
Citation: Paparazzo, E.; Lagani, V.;

Geracitano, S.; Citrigno, L.;

Aceto, M.A.; Malvaso, A.; Bruno, F.;

Passarino, G.; Montesanto, A. An

ELOVL2-Based Epigenetic Clock for

Forensic Age Prediction: A

Systematic Review. Int. J. Mol. Sci.

2023, 24, 2254. https://doi.org/

10.3390/ijms24032254

Academic Editor: Richard Jäger

Received: 13 December 2022

Revised: 13 January 2023

Accepted: 18 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

An ELOVL2-Based Epigenetic Clock for Forensic Age
Prediction: A Systematic Review
Ersilia Paparazzo 1,†, Vincenzo Lagani 2,3,4,† , Silvana Geracitano 1, Luigi Citrigno 5 , Mirella Aurora Aceto 1,
Antonio Malvaso 6 , Francesco Bruno 7,8 , Giuseppe Passarino 1 and Alberto Montesanto 1,*

1 Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
2 Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University

of Science and Technology (KAUST), Thuwal 23952, Saudi Arabia
3 Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
4 SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal 23952, Saudi Arabia
5 National Research Council (CNR)-Institute for Biomedical Research and Innovation–(IRIB),

87050 Mangone, Italy
6 Department of Brain and Behavioral Sciences, IRCCS “C. Mondino” Foundation,

National Neurological Institute, University of Pavia, 27100 Pavia, Italy
7 Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro,

88046 Lamezia Terme, Italy
8 Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
* Correspondence: alberto.montesanto@unical.it
† These authors contributed equally to this work.

Abstract: The prediction of chronological age from methylation-based biomarkers represents one of
the most promising applications in the field of forensic sciences. Age-prediction models developed
so far are not easily applicable for forensic caseworkers. Among the several attempts to pursue this
objective, the formulation of single-locus models might represent a good strategy. The present work
aimed to develop an accurate single-locus model for age prediction exploiting ELOVL2, a gene for
which epigenetic alterations are most highly correlated with age. We carried out a systematic re-
view of different published pyrosequencing datasets in which methylation of the ELOVL2 promoter
was analysed to formulate age prediction models. Nine of these, with available datasets involving
2298 participants, were selected. We found that irrespective of which model was adopted, a very strong
relationship between ELOVL2 methylation levels and age exists. In particular, the model giving the best
age-prediction accuracy was the gradient boosting regressor with a prediction error of about 5.5 years.
The findings reported here strongly support the use of ELOVL2 for the formulation of a single-locus
epigenetic model, but the inclusion of additional, non-redundant markers is a fundamental requirement
to apply a molecular model to forensic applications with more robust results.

Keywords: ELOVL2; epigenetic clock; age prediction; methylation; pyrosequencing

1. Introduction

The prediction of chronological age from methylation-based biomarkers represents one
of the most promising potential applications in the field of forensic sciences [1–3]. In the
last decade, extensive efforts have been made to identify such biomarkers and thanks to
several epigenome-wide association studies, many CpG sites for which methylation levels are
strongly correlated with age have been identified. Several authors proposed to combine these
markers to formulate models for age prediction [4–6]. Currently, the most robust methylation-
based age prediction methods are represented by the so-called “epigenetic clocks” that are
based on microarray technologies. These methods are technically not achievable in a typical
forensic laboratory and require more DNA than the usual amount available for most casework
samples. In addition, they are based on technologies that are very expansive and complex also
provide very sophisticated classification algorithms. More recently, forensic DNA technology

Int. J. Mol. Sci. 2023, 24, 2254. https://doi.org/10.3390/ijms24032254 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032254
https://doi.org/10.3390/ijms24032254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6552-6076
https://orcid.org/0000-0001-7410-7781
https://orcid.org/0000-0001-9691-0890
https://orcid.org/0000-0003-1377-4489
https://orcid.org/0000-0003-4701-9748
https://orcid.org/0000-0002-9563-2216
https://doi.org/10.3390/ijms24032254
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032254?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2254 2 of 14

has triggered efforts toward simplification of the array-based epigenetic clocks, and several
models have been developed to date. Due to the existence of complex nonlinear relationships
between the methylation levels of the assessed CpG markers and chronological age, several
authors have also taken advantage of machine learning approaches to obtain more accurate
age predictions [7,8]. These algorithms include support vector machine (SVM) [9], artificial
neural networks [10], gradient boosting regressor [11], and missMDA [8]. However, their
translation to forensic genetic practices is still far away for several important reasons. Firstly,
with some exceptions, they are still based on technological formats that are not available in a
typical forensic genetic laboratory. Secondly, even if formulated to exploit the same technology,
the detection of the methylation values might be based on different genes, and therefore, the
CpG sites (and their combination) included in such models are usually different. Thirdly, the
complexity of the statistical framework within which these models have been obtained limits
their application.

The lack of a consensus on both a standard set of CpG markers to use for practical
applications and a feasible and accurate tool for assessing the methylation levels based
on this standard set of markers make it difficult to compare the results across different
studies. The development of single-locus age-prediction models might represent one good
strategy to cope with these kinds of problems. In this context, ELOVL fatty acid elongase
2 (ELOVL2) represents a robust candidate gene as (i) its epigenetic variability is highly
correlated with age predictions [12–17], (ii) it is included in most current age prediction
models for forensic applications [8], and (iii) it does not show tissue-specificity, as observed
for most of the epigenetic markers identified so far [18]. For these characteristics, a single-
locus model might also allow for the development of a simpler prediction model that based
on an easy technology format, could be easily implemented in forensic laboratories.

The present study aimed to develop an easy, robust, and improved blood-based age
prediction model using ELOVL2 promoter methylation data. To this purpose, we car-
ried out a systematic review of different previously published pyrosequencing datasets of
ELOVL2 promoter DNA methylation assessing the relationship between ELOVL2 methyla-
tion levels and the age of the recruited subjects.

2. Materials and Methods

This systematic review was conducted following the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) guidelines [19]. We registered the protocol
in the International Platform of Registered Systematic Review and Meta-analysis Protocols
(registration number: INPLASY2022120006).

2.1. Study Search

A systematic search was carried out using SCOPUS and PUBMED databases. A
manual search of the bibliographies of selected articles was also conducted. The following
Boolean search strings were used considering free text and the Medical Subject Heading
(MeSH) (Table 1):

Table 1. Words used in literature search.

PubMed/MEDLINE Scopus

((((ELOVL fatty acid elongase 2[All Fields])
OR ELOVL2[All Fields]))) AND

(((Age[Title/Abstract]) OR
aging[Title/Abstract]) OR

ageing[Title/Abstract]) AND
(pyrosequencing[All Fields])

((ALL (ELOVL AND fatty AND acid AND
elongase AND 2) OR ALL (ELOVL2))) AND
((TITLE-ABS-KEY (age) OR TITLE-ABS-KEY
(aging) OR TITLE-ABS-KEY (ageing))) AND

(ALL (pyrosequencing))

All returned results were systematically identified, screened, then extracted for rele-
vant information following the PRISMA guidelines [19].
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2.2. Exclusion and Inclusion Criteria

All studies with the aim of understanding the relationship between the ELOVL2 methy-
lation levels and age written in English language, carried out on humans and providing
a publicly available dataset, were included in the systematic review. Articles that did not
include original research (e.g., review, opinion article, or conference abstract) and for which
methylation analysis was carried out using a technology different from pyrosequencing
or in tissues different form blood were excluded from further analyses. Titles, abstracts,
and articles were evaluated by two separate reviewers (E.P. and A.A.). Titles and abstracts
were reviewed for subject relevance. The investigators read full-text versions of eligible
articles on their own. Disagreements were addressed based on a consensus between the
two reviewers. A third investigator (A.Mo.) was consulted if the two reviewers reached
different decisions or when in doubt.

2.3. Statistical Analysis

For modelling based on the ELOVL2 methylation status, nine publicly available
datasets (see Table 2) were merged. The resulting comprehensive dataset (2298 subjects
in total) was randomly split in half, creating a training and validation set. The split was
performed in such a way to obtain the same age distribution between the training and test
set. The training set was then used for creating several predictive models, described below,
which were able to provide age estimates for single individuals, while the validation set
was used to unbiasedly assess the predictive capabilities of each model.

Table 2. Characteristics of the studies included in the meta-analysis.

Study
Year of
Publica-

tion
Population Age Range

(Years)
Sample

Size Reference

Al-Ghanmy et al. 2021 Iraqi 18–93 92 [20]

Bekaert et al. 2015 Belgium 0–91 206 [21]

Cho et al. 2017 Korean 20–74 100 [22]

Fan et al. 2021 Chinese 1–81 240 [8]

Garali et al. 2020 French 19–65 100 [16]

Lucknuch et al. 2022 Thailand 5–60 52 * [23]

Montesanto et al. 2020 Italian 20–89 323 ** [24]

Park et al. 2016 Korean 1–100 765 [25]

Zbieć-Piekarska et al. 2015 Polish 2–75 420 [15]
* Only control subjects; ** excluding missing values for ELOVL2 methylation data.

Sensitivity analysis was performed using a leave-dataset-out approach [26]. This
means repeating the above procedure nine times, each time holding one dataset out of both
the training and validation set. The hold-out dataset was then used for further assessing
the performance of the best model found based on the training/validation set.

We tested five different statistical approaches for the development of ELOVL2 single-
locus age prediction models. The first one consisted of a multiple linear regression (MLR)
model using the single loci as independent variables, as proposed by Zbieć-Piekarska
and colleagues [15]. The second approach was a multiple quadratic regression (MQR),
including the single loci along with their pairwise interactions and their square powers.
This model was chosen because the methylation levels of some CpGs from ELOVL2 might
be better modelled using a quadratic model, thereby improving the age-prediction accuracy
of the model [21]. The third approach was the SVM for regression with a Gaussian kernel,
a non-linear machine learning algorithm able to capture complex patterns and interactions
within data [27]. Gradient boosting regression (GBR) combines a series of regression
models together, and each model trained to improve upon the error of its predecessor. Both
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SVM and MQR were the best performing models in the study carried out by Garali and co-
workers [16]. Finally, we trained a multiple linear model using the first principal component
(PC) derived through principal components analysis (PCA). The model included the PC, as
well as its exponentiations up to the 4th degree. For ensuring an unbiased assessment of
this approach, the PC loadings derived from the training set were used for computing the
PCs based on the test set as well.

The predictive capabilities of each age prediction model were evaluated through
the mean absolute error (MAE) metric. MAE provides an immediately comprehensible
quantification of the prediction error in terms of how many years off each prediction was on
average. The statistical significance of the difference in predictive capabilities across models
was assessed through a permutation test. Correlation analyses were performed using the
Pearson r correlation coefficient. All statistical analyses and graphical representations were
performed using R (https://www.r-project.org/, (accessed on 11 September 2022)).

3. Results
3.1. Study Selection

Figure 1 shows the full process of the literature search and study selection. In total,
120 reports were initially identified; 55 records were removed before the screening process:
25 were duplicates, 26 articles did not include original research, and 4 articles were not written
in English language for a total of 65 remaining records. Of these, 19 records were excluded
based on the title and/or abstract (2 studies involved non-human organisms; 17 studies were
carried out on tissues different from blood). Twenty-three studies were excluded after a
full-text review: 18 studies did not use pyrosequencing technology for methylation analysis,
and 5 were carried out on unhealthy people (e.g., growth disorders, Alzheimer’s disease).
Of the 23 remaining records, 13 did not provide a publicly available dataset; the study of
Garali [16] and Daunay [14] analysed the same dataset, and we retained the dataset of Garali
because it was based on an increased number of technical replicates obtained from the same
100 blood samples analysed in Daunay [14]. Consequently, 9 independent datasets from
9 different articles were included in this meta-analysis (Table 2).

Figure 1. Literature search and study selection process for the systematic review and meta-analysis.

https://www.r-project.org/
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The data of the 2298 samples collected in the 9 different datasets included 1147 men
and 1151 women whose ages ranged from 0 to 104 years (Figure S1).

3.2. PCA Results

Most of the variation in the ELOVL2 methylation variability was accounted by PC1
(80.3%), which clearly separated studies based on age at the recruitment of the analysed
samples (Figure 2A).

Figure 2. (A) Plot of PC1 versus age at recruitment, coloured by study; (B) plot of PC2 versus the
assay. Source: [8,15,16,20–25].

PC2 contributed only 11.7% to the total variance and was partially correlated with the
pyrosequencing assays used for their detection (Figure 2B). This last observation prompted
us to merge all 9 datasets and analyse them jointly for model building and validation
purposes, exploiting only CpG sites analysed in both assays (CpG1-CpG7).



Int. J. Mol. Sci. 2023, 24, 2254 6 of 14

3.3. ELOVL2 Methylation-Based Prediction Models

With the exception of the values obtained for the dataset of Lucknuch et al. [23], the
analysed CpG sites all presented a strong positive correlation with age at recruitment
(r > 0.68), indicating that they could all be good estimators of chronological age (Figure 3).

Figure 3. Correlation between chronological age and DNA methylation for the seven/nine CpGs
analysed, located in the ELOVL2 promoter in the nine analysed datasets. Source: [8,15,16,20–25].

We then tested five different statistical approaches for the development of ELOVL2
single-locus age prediction models (see Materials and Methods). Table 3 reports the
classification performances of the tested models. Predicted and chronological ages for each
tested model are reported in Figure 4. All tested models showed high prediction accuracy.
The model giving the best age prediction accuracy was the gradient boosting regression
(GBR) with an MAE of about 5.59 years, while the poorest performing model was multiple
linear regression (MLR) with an MAE of about 6.58 years. The support vector machine
with radial kernel (SVM) model also showed a high prediction accuracy (MAE = 5.65) with
comparable performance with respect to the GBR model (p = 0.430). The poor performance
of the multiple quadratic regression (MQR) model was mainly due to the influence of
outliers with abnormally large errors (Figure 4B).

Table 3. Classification performances of the tested models. The elements on the principal diagonal
represent the MAE values of the corresponding model. The content in the upper triangle is repre-
sented by the p-values from the t-test comparing the performances of the two corresponding models.
The content in the lower triangle is represented by the difference (95% CI in parenthesis) between the
performances of the two compared models.

MLR MQR SVM GBR PC

MLR 6.575 0.1174 <0.001 <0.001 0.0118

MQR 0.256
(−0.083, 0.558) 6.319 <0.001 <0.001 0.8826
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Table 3. Cont.

MLR MQR SVM GBR PC

SVM 0.93
(0.708, 1.151)

0.674
(0.351, 1.042) 5.645 0.4295 <0.001

GBR 0.989
(0.766, 1.213)

0.733
(0.385, 1.131)

0.059
(−0.087, 0.206) 5.586 <0.001

PC 0.226
(0.048, 0.404)

−0.029
(−0.376, 0.367)

−0.703
(−0.908, −0.492)

−0.762
(−0.971, −0.554) 6.348

MLR: multiple linear regression; MQR: multiple quadratic regression; PC: principal components; SVM: support
vector machine with radial kernel; GBR: gradient boosting regression.

Figure 4. Scatterplots contrasting observed and predicted ages corresponding to five statistical ap-
proaches: Multiple Linear Regression (A); Multiple Quadratic Regression (B); Principal Components
(C); Support Vector Machine with radial kernel (D); Gradient Boosting Regression (E). Each dot
corresponds to a single prediction. Source: [8,15,16,20–25].

To evaluate the robustness of the predictive results, a leave-one-out sensitivity analysis
was conducted by removing one study at a time (see Supplementary Material).
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Figure 5 reports the sensitivity analysis results for the linear model as a forest plot.
We could observe that each time we removed one study, the 95% confidence interval of
the MAE overlapped with the 95% confidence interval obtained considering all datasets
together. This attests to the robustness of our results. The same thing happened when the
other models were considered (Supplementary Figure S2A–E).

Figure 5. Forest plot presenting the results of the sensitivity analysis for the linear model. Each
row reports the results obtained removing a single dataset, except for the final row, which presents
the results based on the entire sample set. Results are reported as MAE, along with a graphical
representation of the MAE and its confidence interval. Source: [8,15,16,20–25].

4. Discussion

Age estimation using DNA-based methodologies is a crucial step in forensic sci-
ence analysis, as well as in other fields, such as the monitoring of ageing rate. Although
several methods for forensic age estimation have been proposed to date, none of these
approaches is currently used in forensic laboratories for identification purposes. In order
to translate new discoveries in casework analysis, the definition of precise guidelines for
the implementation of the developed methods in a practical manner is a fundamental
requirement. To pursue this objective, it is crucial to define a set of methylation markers
to be analysed, the relevant methodology for their detection, and an easy-to-use math-
ematical model for the analysis of the laboratory data allowing for a reliable forensic
age estimation. Regarding the definition of the markers, many candidate loci have been
proposed, such as ELOVL2, C1orf132, TRIM59, FHL2, KLF14, PDE4C, ELOVL2, FHL2,
EDARADD, ASPA, and PENK [8,28–30]. As it pertains to the detection methodology,
different sequencing/typing techniques have been proposed for forensic age prediction.
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They include pyrosequencing [15,25,31–33], massive parallel sequencing (MPS) [34–37],
SNaPshot assays [38,39], and EpiTYPER [13,28,40,41]. It is important to point out that
methylation profiles obtained with these different sequencing/typing methods provide
largely comparable results [42]. On the other hand, MPS seems to be the most advantageous
approach due to its capability of dealing with low quantity/degraded samples, which
can be very common in forensic investigations [43]. Furthermore, MPS is already used in
most forensic laboratories for DNA profiles with STR markers, but also for biogeographical
ancestry information, mitochondrial DNA sequence analysis, and for forensic DNA pheno-
typing applications [44–46]. Regarding the different algorithms that have been formulated,
the Machine Learning approach significantly outperforms other approaches [8,24,34,47].

Systematic reviews carried out in the last years identified hundreds of age prediction mod-
els based on DNA methylation data [1,48,49]. These models relied on different tissues (blood
or other body fluids) and included fewer than a dozen markers using mainly pyrosequencing
to several tens or hundreds of loci using methylation arrays [4–6]. A variety of different
epigenetic models exploiting different DNA methylation technologies and different statistical
methods for forensic age prediction have been developed to date [8,14,15,20,24,50–52]. Among
them, the most accurate provide prediction errors of 3–4 years, which are in line with those
from eyewitness reports. Most of them are based on multiple CpG sites from blood samples
for which donors were restricted to adult age ranges, while only a few models covered a full
spectrum of human ages from childhood to old age [24,47]. Only few attempts to simplify
such epigenetic models have been proposed to date to make them easily applicable in forensic
casework [16,53]. These were mainly based on (i) a reduction in the number of markers and
(ii) a technological format suitable for forensic laboratories [38,39] resulting in a simple statisti-
cal approach (e.g., liner regression) applicable to the data collected in routine practice. Among
these several attempts, those recently proposed by Garali and co-workers seem to fulfil all
previously mentioned conditions [16]. The proposed single-locus model was based on the
seven CpGs sites of the ELOVL2 promoter and showed a prediction error of about 5 years. In
addition, despite the fact that multi-locus age prediction models seem to generally perform
better than the proposed single-locus model, in independent validation studies, this difference
became negligible [54].

In the present meta-analysis, we included nine studies involving more than
2200 participants from different populations to build a single-locus ELOVL2-based epi-
genetic model of forensic age prediction from blood samples. This allowed us to obtain
the largest dataset ever analysed, as well as to improve the understanding of the impact
of epigenetic variability of ELOVL2 on forensic age prediction. By using five different
statistical approaches, we then compared the differences in the performances obtained
using the five different corresponding models. The models giving the best age prediction
accuracies were the GBR and the SVM models with a prediction error of about 5.6 years.
Sensitivity analysis showed that this error remained stable, indicating that the results
obtained were robust.

The ELOLV2 single locus model was also proposed by two previous studies. The
first study was carried out by Garali et al. [16] and was based on a smaller sample size
(1413 individuals) with a different methodology. The second study was reported by Zbieć-
Piekarska et al. [53] who developed an epigenetic model based on the pyrosequencing of the
promoter region of ELOVL2 from 303 blood samples. However, our meta-analysis provides
more robust and clearer results since it included new additional studies involving more than
2000 participants. With respect to the study carried out by Garali et al. [16], the classification
performances reported in the present study are slightly lower, and this discrepancy might
be partially due to overfitting. Garali et al. [16] used every combination of the seven CpGs
sites during model building, developing a total of 17,018 age prediction models. This
procedure might have overfitted the data, finally resulting in poorer performance when the
models are applied in independent validation studies.

For comparative purposes, we performed an additional analysis. First, we applied the
best performing models developed by Garali et al. [16] to each study (Table 4). Then, we
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derived a single best model for each training set obtained by holding out one study at a time
from the entire sample set, and we assessed these models based on their respective holdout
sets (see supplementary methods). Table 4 reports the resulting MAE values. Notably, the
models developed by Garali et al. [16] performed well with the datasets that were included
in their original study, while they performed much worse with unseen data.

Table 4. Comparison between the best model derived by Garali et al. [16] and the best models we
derived by holding out one study at the time. For each holdout study, we report the best model that
we identified based on the remaining data, the MAE obtained based on the holdout, and the MAE
obtained based on the same holdout based on the best models identified in the Garali study.

Holdout Study Best Model Best MAE MAE
Garali SVM 6,7

MAE
Garali GBM 6,7 *

Montesanto et al. [24] SVM 7.77 7.380 7.976

Cho et al. [22] GBR 5.214 13.666 13.293

Bekaert et al. [21] SVM 5.984 4.478 4.355

Zbieć-Piekarska et al. [15] SVM 6.136 5.399 4.398

Park et al. [25] SVM 7.303 5.871 4.924

Garali et al. [16] GBR 8.572 4.173 5.430

Lucknuch et al. [23] GBR 7.892 27.301 27.865

Al-Ghanmy et al. [20] SVM 9.218 24.452 23.468

Fan et al. [8] SVM 7.367 13.125 15.275
* Due to the random nature of the Gradient Boosting procedure, it was impossible to replicate the exact same
model as in the original publication.

Another important point to consider for the formulation of a single-locus age predic-
tion model is tissue specificity. In fact, even if ELOVL2 methylation levels did not show
tissue specificity [18], a significant performance reduction was evident when the obtained
models were applied to tissue different from blood. Using methylation data from buccal
swab samples of Becker et al. for German and Japanese populations [50] and exploiting
the five previously reported statistical models, we obtained prediction errors in terms of
the MAE ranging from 17.84 years for the GBR model to 22.7 years for the MLR model
for the German samples; similar results were also obtained for the Japanese samples (see
Supplementary Tables S1 and S2). These results support the idea that age-prediction mod-
els may be cohort- and tissue-specific, and thus, caution should be exercised during their
application. Population-specific differences in DNA methylation patterns and their impact
on forensic age estimations have already emerged from several published studies on this
topic [22,55]. However, the prediction error obtained using the ELOVL2-based epigenetic
models is not sufficiently low to make them suitable for forensic practice. This suggests that
alongside ELOVL2, the inclusion of additional non-redundant markers is a fundamental
requirement to apply molecular models to forensic application with robust results. For
instance, starting from the observation that the prediction accuracy of an epigenetic clock
is influenced by the proportions of naive and activated immune blood cells [22,56], in a
recent study, it was demonstrated that a molecular clock based on ELOVL2 together with
a biomarker of immunosenescence (sjTREC) showed a significantly improved prediction
accuracy, especially at old ages [22,57] where most epigenetic clocks may become less
accurate [15,34,35,58,59].

On the other hand, the formulation of a single-locus epigenetic model represents
an easy and cost-effective approach since methylation levels of such candidate regions
can be assessed using PCR methods [17,60,61]. In fact, methylation analysis is usually
carried out using different DNA methylation technologies (e.g., EpiTYPER®, SNaPshot,
or pyrosequencing) for which high costs represent a constraining factor for most forensic
laboratories. As a cost-effective approach, this last strategy might allow a re-analysis
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of the same blood sample, a procedure that has been demonstrated to clearly improve
the detection of the methylation status of the analysed CpG sites and consequently the
corresponding age prediction models [16]. Further studies are required, as also highlighted
by Garali et al. [16], to validate the single-locus model we proposed based on DNA samples
from different types of tissues to define the applicability of these models to such samples.
It might also be interesting to study the capability of this marker to gauge the individual
rate of ageing and to evaluate the effects of specific interventions [62–65].

5. Conclusions

In conclusion, in line with a consistent series of epigenetic studies, the findings re-
ported here strongly support the use of ELOVL2 for the formulation of molecular models of
forensic age prediction. Using several machine learning algorithms, in the present studies,
we demonstrated that ELOVL2, based epigenetic clocks, shows high prediction accuracy
with a prediction error of about 5.5 years with the best performing model. Based on blood
samples covering a full spectrum of human ages, the proposed models are thus more
suitable for forensic applications.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24032254/s1.
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