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Abstract: Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is
widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics
to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the
intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their
mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse
immune system that represents an important line of defense against those pathogens inhabiting the
external environment that can enter through food. The GALT comprises intraepithelial lymphocytes,
which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes,
macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time,
the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques,
using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein,
serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates
of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures
that are morphologically similar to the isolated lymphoid follicles present in birds and mammals,
thus expanding our knowledge about the intestinal immunity shown by this fish.

Keywords: Heterotis niloticus; GALT; lymphoid tissue; phylogenesis

1. Introduction

Heterotis niloticus (Cuvier, 1829), commonly known as the African bonytongue, is a
species of ray-finned fish belonging to the Arapaimidae family and is the only species
in the genus Heterotis. This fish is native to many countries of Africa and because of its
good meat quality, with a high protein content, it holds high commercial value for many
Nigerians [1,2]. Numerous studies concern the various aspects of the reproduction, feeding,
biology, and ecology of this fish [1]; furthermore, its basal position in the phylogeny as the
Osteoglossiforms makes this fish interesting for studying evolutionary processes [3,4]. In a
previous study, Guerrera et al. [4] described the anatomy and morphology of the African
bonytongue’s digestive system, which presents similarities with reptiles and birds. This fish
has a gizzard-like stomach that is adapted to chopping and shredding food [5]; it is a bilobed
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organ that is divided into a pars glandularis and a thick-walled pars muscularis. H. niloticus
is an omnivorous fish; its diet consists of a wide variety of bottom-dwelling food sources,
such as insect larvae, microcrustaceans, and hard seeds. The thick-walled gizzard, which
contains sand, aids in the digestion of seed coats [2,6]. The gizzard continues in the form of
the foregut and two blind pyloric appendages, which perform specific functions, including
immune defense against the presence of mucosa-associated lymphoid tissues (MALT). In H.
niloticus, as in other fish, the intestinal posterior segment is also immunologically active [7].
Teleost fish possess an adaptive immune system that is aggregated with each of their
mucosal body surfaces. The main mucosa-associated lymphoid tissues (MALT) of teleosts
are the skin-associated lymphoid tissue (SALT), which contains diffuse lymphoid tissue
and microbiota [8,9], the gill-associated lymphoid tissue (GIALT), and the intrabronchial
lymphoid tissue (ILT) [10], the recently discovered nasopharynx-associated lymphoid tissue
(NALT), which is located in the olfactory organ [8,11], and, finally, the buccal-pharyngeal-
associated lymphoid tissues (OFALT) [12]. The best-described MALT in teleosts is the gut-
associated lymphoid tissue (GALT), which plays an important role in fish health [13–17].
Generally, the GALT has a similar morphology in the various species of fish, although there
may be structural differences regarding the gut and the related GALT among herbivorous,
carnivorous, and omnivorous fish [18]. Teleost fish are the earliest living organisms to
possess the most important components of an adaptive immune system, such as the major
histocompatibility complex (classes I and II) and the B and T cells [16,19].

The adaptive mucosal immune responses in teleost fish have been investigated for
many years in studies conducted in rainbow trout (Oncorhyncus mykiss) and plaice (Pleu-
ronectens platessa), concerning oral and parenteral immunization [4,5,8].

The fish’s GALT comprises different types of leukocytes: intraepithelial lymphocytes
(IELs) and lamina propria leukocytes (LPLs), such as lymphocytes and phagocytic cells
(granulocytes, macrophages, and dendritic-like cells) [13].

The lamina propria and intestinal epithelium are separated by a thin basement mem-
brane and form two different immunological regions [16,20]. In some teleost species,
epithelium-associated and mucosal macrophages have been reported [21], along with ep-
ithelial macrophages engulfing apoptotic epithelial cells and potentially harmful microbes;
the mucosal macrophages function as antigen-presenting cells and cytokine producers.
Furthermore, these macrophages can be highly innervated, performing a neuroprotective
role in the teleost enteric nervous system [22,23].

In the teleost, both B and T lymphocytes have been characterized in the intestinal
epithelium and in the lamina propria [8]. The clusters of B cells and IgM immunoglob-
ulins produced by these lymphocytes represent the first line of defense against those
pathogens that are introduced to the body along with food [16,24]. Numerous studies
have documented the presence of diffusely organized GALT in the gut mucosa of teleosts;
however, there are few reports about the existence of complex lymphoid tissue in the form
of Peyer’s patches in fish [24,25]. Lymphoid aggregates have been observed along the
intestines of amphibians [26]; recently, in African lungfish, intestinal mucosa-encapsulated
and -unencapsulated lymphoid aggregates were described [26,27]. In this study, we have
investigated, for the first time, the immunity features of H. niloticus GALT, using antibodies
directed against the toll-like receptor (TLR) 2, major histocompatibility (complex class II
(MHCII)), S100 protein, serotonin (5-hydroxytryptamine; 5-HT), CD4, langerin/CD207, and
inducible nitric oxide synthetase (iNOS). In previous studies, we have used these antibod-
ies to characterize immune cells, such as lymphocytes, macrophages, dendritic-like cells,
and mast cells (MC) in the fish’s different tissues and organs. TLR2 is present and highly
conserved across all vertebrate species, being expressed in immune and non-immune cell
types [28–37]. S100 is commonly used as a marker for macrophages [38], Langerhans
cells [39,40], and MCs [41–43]. In addition, 5-HT is a neurotransmitter expressed in the
central nervous system and gastrointestinal tract, which is presumably conserved in all
vertebrate species [44]; it is involved in the activation of T and natural killer (NK) cells,
along with the production of chemotactic factors via macrophages [45]. iNOS peptides are
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involved in the function of all types of vertebrate immune cells [46]. Langerin/CD207 is a
specific marker of Langerhans cells. This antibody was used to identify Langerhans-like
cells in the spleen, kidney, and gut of several bony fish species [29,47–49]. Soleto and
colleagues [50] have identified DCs in the intestine of rainbow trout, using CD8α+ and
MHC II [50,51]. CD4 molecules have been reported in lower vertebrates, such as teleosts.
The CD4+ helper T cells in fish are similar to those present in the higher vertebrates. CD4
is a membrane glycoprotein that functions as a co-receptor during immune recognition
between the TCR and the MHC II/peptide complex [8,52].

The aim of our study was to deepen scientific knowledge regarding the morphol-
ogy and structure of the GALT in this basal species, thus adding one more piece to the
fascinating, although complicated, phylogenetic evolution of immune tissues in vertebrates.

2. Results

The examination of both transverse and longitudinal sections of the pyloric ceca and
intestine terminal region (rectum) reveals massive aggregates of immune cells. GALT was
seen in two different shapes: the immune cells present in the thickness of the submu-
cosa and the lamina propria are arranged in circumscribed oval-shaped structures that
are morphologically similar to the isolated lymphoid follicles (ILFs) present in birds and
mammals. Furthermore, scattered or clustered immune cells are densely packed in the
lamina propria and submucosa. The ILFs consist of non-encapsulated, dense clusters of
lymphocytes of various sizes and macrophages. Double immunolabeling with antibodies
against TLR2 and MHCII reveals positive DC-like cells in the aggregates of lymphoid tissue
(Figure 1); these cells are strongly positive with TLR2 and Langerin/CD 207 (Figure 2). A
large accumulation of lymphocytic cells that are marked with CD4 and colocalized with
serotonin can be seen, especially in the cells located at the periphery of the lymphoid struc-
ture (Figure 3). Numerous S100 and CD4-positive cells are scattered under the epithelium
and there is no colocalization with serotonin, which marks the neuroendocrine cells in the
epithelium (Figures 4 and 5). Strong colocalization between TLR2 and iNOS is evident in
the submucosa cells (Figure 6).

Quantitative analysis revealed an equal number of cells that were immunopositive for
each antibody tested (Table 1).
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that are positive for TLR2 and MHC II can be noted in the lymphoid tissue aggregates (marked by 
arrows). The “Display profile” function highlights the colocalization. TL = transmitted light.  

 

Figure 2. Section of the H. niloticus gut (immunofluorescence 20x, scale bar 20 μm). DC-like cells 
that are immunoreactive for Langerin and TLR2, organized in clusters, can be seen (arrows). Some 
immune cells are positive exclusively for TLR2 (see the arrowhead). The “Display profile” function 
highlights the colocalization. TL = transmitted light. 

Figure 1. Section of the H. niloticus gut (immunofluorescence 40×, scale bar 20 µm). Macrophages
that are positive for TLR2 and MHC II can be noted in the lymphoid tissue aggregates (marked by
arrows). The “Display profile” function highlights the colocalization. TL = transmitted light.
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Figure 3. Section of the H. niloticus gut (immunofluorescence, 40×, scale bar 50 µm. The presence of
an important accumulation of densely packed lymphocytes is highlighted by CD4 and 5-HT positivity
(arrows). The “Display profile” function highlights the colocalization. TL = transmitted light.
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Figure 4. Section of the H. niloticus gut (immunofluorescence 20×, scale bar 50 µm). Immune cells
that are positive for S100 are evident in the submucosa (arrows), while the neuroendocrine cells (5-HT
positive) are evident in the epithelium (arrowheads). The “Display profile” function highlights the
absence of colocalization. TL = transmitted light.
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Figure 5. Section of the H. niloticus gut (immunofluorescence 20×, scale bar 50 µm). Lymphocytes
that are positive for CD4 and 5-HT are scattered in the submucosa (arrows). The presence of
neuroendocrine cells that are immunoreactive to 5-HT can also be noted (arrowheads). The “Display
profile” function highlights the colocalization. TL = transmitted light.
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Figure 6. Section of the H. niloticus gut * immunofluorescence (* 40×, scale bar 20 µm). Numerous
immune cells, which are densely organized, colocalize for iNOS and TLR2 (arrows) in the submucosa.
The “Display profile” function highlights the colocalization. TL = transmitted light.

Table 1. Statistical analysis data. (Mean values ± standard deviation) (n = 3).

No. of Positive Immune Cells

TLR-2 476.38 ± 45.29 *
MHC class II 447.44 ± 38.20 **

Langerin 329.46 ± 28.01 *
CD4 365.25 ± 33.06 *
5-HT 313.94 ± 29.36 *
S100 406.36 ± 39.85 *
iNOS 418.42 ± 47.31 **

TLR2 + MHC II 416.03 ± 37.78 *
TLR2 + Langerin 301.53 ± 30.25 **

CD4 + 5-HT 307.48 ± 20.34 *
TLR2 + iNOS 403.94 ± 32.75 **

* p ≤ 0.05; ** p ≤ 0.01.

3. Discussion

H. niloticus is particularly interesting in the study of the phylogenesis of vertebrates
because, although it presents primitive characteristics, it has anatomical specializations
that are similar to those of the higher vertebrates. Some of the primitive features belonging
to H. niloticus are an elongated and robust body, dorsal and anal fins that are elongated
and posteriorly positioned, a rounded caudal fin, and strong, large scales. Furthermore,
H. niloticus presents reduced lamellar surfaces and a large gas bladder that helps them to
acquire O2 from the environment [53]. On the other hand, it presents a stomach consisting
of a proventriculus and a ventriculus (gizzard), found in birds and reptiles, as an organ
of digestion, due to its omnivorous feeding [2]. Moreover, the wall of the alimentary tract
of H. niloticus shows a strong similarity to that of the higher vertebrates. It is composed
of four layers, which, proceeding from the inside outward, comprise the mucosa, sub-
mucosa, inner circular layer, outer longitudinal layer of muscularis, and serosa [4,54]. In
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agreement with Guerrera et al. [4], in this study, massive aggregates of lymphoid and
innate immune cells were observed in the intestinal mucosa and submucosa, constituting
structures that were arranged in circumscribed oval-shaped forms resembling mammalian
ILFs. Lymphoid aggregates have been found in all vertebrates, including amphibians,
reptiles, and birds [55–60]. GALT is the main MALT of teleosts, being continuously exposed
to a pathogen-rich environment in either freshwater or seawater. In teleosts, the highly
organized lymphoid organs, such as mesenteric lymph nodes and Peyer’s patches, which
have been observed in birds and mammals, are missing. However, in some studies, the ex-
istence of ILT [10,14,16,61,62], and the bursa in Atlantic salmon (Salmo salar, Linnaeus 1758),
which are an analog of the avian bursa of Fabricius [63], were reported as the organized
lymphoid structure of teleosts. In the phylogenesis of vertebrates, the lymphoid system
has increased its complexity and structural organization, to become increasingly efficient
and specialized. Intestinal lymphoid aggregates lack germinal centers, as described in the
lamina propria of birds; those found in cold-blooded vertebrates may represent primitive
versions of the cryptopatches that are present in the mammalian intestine [26,64]. Teleosts
can present B and T lymphocytes in separate areas of the MALT of the gut, gills, and
nasopharynges, as with those amphibians and reptiles that separate the B and T cell areas
in the spleen [7]; finally, birds and mammals present lymphoid organs that are highly
organized, with separated B and T cell areas and well-demarcated germinal centers [7,65].
Several studies have described the fish GALT as consisting of immune cells (lymphocytes,
macrophages, dendritic cells, and plasma cells), which are presented in clusters along the
mucosa of the alimentary canal and the intraepithelial lymphocytes distributed among the
enterocytes [8,24,66]. The gut-associated lymphoid tissue of H. niloticus seems to be present
in two different shapes. Our results showed scattered clusters of immune cells in the
mucosal lamina propria of the pyloric ceca and rectum (the terminal part of the hindgut),
using confocal immunofluorescence. The gut mucosal epithelia play a significant role in fish
immunology [29,67]. Using confocal microscopy, we have immunohistochemically charac-
terized the DC-like cells with antibodies against TLR2 and MHCII; the presence of these
cells was confirmed by colocalization between TLR2 and Langerin/CD 207; furthermore,
the S100 protein and iNOS have been used to mark the macrophages and CD4 antibod-
ies to characterize the T lymphocytes. CD4+ helper T cells can be found in the teleost’s
gastrointestinal lamina propria [13,68,69]. These cells express CD4 on their surface for
specific antigen recognition. Toll-like receptors are involved in the recognition of pathogens,
through specialized antigen-presenting cells (APCs). These antigen-presenting cells include
macrophages, granulocytes, and dendritic-like cells, as well as B cells. The presentation
of the antigen takes place via MHCII, activating T cells that proliferate and produce in-
flammatory cytokines [70]. The distribution of these innate and adaptive immune cells, as
delineated by the pattern of anti-TLR2, anti-MHCII, anti-Langerin/CD 207, anti-iNOS, and
anti-CD4 recognition, was similar to that documented in other studies [8,23,51]. Recent
findings have shown rainbow trout to be a model for intestinal immune responses. In
the intestine lamina propria, pathogens can be taken up by the antigen-presenting cells
(APCs) and then presented to CD4-T cells. Consequently, the B lymphocytes, activated by
the cytokines produced by T cells, proliferate and differentiate into plasma cell-like cells,
resulting in the production of antibodies [16,71].

This interaction between the immune cells in fish is very similar to that found in
mammals; thus, improving this knowledge could be useful for formulating new vaccines
and finding new models by which to improve mammalian mucosal immunology. One very
interesting finding is the positivity to 5-HT; the endocrine cells of the intestinal epithelium
are positive for this neurotransmitter. Moreover, the lymphocytes that are localized in
the peripheral zone of the lymphoid structures present colocalization between CD4 and
serotonin. The immune cells express serotonin receptors and serotonin transporter (SERT),
which are known serotonergic components of the immune cells [72–74]. T cells take up
serotonin via SERT and then express numerous 5-HT receptors that are involved in the
proliferation of T lymphocytes [74,75].
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4. Materials and Methods

The paraffin-embedded tissue of males and females of the adult African bonytongue,
H. niloticus (Cuvier, 1829), from a previous study was used for this research. In that study,
the fish’s digestive system (from tongue to anus) was sampled and processed for routine
histological study (for details, see Guerrera et al. [4]).

4.1. Immunofluorescence

To identify the localization of anti-TLR2, serotonin (5-HT), MHCII, Langerin/H-4, the
S100 protein, and CD4 antibodies, an immunohistochemistry investigation was carried out
on the pyloric ceca and intestine’s terminal region (rectum). Deparaffinized and rehydrated
serial slices (10 µm thick) were rinsed in Tris-HCl solution (0.05 M, pH 7.5) with 0.1%
bovine serum albumin and 0.2% Triton-X 100. Slices were incubated in a 0.3% H2O2 (PBS)
solution to prevent endogenous peroxidase activity; finally, fetal bovine serum (F7524,
Sigma-Aldrich, St. Louis, Missouri, USA) was added to the washed sections for 30 min
to prevent nonspecific binding, then the primary antibodies were incubated. Anti-TLR2
and anti-serotonin (5-HT) polyclonal antibodies were used in the double-label experiments,
with a monoclonal antibody for MHCII, Langerin/H-4, S100 protein, and CD4 (for details,
see Table 2). A humid chamber was used for overnight incubation at 4◦C. Subsequently, the
sections were rinsed in buffer and incubated for 40 min at room temperature with Alexa
Fluor IgG (H + L) secondary antibodies (for details, see Table 2) in a dark, humid chamber.
Finally, Fluoromount Aqueous Mounting Medium was applied to mount the dehydrated
sections (Sigma-Aldrich, Burlington, MA, USA).

4.2. Laser confocal immunofluorescence

Sections were analyzed and images were acquired using a Zeiss LSMDUO confocal
laser scanning microscope with a META module (Carl Zeiss MicroImaging GmbH, Ger-
many) microscope, the LSM700 AxioObserver. The Zen 2011 (LSM 700, Zeiss software,
Oberkochen, Germany) built-in “colocalization view” was used to highlight the expression
of both antibodies’ signals [76–78], in order to produce a “colocalization” signal, along with
the display profile, the scatter plot and fluorescent signal measurements. Each image was
rapidly acquired to minimize photodegradation.

4.3. Statistical Analysis

Data were gathered for quantitative analysis through the examination of ten sections
and twenty fields per sample. The cell positivity was assessed using ImageJ software 1.53e.
The plugin, “Analyze particles”, was used to count the number of cells. We enumerated
the number of cells in each field that were positive for TLR2, Langerin/CD207, 5-HT, MHC
II, S100, and CD4, using a SigmaPlot, version 14.0 (Systat Software, San Jose, CA, USA). A
one-way ANOVA and Student’s t-test were used to assess the normally distributed data.
Data means and standard deviations (SD) are shown as ** p 0.01 and * p 0.05.

Table 2. Antibodies data.

Primary Antibodies Supplier Catalog Number Source Dilution Antibody ID

TLR-2 (pAb) Active Motif 40981 Rabbit 1:125 AB_2750977
Anti-serotonin (5HT) Sigma-Aldrich S5545 Rabbit 1:300 AB_477522

Langerin/H-4 Santa Cruz Biotechnology sc-271272 Mouse 1:250 AB_10611518
MHC class II (Y-Ae) Santa Cruz Biotechnology Sc-32247 Mouse 1:250 AB_627939

S100 (s161) Santa Cruz Biotechnology Sc-53438 Mouse 1:100 AB_630214
CD4 MT310 Santa Cruz Biotechnology Sc-19641 Mouse 1:100 AB_627055

iNOS Santa Cruz Biotechnology Sc7271 Mouse 1:200
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Table 2. Cont.

Secondary Antibodies Supplier Source Dilution Antibody ID

Alexa Fluor 488
anti-mouse IgG FITC

conjugated
Invitrogen A-21202 Donkey 1:300 AB_141607

Alexa Fluor 594
anti-rabbit IgG TRITC

conjugated
Invitrogen A32754 Donkey 1:300 AB_2762827

5. Conclusions

For the first time in this study, immune cells of the GALT of H. niloticus were charac-
terized, confirming the presence of organized lymphoid structures similar to those seen in
the higher vertebrates. Further studies could be useful to better understand the phylogeny
of the vertebrate immune system and to consider the possibility of vaccination strategies
for highly commercial species, such as H. niloticus.
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