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Abstract: Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcrip-
tion factors is curtail for establishing functional organ systems during development. Brain devel-
opment is tightly regulated by epigenetic factors, which are coordinately activated or inactivated
during processes, and their dysregulation is linked to brain abnormalities and intellectual disability.
However, the precise mechanism of epigenetic regulation in brain development and neurogenesis
remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells
(NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic
brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60
deficiency. In addition, neural differentiation and neuronal migration were severely affected in
Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the
earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching
from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that
poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated
astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This
study uncovers the critical role of Tip60 in brain development and NSC maintenance and function
in vivo and in vitro.
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1. Introduction

Epigenetic regulations through DNA methylation, histone post-translational modifica-
tions, and non-coding RNAs have been widely investigated [1–3] and recognized as critical
factors in neurogenesis and brain development [4–9]. The dysregulation of epigenetic
mechanisms has been linked to neurological disorders such as autism, epilepsy, intellec-
tual disability, and neurodegenerative diseases such as Alzheimer’s disease (AD) [10–14].
Histone acetylation is a major epigenetic modification, and it is involved in many cellular
processes [15–19]. Histone acetylation destabilizes DNA–histone interactions and forms
an open chromatin state. The kinetics of proper histone acetylation are maintained by the
action of histone acetyltransferases (HATs) and deacetylases (HDACs), and open or closed
chromatin states are properly coordinated to regulate DNA-related processes such as gene
expression and DNA repair.

Tip60/KAT5 is a member of the MYST (Moz, Ybf2/Sas3, Sas2, and Tip60) family HAT,
and its major acetylation sites include lysine (K)5, 8, and 12 on histone H4 and K5 on
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histone H2A and histone variant H2AX [20–22]. At present, Tip60 participates in many cel-
lular processes such as transcriptional regulation, cell cycle control, apoptosis, autophagy,
and DNA repair [23–27]. Based on previous reports, Tip60 expression is high in the hip-
pocampal CA1 region in adult mice [28]. Tamoxifen-induced conditional Tip60 deficiency
in postmitotic excitatory neurons of the adult forebrain reduced H4K12 acetylation and
the dysregulation of gene expression in the hippocampal CA1 region [29]. Inflammation
and neurodegeneration in the CA1 region gradually progressed through Tip60 deficiency,
and Tip60-deficient mice showed modest memory impairment at a later time point [29].
Adeno-associated virus-mediated Tip60 knockdown (KD) in the hippocampal CA1 region
in adult mice showed impairment of stimulation-dependent synaptic plasticity and long-
term memory formation [30]. This impairment was correlated with the suppression of
Fgf1b expression following the decrease in H4K12 acetylation on the Fgf1b promoter. This
finding indicated that Tip60-mediated histone acetylation is involved in the upregulation of
specific target genes for training-induced enduring memory formation in the hippocampus.
Recently, three individuals with heterozygous de novo missense variants in Tip60/KAT5
were reported [31]. These patients showed developmental delay, cerebellar malformation,
seizures, intellectual disability, sleep disturbance, and epilepsy. The mutations were found
in the chromodomain (p.Arg53His) and in the acetyl-CoA-binding region (p.Cys369Ser and
p.Ser413Ala). All amino acids are evolutionally well conserved, and all mutations reduced
histone acetylation activities when native nucleosomes were used as a substrate. Therefore,
Tip60 activity might be essential for neurogenesis and neuronal functions.

In a Drosophila AD model, the dysregulation of balance between Tip60 and HDAC2
reduced neuroplasticity and disease progression [32–35]. The acetylation homeostasis in
AD brains is impaired because of the loss of Tip60 HAT activity and the gain of HDAC2
activity in this model, which disrupts the expression of neuroplasticity genes and may
accelerate the progression of AD pathogenesis. In addition, the reinforcement of Tip60
activity in the brain restores the expression of neuroplasticity genes and brain health
in this model. Evidence that Tip60 HAT is an essential factor for neuronal functions is
accumulating, but whether Tip60 is involved in the maintenance of neural stem/progenitor
cells (NSCs) and neurogenesis, particularly in the fetal brain, remains unclear.

In order to obtain insights into the role of Tip60 in NSC maintenance and neurogenesis
in the mammalian brain, we have generated a NSC-specific Tip60 knockout mouse model in
which Cre recombinase is expressed under the control of the Nestin promoter active in NSCs.
Our findings indicate that Tip60 plays a critical role in NSC maintenance, neurogenesis,
and switching from neurogenesis to gliogenesis during mouse brain development.

2. Results
2.1. Tip60 Deletion in Neural Stem Cells Causes Perinatal Lethality

In investigating Tip60 function in neurogenesis in vivo, we produced NSC-specific
Tip60-deficient mice by using the Nes-Cre+ strain, in which Cre recombinase is expressed
in neural stem cells starting at E11.5 (Figure S1) [36]. These Tip60F/+;Nes-Cre+ males were
crossed with Tip60F/F females to produce Tip60F/F;Nes-Cre+ (Tip60 cKO) mice. Although
the Tip60 cKO mice were born at the expected Mendelian ratio (Table 1), we did not obtain
any viable Tip60 cKO animals after birth, probably because of respiratory distress. At
birth (P0), Tip60 cKO mice showed a flat-head phenotype compared with wild-type mice
(Figure 1A). Histopathological analysis of the P0 brain showed that the cortex of the Tip60
cKO was thinner, and its brain size was smaller than that of the wild-type (Figure 1B). The
deletion of Tip60 in NSCs caused severe hypoplasia of the brain and microcephaly, and this
phenotype was evident even at the embryonic stage E18.5 (Figure 1C). We also examined
the expression of Tip60 in the brain of Tip60 cKO embryos. We selected E14.5 embryos
for the detection of Tip60 expression because their Cre recombinase is already functional
at this embryonic stage. As expected, the expression level of Tip60 in the cortex of Tip60
cKO was significantly reduced even at E14.5 compared with that of the control (Figure 1D).
The level of histone acetylation at H4Lys8 and H4Lys12 (H4K8Ac and H4K12Ac), which
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are reported as the target sites of Tip60, was reduced in the cerebral cortex of Tip60 cKO
embryonic brains at E16.5 (Figure S2).

Table 1. The number of pups from Tip60F/F females mated with Tip60F/+;Nes-Cre+ males. A total of 31
litters were analyzed. The average litter size was 7.4 pups.

Pups % % Expected

Tip60F/F;Nes-Cre+ 56 24.6 25
Tip60F/F;Nes-Cre- 63 27.6 25
Tip60F/+;Nes-Cre+ 52 22.8 25
Tip60F/+;Nes-Cre- 57 25.0 25

Total 228 100 100
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Figure 1. Tip60 inactivation in NSCs results in microcephaly and perinatal lethality. (A) Repre-
sentative images of head parts of the mice at P0. Tip60 cKO pup shows the flat-head phenotype. Scale
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bars, 2000 µm. (B) H and E staining of coronal brain sections at P0. The arrow indicates the cerebral
cortex. Scale bars, 500 µm. (C) Representative brain images for control and Tip60 cKO at E18.5. The
cerebral cortex of Tip60 cKO is smaller than that of control. Scale bar, 1000 µm. (D) Relative expression
of Tip60 mRNA in the cerebral cortex at E14.5 measured by qRT-PCR. The expression levels of Tip60
mRNA were normalized with the expression levels of β-actin. The graph shows means ± SD. n = 3
brains per group. At least two independent experiments were performed.

Considering that Tip60 is involved in DNA damage response and repair, we investi-
gated DNA damage response and apoptosis in the Tip60 cKO brain to elucidate the perinatal
lethality and cause of microcephaly. Thus, we performed immunohistochemistry (IHC) of
the brain at E18.5 using antibodies against cleaved caspase 3 for the detection of apoptosis
and γH2AX for the detection of DNA damage (Figure S3A). Although positive cells for
cleaved caspase 3 and γH2AX could not be detected in the control brain, γH2AX-positive
cells in the Tip60 cKO brain, particularly at the subventricular zone (SVZ), were accumu-
lated. In addition, only a few apoptotic cells, which were positive for cleaved caspase 3,
could be detected in the Tip60 cKO brain, but the number of apoptotic cells was fewer than
what we expected. The possibility of accelerated apoptosis may not cause microcephaly
of the Tip60 cKO brain at least until E18.5. The accumulation of γH2AX-positive cells was
also evident in the Tip60 cKO brain at E16.5 (Figure S3B). Double-positive cells for γH2AX
and 53BP1, another marker for DNA damage, could not be detected at SVZ in the Tip60
cKO brain at E16.5. Next, we examined the expression of p21, which is a well-known
downstream target of p53 in response to DNA damage. Accumulated p21 expression
could not be detected in the Tip60 cKO brain at E18.5, although γH2AX-positive cells were
easily detected (Figure S3C). The p21-dependent cellular senescence program may not be
activated in Tip60 cKO brain. We did not perform any further investigations relating to
DNA damage in this study.

2.2. Tip60 Deletion in NSCs Causes Abnormalities in Neurogenesis and Neuronal Migration

In addition, we investigated the effect of Tip60 deficiency on neurogenesis using
immunohistochemical analyses. We used E18.5 embryos for these analyses. All Tip60
cKOs at E18.5 were alive, although the body size of Tip60 cKO was slightly smaller than
the control. First, we used antibodies against MAP2 and GFAP to detect mature neurons
and astroglia, respectively. The MAP2-positive neuronal population of the Tip60 cKO
brain was smaller than that of the control brain, and MAP2-positive cells in the Tip60
cKO brain were disorganized compared with those in the control brain (Figure 2A,B).
GFAP-positive cells in the control brain were detected only in the hippocampus, whereas
GFAP-positive cells in the Tip60 cKO brain were detected in the ventricular zone and
hippocampus at E18.5. Next, we used antibodies against layer-specific neuronal markers,
such as TBR1 (layer VI), CTIP2 (layer V), and CDP/CUX1 (layers II/III and IV), to evaluate
neurogenesis and neuronal migration [37,38]. As shown in Figure 2C, TBR1-positive and
CTIP2-positive neurons properly migrated in the control brain, whereas TBR1-positive
neurons and CTIP2-positive neurons were located at the same place in the Tip60 cKO brain.
A part of CDP/CUX1-positive neurons in the Tip60 cKO brain properly migrated into the
cortex, but the majority of CDP/CUX1-positive neurons did not migrate and stayed under
layer VI. On the contrary, CDP/CUX1-positive neurons in the control brain migrated to the
expected position. These results indicated that Tip60 is involved in neuronal maturation
during neurogenesis and the impairment of Tip60 function in neurogenesis, thereby causing
a disorganized brain structure.
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(C) Representative images of brains at E18.5 stained for layer-specific marker proteins, CUX1 (Layer 
II/III), and CTIP2 (Layer V). DAPI was used for nuclear staining. Scale bars, 100 µm. Staining results 
were confirmed by at least two independent experiments. 
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Figure 2. Tip60 deficiency shows decreased neurogenesis, increased gliogenesis, and abnormal
neuronal migration in developing brains. (A) Representative images of brains at E18.5 stained for
GFAP (astrocytes) and MAP2 (neurons) by immunofluorescence. DAPI was used for nuclear staining.
Scale bars, 200 µm. (B) Representative images of brains at E18.5 stained for layer-specific marker
proteins, TBR1 (Layers I and VI), and CTIP2 (Layer V). DAPI was used for nuclear staining. Scale
bars, 100 µm. (C) Representative images of brains at E18.5 stained for layer-specific marker proteins,
CUX1 (Layer II/III), and CTIP2 (Layer V). DAPI was used for nuclear staining. Scale bars, 100 µm.
Staining results were confirmed by at least two independent experiments.

2.3. Loss of Tip60 in NSCs Shows Cell Proliferation Defect and Accumulation of M Phase Cells in
the Brain

In order to verify whether the loss of Tip60 in NSCs causes microcephaly, we performed
a BrdU incorporation assay in the brain at E14.5. BrdU-incorporated cells were detected by
IHC using an anti-BrdU antibody, concomitant with detection using an antibody against
Tbr2, a basal progenitor (BP) marker (Figure 3A) or Pax6, an apical progenitor (AP) marker
(Figure 3B) [39]. The ratio of BrdU-positive cells in Tbr2-positive cells in the Tip60 cKO
cortex was significantly reduced compared to that in the control cortex (Figure 3A). Similar
to Tbr2-positive cells, the ratio of BrdU-positive cells in Pax6-positive cells in Tip60 cKO
cortex was also significantly reduced compared with that in the control cortex (Figure 3B).
Based on previous reports, Tip60 is involved in the proper progression of mitosis in cancer
cells. We performed IHC of E16.5 brains using an antibody against phosphorylated histone
H3 at Serine 10 (H3S10P), which is a marker for mitosis. The expression of H3S10P-positive
cells in SVZ in the Tip60 cKO brain was evidently decreased compared to that in control
brain. The accumulation of H3S10P-positive cells in SVZ in the Tip60 cKO brain might
reflect the increase in Tbr2-positive cells. These results indicated that the loss of Tip60 in
NSCs affected cell growth in the brain during neurogenesis.
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nificantly reduced compared with that in control. This result indicated that Tip60 is im-
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Figure 3. Tip60-deficient brains show proliferation defects and cell cycle dysregulation. (A) Represen-
tative images of brains at E14.5 stained for BrdU and Tbr2 (markers for BPs) by immunofluorescence.
DAPI was used for nuclear staining. Scale bars, 100 µm. The ratio of BrdU-positive and -negative cells
in Tbr2-positive cells is shown. At least 10 different sections were counted. The graph shows means
± SD. Two independent experiments were performed. (B) Representative images of brains at E14.5
stained for BrdU and Pax6 (marker for APs) by immunofluorescence. DAPI was used for nuclear
staining. Scale bars, 100 µm. The ratio of BrdU-positive and -negative cells in Pax6-positive cells is
shown. At least 10 different sections were counted. The graph shows means ± SD. Two independent
experiments were performed. (C) Representative images of brains at E16.5 stained for H3S10P
(marker for mitosis) and Pax6 by immunofluorescence. DAPI was used for nuclear staining. Scale
bars, 200 µm. The number of H3S10P-positive cells in SVZ is counted. At least 10 different sections
were counted. The graph shows means± SD. At least two independent experiments were performed.

2.4. Loss of Tip60 in NSCs Affects Cell Growth and Differentiation In Vitro

In investigating the role of Tip60 in cell growth and differentiation of NSCs in vitro,
we performed in vitro neurosphere cultures and used them for further in vitro studies. As
shown in Figure 4A, the sphere size in Tip60 cKO culture was smaller than that in control
culture. Similar to sphere size distribution, BrdU incorporation in Tip60 cKO NSCs was
significantly reduced compared with that in control. This result indicated that Tip60 is
important for cell growth in NSCs, which was confirmed in vivo and in vitro.
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Figure 4. Critical roles of Tip60 in neurosphere formation, proliferation, and neural differentiation
in vitro. (A) A neurosphere formation defect in NSCs derived from Tip60-deficient cerebral cortex
but not from control at E14.5. These representative pictures were taken after a 6-day culture. Scale
bars, 200 µm. (B) Proliferation assay. Cultured NSCs were incubated with 10 µM BrdU for 2 h,
and the incorporated BrdU was detected with an anti-BrdU antibody. DAPI was used for nuclear
staining. Scale bars, 100 µm. BrdU-positive cells were counted. The graph shows means ± SD. At
least two independent experiments were performed. (C) Differentiation assay. NSCs were cultured
in a differentiation medium for 7 days. Neurons and astrocytes were detected by immunostaining
with anti-Tuj1 and anti-GFAP antibodies, respectively. DAPI was used for nuclear staining. Scale
bars, 100 µm. Tuj1 and GFAP-positive cells were counted. The graph shows means ± SD. At least
three independent experiments were performed. (D) Western blot analysis of Tuj1 and GFAP for
in vitro-differentiated NSCs. NSCs were cultured in a differentiation medium for 7 days, and total
cell lysates were prepared. The expression of Tuj1 and GFAP was detected by specific antibodies.
Beta-actin was used as an internal control. Two independent experiments were performed.

Moreover, we investigated the role of Tip60 in the differentiation ability of NSCs
in vitro. NSCs were cultured in a differentiation medium without mitogens for 7 days,
and neurons and astrocytes were detected by ICC using antibodies against Tuj1 and GFAP,
respectively. Similar to in vivo studies (Figure 2A), where the expression of Tuj1-positive
neurons in Tip60 cKO significantly decreased compared to those in control, GFAP-positive
astrocytes in Tip60 cKO significantly increased (Figure 4C). This result was also confirmed
by Western blot (Figure 4D). Tuj1 expression in Tip60 cKO cultures was significantly lower
than that in control cultures. On the contrary, GFAP expression in Tip60 cKO cultures was
significantly higher than that in control cultures.

2.5. Microglia Are Activated in Tip60 cKO Brain

Microglia are activated in response to physiological and pathophysiological insults,
and they are involved in the maintenance of proper brain function. In elucidating the
microglial status in the Tip60 cKO brain, we conducted IHC using an antibody against Iba1,
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a microglial marker [40], concomitant with an anti-CTIP2 antibody, a neuronal marker for
Layer V of the cortex. As shown in Figure 5A, the number of Iba1-positive microglia in the
Tip60 cKO brain at E16.5 evidently increased compared to that in control brain. As microglia
are activated by extracellular stimulation, they are transformed from a ramified (resting
form) to an ameboid (active form) morphology. Many microglia showed ameboid mor-
phology in the Tip60 cKO brain at E16.5, whereas almost all microglia in the control brain
had ramified morphology. The number of microglia increased, and they were activated
in the Tip60 cKO brain at E16.5. Although microglia at this stage can be detected only in
VZ/SVZ [41,42], Iba1-positive microglia in the Tip60 cKO brain were also recognized in the
cortex. The expression level of microglial marker genes in the Tip60 cKO brain significantly
increased compared to that in the control brain even at E14.5 (Figure 5B). These results
indicated that the effects of the loss of Tip60 in the brain had appeared as early as E14.5.
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Figure 5. Microglial activation in Tip60-deficient brains. (A) Representative images of immunostain-
ing for Iba1 (microglia) and CTIP2 (Layer V) with DAPI nuclear staining of brains at E16.5. Scale
bars, 100 µm. Iba1-positive activated microglia are more detected in Tip60 cKO brains compared
to control brains. (B) The expression of microglia marker genes. The expression levels of some
microglia marker genes in E14.5 brains were examined by qRT-PCR. These expression levels were
significantly upregulated in Tip60 cKO brains compared with those in control brains. The graph
shows means ± SD. n = 3 mice per group.

2.6. Tip60 Regulates Neurogenesis in Developing Brain

In exploring genes affected by Tip60 deficiency during neurogenesis, we conducted
RNA-seq analysis using mRNA isolated from brain cortexes at E14.5 and compared the gene
expression pattern in Tip60 cKO embryonic cerebral cortexes with that in control cerebral
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cortexes. Considering that abnormalities in the brain caused by Tip60 deficiency became
evident right after E14.5, we selected brains at this stage for RNA-seq analyses. Principal
component analysis (PCA) based on the expression level of over 20,000 protein-coding
genes demonstrated that the gene expression signature between two groups was clearly
separated along the PC1 axis (Figure 6A). The distribution of differentially expressed (DE)
genes between Tip60 cKO and control groups is depicted by a volcano plot (Figure 6B). The
expression patterns of the top 40 DE genes are illustrated in a heatmap of three replicates
of each group (Figure 6C). Tissue expression enrichment analysis was performed using
208 downregulated and 547 upregulated gene sets (Figure 6D). The genes categorized in
the nervous system and brain were downregulated in Tip60 cKO, whereas the genes catego-
rized in microglia and glial cells were upregulated in Tip60 cKO. This result completely
overlapped with the result related to microglial activation in the Tip60 cKO brain (Figure 5).
The top 10 functional categories for DE genes on enrichment analysis, including the bio-
logical process gene ontology (GO) term and STRING cluster, are indicated in Figure 6E
(downregulated genes) and 6F (upregulated genes). The majority of the downregulated
genes in Tip60 cKO cortexes were listed in multiple pathways important for neurogenesis
and nervous system development. Scratch 1 (Scrt1), which was located at the top rank in
the downregulated gene list in Tip60 cKO cerebral cortex, regulates neuronal migration
via an epithelial–mesenchymal transition-like mechanism [43,44], and abnormal migration
of neuronal cells in Tip60-deficient cerebral cortex during development might be related
to the downregulation of Srct1 expression. These data also suggest that Tip60 is a critical
regulator for neural stem cell maintenance and neurogenesis.
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Figure 6. Tip60 is required for neurogenesis. (A) PCA plot of six RNA-seq samples (three Tip60 cKO
and three control brains at E14.5) based on the expression level (RPKM) of 20,079 protein-coding genes.
The proportion of variance explained is indicated in parentheses. (B) Volcano plot of statistically
significant and differentially expressed genes (DE genes) at adjusted p value < 0.05 and fold changes
≥1.5. (C) Heatmap of the top 40 DE genes by fold change in Tip60 cKO vs. control groups. (D) Tissue
expression enrichment for 208 downregulated and 547 upregulated DE genes. (E) Top 10 functional
enrichment values for DE genes downregulated in Tip60 cKO. (F) Top 10 functional enrichment values
for DE genes upregulated in Tip60 cKO.
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2.7. Glucagon-like Peptide-1 (GLP-1) Positive Cell Population Is Increased in Tip60 cKO Brains

The most strikingly upregulated gene in Tip60-deficient brains by RNA-seq analy-
sis was the preproglucagon (Gcg) gene, which was confirmed by qRT-PCR (Figure 7A).
Proglucagon is differentially processed by prohormone convertases, which produce several
different peptides such as glucagon and GLP-1 in a tissue-specific manner [45,46]. Based
on previous reports, GLP-1 is expressed in amoeboid-type activated microglia, and acti-
vated microglia [47,48] were accumulated in Tip60-deficient embryonic brains (Figure 5).
Thus, we examined whether GLP-1 is expressed in activated microglia in Tip60-deficient
embryonic brains at E16.5 using IHC. As shown in Figure 7B, although we could detect an
increased number of GLP-1-positive cells in the Tip60-deficient embryonic brain compared
with the control brain, GLP-1-positive staining did not overlap with Iba1-positive microglia.
Next, we performed co-immunostaining for GLP-1 and MAP2, which are neuronal mark-
ers. As shown in Figure 7C, GLP-1 staining overlapped with MAP2-positive cells. This
finding indicated that GLP-1 was expressed in some types of neurons. Considering that the
number of GLP-1-positive cells but not the levels of GLP-1 expression in each cell increased
in Tip60-deficient brains, Tip60 might be involved in the specification of some types of
neuronal linages.
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Figure 7. Tip60 deficiency in the brain increases the GLP-1-expressed neural population. (A) The
relative expression level of the Gcg gene. The relative expression level of the Gcg gene in Tip60 cKO
brains at E14.5 was determined using qRT-PCR and compared with control brains. The expression
level of β-actin was used as an internal control. (B) Representative images of immunostaining for
Iba1 (microglia) and GLP-1 with DAPI nuclear staining of brains at E16.5. Enlarged images of the
boxed areas are shown at the right. Scale bars, 200 µm, 50 µm in enlarged view. (C) Representative
images of immunostaining for MAP2 (Neuron) and GLP-1 with DAPI nuclear staining of the brains
at E16.5. Enlarged images of the boxed areas are shown at the right. Scale bars, 200 µm, 50 µm in
enlarged view.
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3. Discussion

In this study, we explored the role of Tip60 HAT in the maintenance of neural stem
cells and embryonal neurogenesis using a NSC-specific Tip60 knockout mouse model.
NSC-specific Tip60 cKO mice were born at a Mendelian ratio, but they died soon after
delivery. Tip60 cKO mice showed microcephaly, and NSCs derived from Tip60 cKO brains
showed a proliferation defect in in vivo and in vitro accumulation of M phase cells in vivo,
indicating that the dysregulation of cell growth in Tip60-deficient NSCs contributes to
the occurrence of microcephaly in the Tip60 cKO brain. Neuronal differentiation and
migration were severely affected in the brains of Tip60 cKO mice, whereas GFAP-positive
glial cells increased in the embryonal brain during in vivo and in vitro differentiation using
neurosphere cultures derived from Tip60 cKO mice. Gene expression analyses also showed
that the expression of genes related to multiple neuronal pathways was downregulated in
Tip60-deficient embryonal brains. The role of Tip60 in NSCs and neurogenesis, which is
speculated from this study, is summarized in Figure 8.
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Figure 8. Schematic illustration of the role of Tip60 in NSC maintenance and neurogenesis.

M-phase cells in the cell cycle, identified by the detection of phosphorylated histone
H3 at Ser10, were accumulated in SVZ and most likely in VZ in Tip60-deficient embryonic
brains. Recently, Rust et al. reported that the Tip60 complex controls Drosophila neuroblast
maintenance and polarity via interaction with Myc [49]. The depletion of ATPase Domino
(dom), one of the subunits of the Tip60 complex, in neuroblasts showed abnormalities
in spindle morphology and spindle asymmetry, which might cause aberrant division of
dom-depleted neuroblasts. Messina et al. have reported that the subunits of the p400/Tip60
complex relocate from the interphase chromatin to the mitotic apparatus, and this dynamic
relocation is necessary for the execution of proper cell division [50]. This regulation is
evolutionarily conserved from fly to human. Tip60 is also known to be involved in protein
modifications for several critical targets, such as acetylation and crotonylation, to execute
accurate mitosis in several cancer cells [51–56]. In this study, mitotic cells were accumulated
in the SVZ and most likely in the VZ of Tip60-deficient embryonic brains. This finding
suggests that the regulation of mitosis by the Tip60 complex is crucial for brain development
and neurogenesis.

Tip60 is also important for S-phase entry of the cell cycle to control the expression
of E2F target genes, such as PCNA and cdc25A [57,58]. BrdU incorporation into Tip60-
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deficient embryonic brains and NSCs cultured in vitro was significantly reduced. This
in vivo observation highly reflects previous in vitro observations. Interestingly, apoptosis
detected by activated caspase 3 and senescence detected by p21 expression were not clearly
upregulated in Tip60-deficient brains. Recently, Wichmann et al. have reported similar
observations using Tip60-deficient human cancer cells and mouse embryonic fibroblasts [59].
They showed that the loss of Tip60 causes complete cell growth arrest without affecting
cell survival, and the cell growth arrest caused by the loss of Tip60 was independent of
p53, INK4A, and ARF. This finding suggests that microcephaly in Tip60-deficient mouse
embryos is primarily due to inefficient cell growth, and cell growth arrest is due to the loss
of Tip60.

NSCs promote the generation of neurons and glial cells (astrocytes and oligodendro-
cytes). During development, neurons are generated at early embryonic stages around E10.5,
whereas astrocytes start to be generated at E18.5 or later stages in rodents [60–62]. Switching
from neurogenesis to astrogenesis in NSCs is tightly regulated by intrinsic and extrinsic fac-
tors to ensure a proper balance between neuronal and glial cells [63,64]. Astrogenesis and
astrocyte differentiation were accelerated in Tip60-deficient embryonic brains and in vitro
differentiation of NSC culture. Similarly, the deletion of the histone methyltransferase Ezh2
of PRC2, which is crucial for the removal of the repression mark of trimethylated histone H3
at lysine 27 (H3K27me3), results in the appearance of GFAP-positive astrocytes in the cere-
bral cortex at E16 when astrocytes are not normally found [65]. PRC2 tightly controls the
developmental timing of the transition from neurogenesis to astrogenesis, and Tip60 might
also be a crucial factor in this regulation. The JAK-STAT3 signaling pathway is important
for astrogenesis in late embryogenesis [66,67]. STAT3, phosphorylated by activated JAKs,
is translocated into the nucleus, and it activates astrocytic gene expression, including GFAP,
thereby promoting astrogenesis. Tip60 interacts with STAT3 and serves as a co-repressor
for STAT3 in cancer cells via recruitment of HDAC7 to STAT3 target genes [68]. Tip60 might
interact with STAT3 and repress the astrocytic gene expression controlled by STAT3 in
NSCs. STAT3 might effectively interact with co-activator p300/CBP [66] and could activate
the expression of astrocytic target genes such as GFAP in a Tip60-deficient condition.

The preproglucagon gene (Gcg) encodes some different bioactive polypeptides, such as
glucagon and GLP-1, and the production of final peptides is cell type dependent [45,46].
In the present study, we identified Gcg as the most significantly upregulated gene in
Tip60-deficient embryonic brains and confirmed that the number of GLP-1 positive neu-
rons increased in the piriform cortex, in which GLP-1 expression was suggested [46,69] in
Tip60-deficient embryonic brains through an immunohistological analysis. The number of
GLP-1-positive neurons during brain development might be controlled by Tip60 activities,
and Tip60 might also be involved in the specification of some specific neuronal linages
during neurogenesis. Considering that GLP-1 signaling in the brain is linked to physio-
logical activities in animals, such as food consumption [70–72], further investigation is
recommended. In general, histone acetylation is linked to the transcriptional activation of
target genes. However, Tip60 primarily serves as a transcriptional repressor in ESCs [73,74].
Recently, the Tip60/p400 complex, in collaboration with Rap1, repressed the expression
of a subset of two-cell-stage genes such as Zscan4 and the endogenous retrovirus MERVL
in ESCs [75]. Chen et al. have shown that HDAC6 interacts with the Tip60/p400 complex
and represses a subset of differentiation-related genes in ESCs [76]. Whether Gcg is a direct
target of Tip60 in developing brain has not been investigated to date.

The role of several acetyltransferases has been investigated during brain development
and linked to neurodevelopmental disorders. CBP/p300 family members are essential for
proper brain development, and genetic mutations in these proteins are related to Rubinstein–
Taybi syndrome with learning disability [77,78]. It is also reported that haploinsufficiency in
KAT8/Mof leads to a cerebral development anomaly and an intellectual disability. Similar
to brain-specific Tip60-deficient mice, cerebrum-specific KAT8-deficient mice using the
Emx1-Cre line had severe cerebral hypoplasia with impaired cell proliferation and aberrant
neurogenesis [79]. NSCs prepared from this mutant embryonic brain have poorly formed
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neurospheres. Therefore, Tip60 and KAT8 are indispensable for NSC maintenance during
development. They might collaborate with each other to maintain a balance between
NSC proliferation and differentiation. In addition, massive apoptotic cell death, which
may contribute to cerebral hypoplasia, was observed in KAT8-deficient brains but not in
Tip60-deficient brains. The dysregulation of KAT8 targets might be highly sensitive to the
initiation of a program for apoptotic cell death. The deregulation of the epigenetic control
in neural cells caused by the loss of KAT8 causes widespread metabolic defects, which
leads to abnormal pericyte activation and a breakdown of the vasculature in KAT8-deficient
brains [80]. This result might reflect phenotypic differences of brains between Tip60 and
KAT8 deficiency. Recently, it has been reported that Tip60-mediated H2A.Z acetylation is
important for neuronal fate specification using an in vitro culture system [81]. Relatively
small sets of genes in which promoters are regulated by bivalent modification could not be
activated in Tip60-deficient mice during neurogenesis.

It has been reported that other MYST family HATs are also crucial factors for neuroge-
nesis, and their mutation causes neurodevelopmental disorders. KAT6B/MORF was first
identified as a gene that is important in neural development by the gene trap method [82].
KAT6B is highly expressed in the developing and adult brain [82–84]. KAT6B expression is
highest in the SVZ in which NSCs reside, and NSCs derived from KAT6B-mutant brains gen-
erated fewer colonies of neurospheres [85]. Similar to Tip60 and KAT8, this indicates that
KAT6B has a pivotal role in NSC maintenance and neurogenesis. Heterozygous mutations
of KAT6B in humans cause Genitopatellar syndrome (GPS), a developmental disorder with
intellectual disability [86,87]. Homozygous KAT6A/MOZ knockout mice show embryonic
lethality accompanying a severe deficit of hematopoietic stem cells (HSCs) [88,89]. Inter-
estingly, KAT6A is required for silencing p16INK4a expression in NSCs in order to protect
stem cells from prematurely entering replicative senescence [90]. Because Wichmann et al.
suggest that cell growth arrest by Tip60 deficiency in MEFs is independent of p16INK4a [59],
the underlaying molecular mechanisms in NSC maintenance might be different between
Tip60 and KAT6A. Mutations in the KAT6A gene relating to developmental disorders with
intellectual disability are also reported [91]. Bromodomain- and PHD finger-containing
protein 1 (BRPF1) is an activator of KAT6A, KAT6B, and KAT7/HBO1 [92]. Cerebrum-
specific BRPF1-deficient mice using the Emx-Cre line show hypoplasia of the dentate gyrus
and dysregulation of neuronal migration, cell cycle progression, and transcription of key
genes, which are important for hippocampus development [93,94]. The phenotypes of
cerebrum-specific BRPF1-deficient mice look less severe than those of Tip60 deficiency,
suggesting MYST family HATs might have specific functions in neurodevelopment and
neurogenesis. The mutations of the BRPF1 gene in humans are also related to neurode-
velopmental disorders with syndromic intellectual disability [95]. These mutations are
associated with impairment of histone H3K23 propionylation [7]. Because global inactiva-
tion of KAT7/HBO1 is embryonic lethal [96], the precise role of KAT7 in brain development
and neurogenesis remains unknown so far. KAT7 mRNA is highly expressed in the adult
brains of mice [96], suggesting a specific role for KAT7 in the brain. It has been reported
that KAT7 is required for HSC quiescence and is important for HSC maintenance and
self-renewal in adult hematopoiesis [97]. KAT7 might also be involved in NSC mainte-
nance and neurogenesis. These results show that MYST family HATs are crucial for brain
development, neurogenesis, and brain function. This warrants further investigation about
the role of this family in the brain.

Collectively, we have found the critical role of Tip60 in NSC maintenance and neu-
rogenesis in mice. We also provide evidence that Tip60 is important for switching from
neurogenesis to gliogenesis and proper neuronal migration. This observation provides a
comprehensive understanding of the importance of epigenetic regulation for brain devel-
opment and the complex pathophysiology of intellectual disability in humans.
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4. Materials and Methods
4.1. Animals

The mouse Tip60 genomic fragment was kindly provided by Dr. John Lough at
Wisconsin University. Approximately 1.3 and 1.7 kb of the genomic region of Tip60 were
inserted into pBluescript SK containing Pgk1-Neo for positive selection and diphtheria toxin
A for negative selection (KO II vector) [98,99]. A loxP was inserted between exons 9 and 10,
and an Frt–Pgk1-Neo–Frt–loxP cassette was inserted between exons 11 and 12 to frank exons
containing a part of the MYST domain, including the acetyl-CoA binding site with loxP
sequences (Figure S1A). The linearized targeting construct was electroporated into E14tg2a
embryonic stem (ES) cells, which are derived from 129/Ola strain mice. ES cell clones
were selected in ES cell culture media supplemented with 200 µg/mL of G418. Targeted
clones were screened by Southern blot analysis using 5′ and 3′ probes (Figure S1). Three
of the correctly targeted clones were expanded and injected into C57BL/6J blastocysts.
Chimeric males were bred to C57BL/6J females to obtain heterozygous Tip60-targeted mice.
In removing the Pgk1-Neo cassette, pCAGGS-FLPe was injected into one-cell stage embryos
derived from C57BL/6J females mated with heterozygous Tip60 targeted males, and the
embryos were transplanted into the oviducts in ICR mice. The removal of the Pgk1-Neo
cassette was confirmed by PCR using mouse tail DNA. This mouse line, which contains
a floxed Tip60 allele without a Pgk1-Neo cassette (F allele), was used in this study. The
Tip60F/+ mouse was backcrossed to the C57BL/6 mouse at least 6 times.

In order to delete Tip60 from NSCs, Nestin-Cre+ (Nes-Cre+) mice, in which Cre recombi-
nase is expressed in NSCs after embryonic day 11.5 (E11.5), were crossed with Tip60F/+ mice.
Homozygous floxed Tip60 females (Tip60F/F) were crossed with Tip60F/+;Nes-Cre+ males to
produce mice, in which the Tip60 genes were knocked out in the NSCs (Tip60F/F;Nes-Cre+

indicated as Tip60 cKO hereafter). All genotypes were confirmed by PCR using primers
listed in Supplementary Table S1. All experiments were performed using Tip60 cKO mice
with their littermates as controls. The mice were maintained under controlled environmen-
tal conditions consisting of a 12 h/12 h light and dark cycle with free access to standard
mouse chow and water.

4.2. Histology and IHC

Histological analyses were performed as previously described [100,101]. Newborn
pups were fixed in 4% paraformaldehyde/PBS (PFA) at 4 ◦C overnight, dehydrated, and em-
bedded in paraffin wax. Serial sections (4 µm) were prepared and stained with hematoxylin–
eosin. Images were captured using a KEYENCE BZ-X700 (Keyence, Osaka, Japan).

For IHC, each embryo was isolated and perfused with 4% PFA in PBS injected into
the left cardiac ventricle. The brain was removed and stored in 4% PFA overnight and
equilibrated with cryoprotection solution (20% sucrose in PBS). Brains were embedded in
OCT compound, and the coronal sections were prepared using a cryostat (Leica CM-3050S)
set at a 14-mm thickness and mounted onto adhesive glass slides (Matsunami MAS-01,
Osaka, Japan). For antigen retrieval, sections were soaked in 10 mM of citrate (pH6.0),
boiled at 105 ◦C for 5 min in an autoclave, and kept at room temperature for 30 min.
Then, the slides were permeabilized with 0.2% Triton X-100 in PBS and blocked with
5% FBS/0.1% Triton X-100 in PBS (blocking buffer). The sections were incubated with
antibodies in blocking buffer at 4 ◦C overnight. Secondary antibodies were incubated with
the sections in blocking buffer at room temperature for 1 h. DAPI (1 µg/mL in PBS) was
used for nuclear staining. The sections were mounted with ProLong Gold antifade reagent
(ThermoFisher, Waltham, MA, USA), and images were captured using a KEYENCE BZ-
X700. Image analysis was performed with a Cell Analyzer (Keyence). The antibodies used
were as follows: MAP2 (1:250, Proteintech, Rosemont, IL, USA, 17490-1-AP), GFAP (1:2000
Sigma, St. Louis, MI, USA, G3893), Tbr1 (1:500 Abcam, Cambridge, UK, ab31940), Ctip2
(1:1000 Abcam ab18465), Cux1 (1:500 Santa Cruz sc-13024), Tbr2 (1:1000 Abcam ab183991),
Pax6 (1:1000 MBL PD022), histone H3S10P (1:1000 Millipore, Burlington, MA, USA, 05-806),
activated caspase 3 (1:2000 CST 9665), Iba1 (1:1000 Abcam ab178846), GLP-1 (1:250 Santa
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Cruz sc-57166), H4K8Ac (1:1000 MBL MABI0408), H4K12Ac (1:500 Abcam ab1761), γH2AX
(1:500 Upstate 05-636), γH2AX (1:500 Cell Signaling, Danvers, MA, USA, 2577), p21 (1:500
BD Sciences, Franklin Lakes, NJ, USA, 556431), and 53BP1 (1:1000 BETHYL A300-273A).

For the detection of growing cells in embryos, pregnant mice were intraperitoneally
injected with BrdU (10 mg/mL in PBS) at 100 µg/g body weight, and mice were sacrificed
after 2 h [102]. Embryos were isolated from the uterus, and perfusion was performed with
4% PFA in PBS injected into the left cardiac ventricle. Dissected brains were equilibrated
with cryoprotection solution (20% sucrose in PBS) and embedded in the OCT compound.
Sections (14-µm thickness) were antigen retrieved with 10 mM of citrate (pH6.0) and
boiled at 105 ◦C for 5 min in an autoclave. Incorporated BrdU in embryos was detected
by incubating with an anti-BrdU antibody (1:200 BD Sciences 347580) overnight at 4 ◦C,
following treatment with a secondary antibody (AlexaFluor488 1:1000 ThermoFisher) at
room temperature for 1 h, and the sections were counterstained with DAPI. Images were
captured using a KEYENCE BZ-X700. Ten different areas per embryo were analyzed.
Statistical analysis was determined by an unpaired t-test.

4.3. NSC Culture

The cerebral cortices of mouse embryos at gestational day 14.5 (E14.5) were dissected
and mechanically triturated with a P1000 micropipette into single cells as previously
described [100,101,103]. The cells were seeded into 60-mm low-attachment PrimeSurface
dishes (Sumilon, Sumitomo Bakelite, Tokyo, Japan) at a density of 1 × 106 cells/dish and
cultured in neural stem cell-growing medium containing NeuroBasal medium, 2% B-27
without vitamin A, 2 mM glutamine, 20 ng/mL of rhEGF (Pepro Tech, Cranbury, NJ, USA),
and 10 ng/mL of rhFGF2 (Pepro Tech) in a humidified incubator containing 5% CO2. After
4–5 days, the formed neurospheres were collected and used for further experiments.

4.4. BrdU Incorporation Assay

Neurospheres were treated with Accumax (Innovative Cell Technologies, Inc., San
Diego, CA, USA) at room temperature for 10 min and dispersed into single cells using a
P200 micropipette. The dispersed cells (2 × 105 cells/well) were seeded into 12-well plates
(Iwaki, Tokyo, Japan) with ploy-L-ornithine coated coverslips and cultured in neural stem
cell growth medium overnight. The cells were incubated with 10 µM BrdU in the medium
for 2 h and then fixed with 70% ethanol for 20 min. The cells were treated with 2.5 N HCl
for 20 min, the coverslips were blocked in PBS containing blocking buffer and incubated
with anti-BrdU antibody (1:200 BD Sciences 347580) overnight at 4 ◦C. The next day, the
coverslips were treated with secondary antibody (AlexaFluor488 1:1000 ThermoFisher)
at room temperature for 1 h, and then DAPI was used for nuclear staining. Coverslips
were mounted with ProLong Gold antifade reagent (ThermoFisher), and the images were
captured with a KEYENCE BZ-X700 microscope. Image analysis was performed using Cell
Analyzer software (Keyence).

4.5. Differentiation Assay

Neurospheres formed from a primary culture were treated with Accumax (Innovative
Cell Technologies, Inc.) at room temperature for 10 min and dispersed into single cells
using a P200 micropipette. The dispersed cells (2× 105 cells/well) were seeded into 12-well
plates (Iwaki) containing ploy-L-ornithine coated coverslips and cultured in a differentia-
tion medium containing NeuroBasal medium, 2% B-27 with Vitamin A, 2 mM glutamine,
and 1% FBS, and incubated for 7 days. The cells were fixed with 4% paraformaldehyde
(PFA) in PBS for 10 min and blocked for 1 h in a blocking buffer. The coverslips were
incubated with primary antibodies (Tuj1/beta-III Tubulin 1:2000 Abcam ab1820, GFAP
1:1000 Sigma G3893) overnight at 4 ◦C. The next day, the coverslips were treated with
secondary antibodies (AlexaFluor488 1:1000 ThermoFisher, Cy3 1:1000 Amersham Phar-
macia, Little Chalfont, UK) at room temperature for 1 h, and then DAPI was used for
nuclear staining. The coverslips were mounted with a ProLong Gold antifade reagent
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(ThermoFisher), and images were captured with a KEYENCE BZ-X700 microscope. Image
analysis was performed with Cell Analyzer software (Keyence).

4.6. Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated from mouse embryonic brains or neurospheres lysed with
Trizol reagent (Invitrogen, Waltham, MA, USA). Isolated RNA was treated with RNase-free
DNase I (TaKaRa, Tokyo, Japan) to eliminate contaminated DNA, and cDNA synthesis
using 1 mg of total RNA was performed with the PrimeScript RT reagent kit (Perfect Real
Time, TaKaRa) according to the manufacturer’s instructions.

Real-time PCR was carried out using THUNDERBIRD Next SYBR® qPCR Mix (TOY-
OBO, Osaka, Japan). Fluorescence was monitored by the Thermal Cycler Dice Real Time
System II. Expression levels of target genes were normalized to those of β-actin and relative
expression was calculated using the ∆∆Ct method. The primers used in this study are
listed in Supplementary Table S2.

4.7. Western Blots

The cells were washed with PBS and lysed with lysis buffer (20 mM Tris-HCl [pH 7.5],
1% NP-40, 150 mM NaCl, 10% glycerol, and protease inhibitor cocktail set I [Calbiochem]).
The lysates were kept on ice for 30 min and centrifuged at 20,000× g for 15 min to remove
unsolved materials. Protein concentration in the supernatants was determined by the
Bradford protein assay (Bio-Rad, Hercules, CA, USA) using BSA as a standard. The total
proteins were separated on 10% SDS-PAGE with a running buffer (25 mM Tris, 192 mM
glycine, and 0.1% SDS) at 100 V for 90 min. After electrophoresis, the separated proteins
were transferred to a nitrocellulose membrane using a wet transfer apparatus with transfer
buffer (25 mM Tris, 192 mM glycine, and 20% methanol) at 0.4 A for 60 min. Membranes
were blocked in 2% FBS/0.5% skimmed milk in PBST (0.05% Tween 20) for 1 h and then
probed with the primary antibody overnight at 4◦C. Primary antibodies used were as
follows: rabbit anti-Tuj1 (1:2000 Abcam ab1820), mouse anti-GFAP (1:1000 Sigma G38931),
and mouse anti-b-actin (1:1000 MBL M177-3). Beta-actin was used as a loading control.
Horseradish peroxidase-conjugated secondary antibodies (Cytiva, Marlborough, MA, USA)
were used at 1:2000 for 1 h at room temperature. The bands were visualized using an ECL
detection system (Cytiva) and analyzed with Amersham ImageQuant 800 (Cytiva).

4.8. RNA Sequencing (RNA-Seq) and Data Processing

Brains were isolated from embryos at E14.5, and the meninges were carefully removed.
In addition, the dissected cortexes were quickly frozen. Brains from three Tip60 cKO mice
and three control mice were used for RNA-seq analysis. Total RNA was extracted with
Trizol reagent (Invitrogen), and sequencing libraries were constructed with the Illumina
TruSeq Stranded Total RNA LT w/RiboZero Kit. Moreover, 2× 75 base paired-end sequenc-
ing was performed using an Illumina NextSeq 500 instrument. RNA-seq data were mapped
to the GRCm38/mm10 genome reference using the Illumina BaseSpace app TopHat align-
ment (ver. 1.0.1). Gene-based reads per kilobase of exon per million mapped reads (RPKM)
were obtained using AltAnalyze [104] (ver. 2.1.0, http://altanalyze.org/, accessed on
1 October 2020) with default parameters. Genes with protein-coding annotations were
considered for further evaluation. PCA was run using the R “prcomp()” function on the
20,079 protein-coding genes. PC1 and PC2 plots were visualized by “ggfortify” in R. Based
on volcano plot analysis, genes with insufficient expression (RPKM < 1.0 in either the KO or
control groups) were filtered out before the analysis, and we set an adjusted p value < 0.05
and fold changes ≥1.5 as the threshold of DE genes in the KO vs. control groups. STRING,
a database of protein/gene interactions [105] (https://string-db.org, accessed on 1 Decem-
ber 2022), was used to conduct enrichment analyses on tissue expression data, biological
process GO terms, and STRING clusters. Volcano plot, heatmap, and enrichment analyses
were visualized using Prism 9 software (ver. 9.5.0, GraphPad, Boston, MA, USA). All the

http://altanalyze.org/
https://string-db.org


Int. J. Mol. Sci. 2023, 24, 2113 17 of 21

sequencing data used in this work were submitted to the DDBJ DRA (accession number
DRA015351).

4.9. Statistics

Statistical analyses were performed using a two-tailed t-test, and differences were
considered significant with p values < 0.05.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24032113/s1.
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