly selected ASD instances from the Biopoint dataset in Fig. 5. We show the 

remaining 21 ROIs after the 2nd R-pool layer (with pooling ratio = 0.5, 25% nodes left) 

and corresponding pooling scores. As shown in Fig. 5(a), when λ2 = 0, “overlapped areas” 

(defined as spatial areas where saliency values agree) among the three instances are rarely to 

be found. The various salient brain ROIs are biomarkers specific to each individual. Many 

clinical applications, such as personalized treatment outcome prediction or disease subtype 

detection, require learning the individual-level biomarkers to achieve the best predictive 

performance (Brennan et al., 2019; Beykikhoshk et al., 2020). However, in some other 

applications, such as understanding the general pattern or mechanism associated with a 

cognitive task or disease, group-level biomarkers which highlight consistent explanations 

across individuals are important (Adeli et al., 2020; Venkataraman et al., 2016; Salman et 

al., 2019). We can increase λ2 to achieve such group-level explanations. In Fig. 5(b–c), 

we circle the big “overlapped areas” across the three instances. By visually examining the 

salient ROIs, we find three “overlapped areas” in Fig. 5(b) and five “overlapped areas” in 

Fig. 5(c).

3.5.2. Validating salient ROIs—To demonstrate the effectiveness of the interpreted 

salient ROIs, we compare the biomarkers with existing literature studies. We average the 

node pooling scores after the 1st R-pool layer for all subjects per class and select the top 

salient ROIs as biomarkers for that class.

In Fig. 6, we display the salient ROIs (the top 21 ROIs, 21 = 84 × 0.5 × 0.5, where 84 is 

the total number of ROIs, and 0.5 is the pooling ratio of two R-pool layers) associated with 

HC and ASD separately. Putamen, thalamus, temporal gyrus and insular, occipital lobe are 

selected for HC; frontal gyrus, temporal lobe, cingulate gyrus, occipital pole, and angular 

gyrus are selected for ASD. Hippocampus and temporal pole are important for both groups. 

We name the selected ROIs as the biomarkers for identifying each group.

The biomarkers for HC corresponded to the areas of clear deficit in ASD, such as social 

communication, perception, and execution. In contrast, the biomarkers for ASD map to 

implicated activation-exhibited areas in ASD: default mode network (Buckner et al., 2008) 

and memory (Boucher and Bowler, 2008). This conclusion is consistent both with behavioral 
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observations when administering the fMRI paradigm and with a prevailing theory that ASD 

includes areas of cognitive strengths amidst the social deficits (Robertson et al., 2013; 

Turkeltaub et al., 2004; Iuculano et al., 2014).

In Fig. 7(a–g), we list the salient ROIs associated with the seven tasks for the HCP 

dataset. We report the task-specific performance on HCP using BrainGNN in. To validate 

the neurological significance of the result, we used Neurosynth (Yarkoni et al., 2011), a 

platform for fMRI data analysis. Neurosynth collects thousands of neuroscience publications 

and provides meta-analysis that gives keywords and their associated statistical images. 

The decoding function on the platform calculates the correlation between the input image 

and each functional keyword’s meta-analysis images. A high correlation indicates large 

association between the salient ROIs and the functional keywords. We selected the names 

of the tasks — ‘gambling’, ‘language’, ‘motor’, ‘relational’, ‘social’, ‘working memory’ 

(WM) and ‘emotion’, as the functional keywords to be decoded. The heatmap in Fig. 

8 illustrates the meta-analysis on functional keywords implied by the top salient regions 

corresponding to the seven tasks using Neurosynth. We define a state set, which is the 

same as the functional keywords set, as K = {‘gambling’,’language’, ‘motor’, ‘relational’, 

‘social’, ‘WM’, ‘emotion’}. In practice, given the interpreted salient ROIs associated with 

a functional state key ∈ K, we generate the corresponding binary ROI mask. The mask is 

used as the input for Neurosynth analysis, which generates a vector of association scores 

between salient ROIs of key and all the keywords in K as shown in each row of Fig. 8. To 

facilitate visualization, we divide each value by the maximum absolute value of each column 

for normalization. If the diagonal value (from bottom left to top right) is 1, it indicates the 

interpreted salient ROIs reflect its real task state. The finding in Fig. 8 suggests that our 

algorithm can identify ROIs that are key to distinguish between the 7 tasks. For example, 

the anterior temporal lobe and temporal parietal regions, which are selected for the social 

task, are typically associated with social cognition in the literature (Mar, 2011; Ross and 

Olson, 2010). It is worth noting that, without additional post-hoc interpretation methods, 

our BrainGNN pipeline can infer the connections between the salient ROIs as the important 

functional connectivity. We visualize the interactions between the salient ROIs in.

3.5.3. Node clustering patterns in Ra-GConv layer—From the best fold of each 

dataset, we cluster all the ROIs based on the kernel parameter αiu
+ (learned in Eq. (3)) of 

the 1st Ra-GConv layer, which indicates the membership score of region i for community 

u. In our experiment, we set the number of community K = 8. We show the node clustering 

results for the Biopoint and HCP data in Fig. 9 and Fig. 9 respectively. For the clustering 

results on the ASD classification task (shown in Fig. 9), we observed the spatial aggregation 

patterns of each community, while the community clustering results on HCP task (shown in 

Fig. 9) do not form similar spatial patterns. The different community clustering results reveal 

that the brain ROI community patterns are likely different depending on the tasks. Fig. 10 

shows that the membership scores ( αiu
+  matrices) are not uniformly distributed across the 

communities and only one or a few communities have significantly larger scores than the 

other communities for a given ROI. This corroborates the necessity of using different kernels 

to learn node representation by forming different communities. We notice that the αiu
+

Li et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrices are overall sparse. Some ROIs are not part of any community as they are associated 

with small coefficients αiu
+. Namely, the messages or representation variance carried by these 

ROIs are depressed. Thus, it is reasonable to use R-pool to select a few representative ROIs 

to summarize the group-level representation.

4. Discussion

4.1. The model

Our proposed BrainGNN includes (i) novel Ra-GConv layers that efficiently assign each 

ROI a unique kernel that reflects ROI community patterns, and (ii) novel regularization 

terms (unit loss, GLC loss and TPK loss) for pooling operations that regulate the model 

to select salient ROIs. It shows superior prediction accuracy for ASD classification and 

brain states decoding compared to the alternative machine learning, MLP, CNN and GNN 

methods. As shown in Fig. 2, BrainGNN improves average accuracy by 3% to 20% for 

ASD classification on the Biopoint dataset and achieves average accuracy of 94.4% on a 

seven-states classification task on the HCP dataset.

Despite the high accuracy achieved by deep learning models, a natural question that arises 

is if the decision making process in deep learning models can be interpretable. From 

the brain biomarker detection perspective, understanding salient ROIs associated with the 

prediction is an important approach to finding the biomarkers: the salient ROIs could be 

candidate biomarkers. Here, we use built-in model interpretability to address the issue 

of group-level and individual-level biomarker analysis. In contrast, without additional 

post-processing steps, the existing methods of fMRI analysis can only either perform 

individual-level or group-level functional biomarker detection. For example, general linear 

model (GLM), principal component analysis (PCA) and independent component analysis 

(ICA) are group-based analysis methods. Some deterministic models like connectome-

based predictive modeling (CPM) (Shen et al., 2017; Gao et al., 2019) (a coarse model 

averaging edge strengths over entire subject for prediction) and other machine learning 

based methods provide individual-level analysis. However, model flexibility for different-

levels of biomarkers analysis might be required by different users. For precision medicine, 

individual-level biomarkers are desired for planning targeted treatment, whereas group-level 

biomarkers are essential for understanding the common characteristic patterns associated 

with the disease. To fill the gap between group-level and individual-level biomarker 

analysis, we introduce a tunable regularization term for our graph pooling function. By 

examining the pairs of inputs and intermediate outputs from the pooling layers, our method 

can switch freely between individual-level and group-level explanation by end-to-end 

training. A large regularization parameter for group consistency encourages interpreting 

common biomarkers for all the instances, while a small regularization parameter allows 

different interpretations for different instances. However, the appropriate parameters are 

study-specific and the suitable range can be determined using cross validation. It is worth 

noting that the individual-level biomarker mentioned in our work is not equivalent to single-

subject interpretation, as our methods still require numerous participants for training the 

model.
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4.2. Limitation and future work

The pre-processing procedure performed in Section 3.1 is one possible way of obtaining 

graphs from fMRI data, as demonstrated in this work. One meaningful next step is to 

use more powerful local feature extractors to summarize ROI information. A joint end-to-

end training procedure that dynamically extracts graph node features from fMRI data is 

challenging, but an interesting direction. Also, in the current work, we only try a single 

atlas for each dataset. For ROI-based analysis, different atlases usually lead to different 

results (Dadi et al., 2019). Considering reproducibility and consistency (Wei et al., 2002; 

Abraham et al., 2017), it is worth further investigating whether the classification and 

interpretation results are robust to atlas changes. Although we discussed a few variations 

of hyperparameters in Section 3.3, more variations should be studied, such as pooling 

ratio, the number of communities, the number of convolutional layers, and different readout 

operations. In future work, we will try to understand the interpretation from failure cases and 

explore how the interpretation results can help improve model performance. We will explore 

the potential benefits of using BrainGNN to improve GNN-based dynamic brain graph 

analysis (i.e. Gadgil et al. (2020)). Given the flexibility of GNN to integrate multi-modality 

data, we will investigate BrainGNN on biomarker detection tasks using an integration 

of multi-paradigm fMRI data (i.e. Bai et al. (2020)). We will explore the connections 

between the Ra-GConv layers and the tensor decomposition-based clustering methods and 

the patterns of ROI selection and ROI clustering. For better understanding the algorithm, we 

aim to work on quantitative evaluations and theoretical studies to explain the experimental 

results.

5. Conclusions

In this paper, we propose BrainGNN, an interpretable graph neural network for fMRI 

analysis. BrainGNN takes graphs built from neuroimages as inputs, and then outputs 

prediction results together with interpretation results. We applied BrainGNN on the 

Biopoint and HCP fMRI datasets. With the built-in interpretability, BrainGNN not only 

performs better on prediction than alternative methods, but also detects salient brain 

regions associated with predictions and discovers brain community patterns. Overall, our 

model shows superiority over alternative graph learning and machine learning classification 

models. By investigating the selected ROIs after R-pool layers, our study reveals the salient 

ROIs to identify autistic disorders from healthy controls and decodes the salient ROIs 

associated with certain task stimuli. Certainly, our framework is generalizable to analysis 

of other neuroimaging modalities. The advantages are essential for developing precision 

medicine, understanding neurological disorders, and ultimately benefiting neuroimaging 

research.
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Fig. 1. 
The overview of the pipeline. fMRI images are parcellated by an atlas and transferred to 

graphs. Then, the graphs are sent to our proposed BrainGNN, which gives the prediction 

of specific tasks. Jointly, BrainGNN selects salient brain regions that are informative to the 

prediction task and clusters brain regions into prediction-related communities.
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Fig. 2. 
(a) introduces the BrainGNN architecture that we propose in this work. BrainGNN is 

composed of blocks of Ra-GConv layers and R-pool layers. It takes graphs as inputs and 

outputs graph-level predictions. (b) shows how the Ra-GConv layer embeds node features. 

First, nodes are softly assigned to communities based on their membership scores to the 

communities. Each community is associated with a different basis vector. Each node is 

embedded by the particular basis vectors based on the communities that it belongs to. 

Then, by aggregating a node’s own embedding and its neighbors’ embedding, the updated 

representation is assigned to each node on the graph. (c) shows how R-pool selects nodes to 

keep. First, all the nodes’ representations are projected to a learnable vector. The nodes with 

large projected values are retained with their corresponding connections.
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Fig. 3. 
The change of the distribution of node pooling scores s  of the 1st R-pool layer over 100 

training epochs presented using kernel density estimate plots. With TopK pooling (TPK) 

loss, the node pooling scores of the selected nodes and those of the unselected nodes become 

significantly separate.
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Fig. 4. 
Comparison of Ra-GConv with vanilla-GConv and effect of coefficients of total loss in 

terms of accuracies on the validation sets.
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Fig. 5. 
Interpretation results of Biopoint task. The selected salient ROIs of three different ASD 

individuals with different weights λ2 associated with group-level consistency term LGLC . 

The color bar ranges from 0.1 to 1. The bright-yellow color indicates a high score, while 

dark-red color indicates a low score. The commonly detected salient ROIs across different 

individuals are circled in blue.
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Fig. 6. 
Interpretation results of Biopoint task. Interpreting salient ROIs (importance scores are 

denoted in colorbar) for classifying HC vs. ASD using BrainGNN.
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Fig. 7. 
Interpretation results of HCP task. Interpreting salient ROIs (importance scores are denoted 

in color-bar) associated with classifying seven tasks.
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Fig. 8. 
The correlation coefficient decoded by NeuroSynth (normalized by dividing it by the largest 

absolute value of each column for better visualization) between the interpreted biomarkers 

and the functional keywords for each functional state. A large correlation (in red) along each 
column indicates large association between the salient ROIs and the functional keyword. 

Large values (in red) on the diagonal from left-bottom to right-top indicate reasonable 

decoding; especially a value of 1.00 on the diagonal means that the interpreted salient ROIs 

of the task state are most correlated with the keywords of that state among all possible states 

in Neurosynth.

Li et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 

Clustering ROI using αij
+ from the 1st Ra-GConv layer. Different colors denote different 

communities.
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Fig. 10. 

Visualizing Ra-GConv parameter α+ ∈ ℝ ≥ 0
K × N, which implies the membership score of an 

ROI to a community. K is the number of communities, represented as the vertical axis. We 

have K = 8 in our experiment. N is the number of ROIs, represented as the horizontal axis. 

(a) is the α+ of Biopoint task, and N = 84. (b) is the α+ of HCP task, and N = 268. We split 

α+ of HCP task into three rows for better visualization (note ROI numbering on horizontal 

axes).

Li et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 32

Ta
b

le
 1

N
ot

at
io

ns
 u

se
d 

in
 th

e 
pa

pe
r.

N
ot

at
io

ns
D

es
cr

ip
ti

on

C
nu

m
be

r 
of

 c
la

ss
es

M
nu

m
be

r 
of

 s
am

pl
es

N
nu

m
be

r 
of

 R
O

Is

v i
no

de
 i 

(R
O

I 
i)

 in
 th

e 
gr

ap
h

N
(i)

ne
ig

hb
or

ho
od

 o
f 

v i

e i
j

ed
ge

 c
on

ne
ct

in
g 

no
de

 v
i a

nd
 v

j

e ij
no

rm
al

iz
ed

 e
dg

e 
sc

or
e 

ov
er

 j
∈

N
(i)

V
no

de
s 

se
t

ℰ
ed

ge
 s

et

G
gr

ap
h,

 G
=

(V
,ℰ

)
E

ad
ja

ce
nc

y 
m

at
ri

x,
 E

=
e ij

∈
ℝN

×
N

d(l
)

no
de

 f
ea

tu
re

 d
im

en
si

on
 o

f 
th

e 
lth

 la
ye

r

h  
i 

no
de

 f
ea

tu
re

 v
ec

to
r 

as
so

ci
at

ed
 w

ith
 v

i, 
h i

∈
ℝd

H
no

de
 f

ea
tu

re
 m

at
ri

x

h i
em

be
dd

ed
 n

od
e 

fe
at

ur
e 

ve
ct

or
 a

ss
oc

ia
te

d 
w

ith
 v

i b
ef

or
e 

po
ol

in
g,

 h
i∈

ℝd

H
em

be
dd

ed
 n

od
e 

fe
at

ur
e 

m
at

ri
x 

be
fo

re
 p

oo
lin

g

s  m
 

no
de

 p
oo

lin
g 

sc
or

e 
ve

ct
or

 b
ef

or
e 

no
rm

al
iz

at
io

n 
of

 s
ub

je
ct

 m

s m
no

de
 p

oo
lin

g 
sc

or
e 

ve
ct

or
 a

ft
er

 n
or

m
al

iz
at

io
n 

of
 s

ub
je

ct
 m

r  
i 

on
e-

ho
t e

nc
od

in
g 

ve
ct

or
 o

f 
v i

, r
i∈

ℝN
, r

i, 
j =

 0
, ∀

j ≠
 i

k
nu

m
be

r 
of

 n
od

es
 le

ft
 a

ft
er

 p
oo

lin
g

K
nu

m
be

r 
of

 R
O

I 
co

m
m

un
iti

es

α i
le

ar
na

bl
e 

m
em

be
rs

hi
p 

sc
or

e 
ve

ct
or

 o
f 

v i
 to

 e
ac

h 
co

m
m

un
ity

, α
i∈

ℝK

β u
le

ar
na

bl
e 

fi
lte

r 
ba

si
s,

 β u
(l)

∈
ℝd(l

+
1)

⋅d
(l)

, ∀
u 
∊ 

{1
, .

 . 
., 

K
(l

) }

Med Image Anal. Author manuscript; available in PMC 2023 February 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 33

N
ot

at
io

ns
D

es
cr

ip
ti

on

W
i(l)

gr
ap

h 
ke

rn
el

 f
or

 n
od

e 
v i

 o
f 

th
e 

lth
 la

ye
r, 

W
i(l)

∈
ℝd(l

+
1)

×
d(l)

λ
pa

ra
m

et
er

 a
ss

oc
ia

te
d 

w
ith

 lo
ss

 f
un

ct
io

n

Med Image Anal. Author manuscript; available in PMC 2023 February 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 34

Ta
b

le
 2

C
om

pa
ri

so
n 

of
 th

e 
cl

as
si

fi
ca

tio
n 

pe
rf

or
m

an
ce

 w
ith

 d
if

fe
re

nt
 b

as
el

in
e 

m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
s 

an
d 

st
at

e-
of

-t
he

-a
rt

 d
ee

p 
le

ar
ni

ng
 m

od
el

s.

SV
M

R
an

do
m

 F
or

es
t

M
L

P
B

ra
in

N
et

C
N

N
G

A
T

G
ra

ph
SA

G
E

P
R

-G
N

N
B

ra
in

G
N

N

B
io

po
in

t

A
cc

ur
ac

y 
(%

)
62

.8
0(

4.
92

) 
a

68
.6

0(
3.

58
)

58
.8

0(
1.

79
)

75
.2

0(
3.

49
)

77
.4

0(
3.

51
)

78
.6

0(
5.

90
)

77
.1

0(
8.

71
)

79
.8

0(
3.

63
)c

F1
 (

%
)

60
.0

8(
3.

91
)

63
.9

7(
4.

95
)

55
.2

5(
9.

49
)

65
.5

8(
14

.4
8)

75
.0

8(
5.

19
)

75
.5

5(
7.

03
)

75
.2

0(
7.

01
)

75
.8

0(
6.

03
)

R
ec

al
l (

%
)

60
.2

0(
4.

49
)

71
.1

1(
8.

12
)

61
.0

0(
4.

85
)

66
.2

0(
10

.8
5)

71
.6

0(
6.

07
)

75
.2

0(
6.

46
)

78
.2

6(
10

.2
8)

72
.6

0(
5.

64
)

Pr
ec

is
io

n 
(%

)
60

.0
0(

3.
81

)
67

.8
0(

5.
36

)
53

.4
0(

12
.5

2)
65

.6
0(

17
.9

5)
79

.4
0(

8.
02

)
76

.2
0(

8.
11

)
76

.5
0(

14
.3

2)
79

.6
0(

8.
59

)

Pa
ra

m
et

er
 (

k)
 b

3
3

13
8

14
38

16
6

6
41

H
C

P

A
cc

ur
ac

y 
(%

)
90

.0
0(

8.
20

)
90

.2
0(

4.
15

)
67

.2
0(

34
.4

0)
90

.6
0(

4.
04

)
78

.6
0(

10
.4

5)
89

.8
0(

12
.5

1)
91

.2
0(

8.
28

)
94

.4
0(

4.
04

)*
d

F1
 (

%
)

90
.2

0(
5.

81
)

90
.1

4(
5.

55
)

63
.4

9(
41

.8
0)

90
.9

6(
3.

50
)

77
.0

0(
11

.5
8)

88
.6

0(
13

.1
9)

91
.0

9(
8.

35
)

94
.3

4(
3.

27
)*

R
ec

al
l (

%
)

89
.5

7(
8.

04
)

90
.0

6(
7.

35
)

67
.9

7(
41

.6
6)

91
.1

2(
4.

13
)

78
.6

0(
10

.4
5)

89
.4

3(
12

.4
3)

91
.0

0(
8.

95
)

94
.2

9(
3.

73
)*

Pr
ec

is
io

n 
(%

)
90

.8
5(

9.
35

)
90

.2
2(

4.
77

)
62

.9
7(

42
.4

7)
90

.8
1(

3.
27

)
91

.2
0(

3.
32

)
87

.8
0(

14
.0

2)
91

.1
4(

8.
52

)
94

.4
0(

3.
59

)*

Pa
ra

m
et

er
 (

k)
36

36
71

3
45

47
34

12
12

96

a C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

, f
1-

sc
or

e,
 r

ec
al

l a
nd

 p
re

ci
si

on
 o

f 
th

e 
te

st
in

g 
se

ts
 a

re
 r

ep
or

te
d 

in
 m

ea
n 

(s
ta

nd
ar

d 
de

vi
at

io
n)

 f
or

m
at

.

b T
he

 n
um

be
r 

of
 tr

ai
na

bl
e 

pa
ra

m
et

er
s 

of
 e

ac
h 

m
od

el
 is

 d
en

ot
ed

.

c W
e 

bo
ld

fa
ce

d 
th

e 
re

su
lts

 g
en

er
at

ed
 f

ro
m

 o
ur

 p
ro

po
se

d 
B

ra
in

G
N

N
.

d * 
in

di
ca

te
s 

si
gn

if
ic

an
tly

 o
ut

pe
rf

or
m

in
g 

(p
 <

 0
.0

01
 u

nd
er

 o
ne

 ta
il 

tw
o-

sa
m

pl
e 

t-
te

st
) 

al
l t

he
 a

lte
rn

at
iv

e 
m

et
ho

ds
.

Med Image Anal. Author manuscript; available in PMC 2023 February 10.


	Abstract
	Introduction
	BrainGNN
	Notations
	Architecture overview
	Layers in BrainGNN
	ROI-aware Graph Convolutional Layer
	Overview

	ROI-topK pooling layer
	Overview

	Readout layer
	Putting layers together

	Loss functions
	Group-level consistency loss
	TopK pooling loss

	Interpretation from BrainGNN
	Community detection from convolutional layers
	Biomarker Detection from pooling layers


	Experiments and results
	Datasets
	Biopoint dataset
	HCP dataset

	Experimental setup
	Hyperparameter discussion and ablation study
	Hyperparameter discussion setup
	Ablation study setup
	Results

	Comparison with baseline methods
	Interpretability of BrainGNN
	Individual- or group-level biomarker
	Validating salient ROIs
	Node clustering patterns in Ra-GConv layer


	Discussion
	The model
	Limitation and future work

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Table 1
	Table 2

