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Abstract: The targeted delivery of anti-cancer drugs and isotopes is one of the most pursued goals in
anti-cancer therapy. One of the prime examples of such an application is the intra-arterial injection of
microspheres containing cytostatic drugs or radioisotopes during hepatic embolization procedures.
Therapy based on the application of microspheres revolves around vascular occlusion, complemented
with local therapy in the form of trans-arterial chemoembolization (TACE) or radioembolization
(TARE). The broadest implementation of these embolization strategies currently lies within the
treatment of untreatable hepatocellular cancer (HCC) and metastatic colorectal cancer. This review
aims to describe the state-of-the-art TACE and TARE technologies investigated in the clinical setting
for HCC and addresses current trials and new developments. In addition, chemical properties
and advancements in microsphere carrier systems are evaluated, and possible improvements in
embolization therapy based on the modification of and functionalization with therapeutical loads
are explored.
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1. Introduction

The targeted delivery of anti-cancer drugs and isotopes is the most pursued goal in
anti-cancer therapy. However, a major disadvantage of the systemic application of these
drugs is their poor selectivity for cancer cells and their general distribution to non-cancerous
tissues, causing toxic side effects to otherwise healthy tissue [1,2]. To this end, novel thera-
pies are constantly being discovered and applied for anti-cancer interventions in pursuit
of avoiding toxic side effects. Theoretically, the involvement of non-cancerous tissues can
also be reduced via disease-targeted therapeutic delivery. Herein, disease-targeting can be
guided by either receptor targeting or via selective administration [3]. Unique for the hep-
atic system is that cancerous diseases such as HCC and mCRC alter the vascularization of
the liver. Normal liver tissue will receive oxygen from the portal system; HCC and mCRC
receive oxygen from the artery and are therefore suitable for trans-arterial therapy [4].
Over the past two decades, microspheres have proven themselves effective trans-arterial
drug delivery systems [5]. Such microspheres have broad applications in both life science
research and medicine [6], e.g., contrast agents [7], tissue fillers [8], and drug delivery
vehicles [9]. Stable or biodegradable microspheres are generally utilized to direct drugs
to organs by taking advantage of vascular physical restraints [10–14]. Therapeutic micro-
spheres are characteristically small particles or beads with a well-defined size distribution
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of 50–750 mm, consisting of either glass, synthetic polymers, or proteins [15]. By selectively
blocking the blood supply of the targeted tissue via so-called trans-arterial embolization
(TAE), the deprived tissue will be starved of nutrients, ultimately resulting in a therapeutic
benefit. When lodged in the end vasculature that surrounds the tumor, microspheres can
also release encapsulated drugs (trans-arterial chemoembolization (TACE)) or irradiate
surrounding tissue via embedded radioisotopes (trans-arterial radioembolization (TARE)).

Being a medicinal product, microspheres are considered medical devices rather than
drugs. From a practical perspective, this means that such agents have to comply with differ-
ent regulations compared to more standard therapeutics. Independent of this classification,
the various clinical requirements ultimately drive therapeutical applications, of which the
most important ones are stated in Table 1. Caine et al. extensively reviewed more detailed
information on the microspheres used for TAE [16].

Table 1. Properties of microspheres: list of requirements for embolization (selected from: https:
//www.microspheres.us/properties-of-microspheres/ accessed on 1 November 2022).

Property Importance

Specific gravity (particle density) Dispersion in other media or occlusion of the
micro-vasculature

Size Particle size (diameter = 50–750 mm) that
allows occlusion of the microvasculature

Durability

Strength during production, solvent resistance,
sterilization, chemical stability, or

biodegradation, the release of the therapeutical
payload

Biocompatibility Safety, toxicity, stability, suitable for
intra-arterial delivery

Pharmacology
Controlled dosimetry and dosing, full control
over release profile by diffusion, zero-order

kinetics

Surface properties
Hydrophobic vs. hydrophilic surface, surface

area, and porosity, ability to coat or
functionalize the spheres

Therapeutical microspheres have been widely implemented for hepatocellular cancer
(HCC) and hepatic metastasized disease of different kinds of solid cancers, including col-
orectal, lung, and breast cancer that metastasize to the liver [5,17]. Non-treatable advanced
neoplastic diseases and the development of hepatic metastasis have poor prognoses. Only
10–20% of these patients are suitable candidates for radical resection, as surgical excision
cannot be applied in grade 3–5 staged HCC [18]. A substantial portion of inoperable pa-
tients who present metastatic liver tumors needs alternative treatment strategies or therapy
for bridging surgery [19,20]. Alternative therapies encompass minimally invasive tech-
niques, including percutaneous ablative treatments (radiofrequency ablation, microwave
ablation) and trans-catheter intra-arterial therapies [21,22].

With a focus on HCC, this review provides an overview of the properties and ap-
plications of various microspheres and microsphere carrier systems’ chemical properties
and advancements. In addition, the latest developments in embolization strategies and
alternative technologies are discussed (Scheme 1).

https://www.microspheres.us/properties-of-microspheres/
https://www.microspheres.us/properties-of-microspheres/
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Scheme 1. Theory of change for improving therapeutic embolization procedures using microspheres
in HCC.

2. Trans-Arterial Embolization for Vascular Occlusion

Trans-arterial embolization (TAE) is a technique wherein inert microspheres are used to
block the blood supply around the tumor. The use of large microspheres, e.g., Embosphere®

(Ø300–750 mm, Merit Medical Systems, South Jordan, UT, USA) in tumor-affected liver
lobe(s) allows blockage of the blood supply towards the tumor (Figure 1B), ultimately
resulting in reduced tumor growth [10–14]. An overview of the different microspheres
currently used for hepatic trans-arterial embolization is provided in Table 2. The clinically
applied glass and synthetic spheres are non-degradable and remain in the vasculature for
life. Recently, in a pre-clinical phase, biodegradable spheres were developed, which allow
local occlusion of the vasculature, and after degradation they allow a follow-up injection of
embolization treatment. The clinical unfavorable short- and long-term outcomes of patients
with large HCCs (≥50 mm) were revealed compared to those with small HCCs (<50 mm).
Detailed analyses revealed that the average rates of change in tumor size and shrinkage
after TAE were 48.6 ± 35.6 mm and 30.7 ± 17.0%, respectively [23]. Additional details on
the chemical properties and advancements of microsphere carrier systems are evaluated in
Section 4.

Instead of focusing on major vascular occlusion, chemo- or radio-embolic targeting
is an alternative treatment option with microspheres that have the potential to manage
hepatic tumors effectively [18].
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Figure 1. Treatment of hepatocellular carcinoma (HCC) shows the advantages of chemo/radio-
embolization drug targeting over systemic drug therapy. Systemic drug therapy (A) yields lower
tumor targeting and more side effects than local delivery via trans-arterial chemo/radio embolic
drug targeting (B). Yellow arrows = injection site. Created with BioRender.com.

Table 2. Overview of non-functionalized microspheres for hepatic trans-arterial embolization (TAE).
PC = pre-clinical use, H = Human use, FDA = FDA approved as an active implantable medical device.
See Section 4 for a detailed evaluation of the microspheres.

Microspheres
Composition Product Name Particle Size

Range (Øµm)
PC/H (FDA
Clearance) Biodegradable References

Tris acryl gelatin
microspheres (TAGM)

Embosphere® (Merit
Medical Systems, South

Jordan, UT, USA)
100–300, 300–500 H (FDA) No [24]

Polyvinyl alcohol (PVA)
sodium acrylate

co-polymer
microspheres

Contour SE® (Boston
Scientific, Marlborough,

MA, USA),
Bead Block® (Boston

Scientific, Marlborough,
MA, USA)

Embozene® (Varian
Medical Systems, Palo

Alto, CA, USA)

Irregular:
150–250, 250–355,
355–500, 500–710

H (FDA) No [25]

Polyvinyl alcohol-based
hydrogel microspheres
with sulphonate groups

LC Bead® (Boston
Scientific, Marlborough,

MA, USA)

75–150, 100–300,
300–500, 500–700 H (FDA) No [26–29]

Co-polymer of PEG and
diacrylamide

Hydropearl® (Terumo
Medical Co., Somerset, NJ,

USA)
75–1100 H (FDA) No [1]

Starch microspheres

Embocept® (Pharmacept,
Berlin, Germany),

Spherex® (Magle Life
Sciences, Lund, Sweden)

50 PC Yes [1]
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Table 2. Cont.

Microspheres
Composition Product Name Particle Size

Range (Øµm)
PC/H (FDA
Clearance) Biodegradable References

Gelatin microspheres Gel-Bead (Teleflex,
Morrisville, NC, USA)

100–300, 300–500,
500–700, 7000–1000 H (FDA) Yes [1]

Collagen-coated
poly-(DL-lactic

acid-co-glycolic acid
(PLGA) microspheres

Occlusin500®

(IMBiotechnologies,
Edmonton, AL, Canada)

150–210 H Yes [1]

3. Therapeutic Loads Employed during Microsphere-Trans-Arterial
Embolization Therapy
3.1. Trans-Arterial Chemoembolization

Trans-arterial chemoembolization (TACE) uses embolization to deliver chemother-
apy locally, thus limiting systemic exposure (Figure 1) [30,31]. One prime example are
acrylic co-polymer microspheres (Hepasphere™, Ø50–100 µm, Merit Medical Systems, Inc.,
South Jordan, UT, USA) that can absorb cytostatic drugs such as doxorubicin, irinotecan,
epirubicin, mitomycin, cisplatin, and oxaliplatin (Table 3).

Table 3. Drug-eluting microspheres for functionalized hepatic TACE. PC = pre-clinical use, H =
human use, FDA = FDA approved as an active implantable medical device. See Section 4 for a
detailed evaluation of the microspheres.

Microspheres
Composition Product Name

Particle Size
Range
(Øµm)

Drug Load PC/H
(FDA) Biodegradable References

Polyvinyl alcohol (PVA)
sodium acrylate

co-polymer
microspheres

QuadraSphere® and
HepaSphere™ (Merit Medical

Systems, Inc., South Jordan,
UT, USA)

DC Bead® (Boston Scientific,
Marlborough, MA, USA),

LC Bead®, and Bead Block®

(Boston Scientific, Marlborough,
MA, USA)

50–100,
100–300,
200–400

Doxorubicin,
irinotecan,
epirubicin,
oxaliplatin

PC/H
(FDA) No [14,26,32–36]

Ion-exchange
microspheres

CalliSpheres® Beads (Jiangsu
Hengrui Medicine Co. Ltd.

Jiangsu, China)
100–300

Doxorubicin,
pirarubicin,
oxaliplatin

PC/H No [37–41]

Tris acryl gelatin
microspheres (TAGM)

Embosphere (Merit Medical
Systems, South Jor-dan, UT, USA),

Embozene®, and Oncozene™
(Varian Medical Systems, Palo

Alto, CA, USA)

40–120,
100–300

Doxorubicin
and Irinotecan H (FDA) No [13,36,42,43]

Poly-lactide-co-
glycolide
(PLGA)

Dexon®, Vicryl®, PerserisTM,
Indivior (Indivior Inc. North

Chesterfiled, VI, USA), Risperdal
Consta®

20–100

Mitomycin,
doxorubicin,
irinotecan,
sunitinib,
cisplatin

PC/H
(FDA) Yes [44–47]

Albumin microspheres Nab-paclitaxel 10–220
Mitomycin C,
doxorubicin,

paclitaxel

PC/H
(FDA) Yes [48,49]

After contact with either an ionized environment, such as 0.9% NaCl and blood, or
nonionic contrast media, acrylic co-polymer microspheres expand to 200–400 µm and
slowly release their cytostatic payload [50]. The advantage of TACE is that it maximizes the
concentration of chemotherapeutic agents within the tumor for up to seven days while keep-
ing a minimal concentration in the systemic circulation. This approach reduces systemic
side effects and the toxicity of cytostatic drugs compared to systemic chemotherapy. Fur-
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thermore, the malignancy’s arterial supply is occluded like in TAE, thus limiting nutrient
availability to the tumor [51,52]. In HCC patients [5], this chemoembolization strategy has
proven beneficial for patients’ survival, increasing the survival time by up to 12 months [53]
and reducing the symptoms related to chemotherapy [28].

3.2. Trans-Arterial Radioembolization (TARE)

Trans-arterial radioembolization (TARE) uses radioisotopes embedded in microspheres
to locally irradiate tissue after the vascular occlusion of blood vessels surrounding the tu-
mor [54]. Herein, microspheres carrying b-emitting radioisotopes enable a more pinpointed
delivery of radiation to liver tumors than other radiotherapy techniques. Although these
options extend patient survival, most remain palliative [10,53]. With 166Ho-microspheres
and 3.8 GBq/kg liver tissue in a Phase II study including 38 patients, the target lesions
showed complete response or stabilized disease for 27 patients (73%), with a median sur-
vival of 15 months [55]. Given these results, a more extensive, randomized Phase III study
appears to be required. Although 90Y, 188Re, and 166Ho in microspheres effectively reduce
tumor size and patients’ survival, data from large Phase III trials are warranted to prove
their benefits compared to other treatment modalities. In addition, the cost-effectiveness
between the various radioisotopes and types of microspheres has to be determined. Besides
the application of TARE in HCC, patients with intrahepatic cholangiocarcinoma (CC),
which is a rare but very aggressive neoplasia with limited therapeutic options, and patients
with to liver metastasized colorectal (mCRC) and neuroendocrine disease also benefit from
therapy using 90Y-loaded glass or resin microspheres, with a response of more prolonged
overall survival of at least 6 months [56–59]. Various radioembolization microspheres
carrying radioisotopes to be delivered in the tumor-bearing hepatic segments of patients
are summarized in Table 4. This table is specified in non-degradable and degradable mi-
crospheres. As we noted for TAE and TACE, the non-degradable microspheres allow only
one treatment session due to the permanent occlusion of the vasculature. In pre-clinical
settings, biodegradable microspheres have been evaluated for their effectiveness in TARE,
as described in Section 4.

Table 4. Microspheres used for trans-arterial radioembolization (TARE). PC = pre-clinical use,
H = human use, FDA = FDA approved as an active implantable medical device. See Section 4 for a
detailed evaluation of the microspheres.

Microspheres
Composition Product Name

Particle Size
Range
(Øµm)

Radioisotope
Load

Pre-Clinical/
Human Use

(FDA Clearance)
Biodegradable References

Glass
Lipiocis, TheraSphere®

(Boston Scientific,
Marlborough, MA, USA)

50–150, 20–30,
25–32

32P, 90Y, 177lu,
186Re, 188Re

PC/H (FDA for
90Y, 186Re, and

188Re)
No [60–65]

Resin

SIR-Spheres®

(Sirtex Medical Inc.
Woburn, MA, USA),

Amberlite IR-120 (Thermo
Fisher Scientific, Landau,

Germany)

20–60 90Y, 153Sm
PC/H (FDA for

90Y) No [66–69]

Polyhydroxyamic acid
polyacrylamide (PHA) Experimental 54 177lu, 131I PC No [70–72]

Styrene divinylbenzene
Amberlite IR-120 (Thermo
Fisher Scientific, Landau,

Germany)
20–40 152Sm PC No [69,73]

Poly- DL-lactic
acid-co-glycolic acid

(PLGA)

YPO4 crystalline particles
Radiogel® (Vivos Inc.,
Richland, WA, USA)

0.5–2 90Y

PC
(FDA-approved

as a medical
device)

Yes [74]
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Table 4. Cont.

Microspheres
Composition Product Name

Particle Size
Range
(Øµm)

Radioisotope
Load

Pre-Clinical/
Human Use

(FDA Clearance)
Biodegradable References

Poly (L-lactic acid)
PLLA

Resomer® L104 (Merck,
Darmstad, Germany)

10–45, 20–40 188Re/166Ho/175Yb PC/C Yes [75–81]

Poly (glycidyl
methacrylate-co-

ethylene dimethacrylate
& Quinoline-8-ol

G-Gel (Merck, Darmstad,
Germany) 20–40 131I, 177lu PC No [66,70–72,82]

Hydroxyapatite

QuiremSpheres
(Quirem Medical,

Deventer, The
Netherlands)

20–60 166Ho PC No [78,83,84]

Albumin

HSA-B20 (Rotop
Pharmaka, Dresden,

Germany)
Vasculosis® (Global
Medical Solutions,

Auckland, New Zealand)
MAA (DRAXIMAGE®,
Kirkland, QC, Canada),

Pulmocis® (Curium,
London, UK)

25–35, 15–37 90Y, 186Re, 188Re PC/C Yes [63–65,85–87]

Chitosan
Millican (Dong Wha

Pharmaceutical Co., Soeul,
South Korea)

5–20 166Ho PC/C Yes [75–79,88–90]

Starch-based
microparticles (SBMP) Experimental Kit 18–42 188Re PC No [91–93]

An essential issue in radioembolization studies is preventing shunting to normal tis-
sues, such as the lungs. Shunting displaces a fraction of the administered particles towards
the microvasculature of other tissues, mainly the lung, instead of the liver, leading to
ineffective dose distribution and irreversible severe adverse effects such as radiation pneu-
monitis [88,94]. To avoid the shunting of microspheres, radioembolization is performed in
a theranostic setting. In this setting, a catheter is (selectively) placed to deliver radiolabeled
macro-aggregated albumin (99mTc-MAA; Ø10–40 mm) to the affected tissues. Via a scout
scan using single-positron emission computed tomography (SPECT) imaging, the local-
ization and distribution of the 99mTc-MAA are visualized, which is an approach that helps
assess the degree of shunting and, at the same time, facilitates dosimetry measurements.
When this has been done, therapeutic loads of β-emitting glass or resin microparticles
(Ø15–25 mm) [95] containing, e.g., 90Y (SIR-Spheres®, Sirtex Medical Inc. Woburn, MA,
USA; Therasphere, Boston Scientific, Marlborough, MA, USA) or 166Ho (QuiremSpheres,
Quirem Medical Deventer, The Netherlands) are injected via a catheter positioned in the
same way [96]. Given the overlap in size and retention properties between 99mTc-MAA
and microparticles, a 99mTc-MAA scout scan has been deemed a sufficient standard require-
ment in the clinical guidelines to predict the accurate delivery of therapeutic microspheres.
Despite these guidelines, a mismatch between the scout and therapeutic is inevitable,
i.e., given the time span that separates these two procedures. As such, the delivery of
microspheres can still lead to adverse side effects and suboptimal dose delivery in about
30% of cases [97–99], a complication which highlights the need for innovative solutions
that help refine the correlation between the scout scan and therapeutic delivery. In this
respect, the physical properties of the used radioisotope, 199Ho as a b/g/paramagnetic
element [100] and 90Y as a PET/SPECT imaging agent, post-TARE imaging facilitates
mapping of the dose delivery. Where the therapy is insufficient, adjuvant therapy can be
considered [101,102]. Furthermore, microspheres containing these isotopes can also serve
as a scout scan. Another drawback is the delay of 2 weeks between the execution of the
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scout scan and the therapeutic intervention due to the need for dosimetry [103–105] and
the production/delivery time of the β-emitting microspheres [96].

3.3. TACE vs. TARE

Instead of focusing on major vascular occlusion with TAE, in this section, we focus on
comparing chemo- or radio-embolic targeting that has the potential to facilitate vascular
occlusion and realize chemo- or radio-embolic treatment of hepatic tumors [18].

Four TARE studies determined the overall survival median at 9–11 months [50]. Based
on these findings, TARE was not recommended as a first-line therapy for patients with
non-resectable colorectal liver metastasis. For HCC, however, the overall survival in a
study with unresectable HCC patients was 19.9 months in the 90Y-resin TARE group,
which was an improvement compared to the 14 months of survival in a matching TACE
group [106]. Recently, the efficacy of TARE combined with TACE was determined in
19 patients with bi-lobar HCC, and no procedure-related major clinical complications were
observed, and the mean overall survival yielded a promising 27.3 months compared to
untreated patients [107]. Differences between studies comparing TACE and TARE indicate
that the outcome in the benefits of treatment may be related to the type of carcinoma, an
observation that needs additional research. TARE also proved superior in safety regarding
post-embolization syndrome, hospitalization days, and outpatient-based therapy [108,109].
TARE was a safe alternative treatment to TACE [110], especially as using a scout scan helps
prevent complications related to shunting with TACE [111]. Applying the scout scan also
helps personalize the dosing, a concept that could extend to TACE. Compared to TACE,
TARE had a longer time-to-progression, greater ability to downsize tumors, and less post-
embolization syndrome [112]. For that reason, it could be an alternative to ablation, surgical
resection, or portal vein embolization [113]. On the other hand, TACE is the trans-arterial
treatment of choice for patients with marginal hepatic reserve (i.e., hyperbilirubinemia,
ascites) or candidates for transplantation [114].

4. Chemical Properties and Advancements of Microsphere Carrier Systems

This section evaluates the chemical properties and advancements of radioactive func-
tionalized microsphere carrier systems. A summary of these properties and modifications
of microspheres is depicted in Figures 2 and 3.
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4.1. Non-Degradable Microspheres

Several examples are available for the use of non-degradable microspheres in emboliza-
tion procedures. Such particles are generally chemically stable and can be sterilized and
monodispersed with a very tight particle-size distribution. Therapy with non-degradable
microspheres is only suitable for a single embolization intervention and remains in the
vasculature indefinitely. Examples of such non-degradable particles are discussed below.

• Chemically inert glass—microspheres are non-porous, do not induce immunological
effects, and are FDA-approved for application in humans for embolization therapy.
Glass microspheres have a primary yttria–alumina–silica system (YAS), and a ternary
YAS composition (40% Y2O3, 40% SiO2, and 20% Al2O3) [66]. These microspheres,
on average, have a diameter of 50–150 mm. Glass is used in clinical TAE and TARE
therapies [115,116]. Radioisotopes can be embedded during preparation into the
glass via thermal neutron irradiation in a nuclear reactor (Figure 2). In this process,
irradiation of stable Y—through an 89Y (n, γ)90Y reaction—produces 90Y [43,117].
The amount can be fine-tuned between 0.5 and 11 GBq per treatment according to
need [118]. These glass microspheres cannot be used for TACE as elution of embedded
drugs and surface modifications are impossible.

• Ion-exchange resin-based microspheres SIR-Spheres® are porous, have a lower den-
sity/weight than glass, and are regularly used for TAE and TARE [54]. These polymers
do not contain any groups amenable to covalent conjugation. Various resins were
investigated for TARE only after including stable Y, Ho, or Sm, preparing microspheres
during the synthesis process (Figure 2). As for glass microspheres, neutron-activated
formulations in a research reactor after irradiation of stable Y, Ho, or SM isotopes
through (n, γ) reaction procedures yielded 90Y, 166Ho, or 153Sm [43,54]. Bio-Rex 70
(Bio-Rad Inc. Veenendaal, The Netherlands) proved to have the best properties in
stability, loading capacity, and sterilization [119]. Next to high-energy beta-radiation,
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166Ho also emits gamma-radiation, which allows for imaging by gamma scintigraphy,
thus helping determine treatment dose. 153Sm and 166Ho have a theragnostic advan-
tage as they emit both therapeutic beta and diagnostic gamma radiations, allowing
both imaging and therapy in one. In combination with 153Sm, this resin was pursued
as an alternative microsphere in light of production time, stability, and costs [120,121].

• The discovery of the macroporous chelating ion exchanger G-Gel (Merck, Darmstad,
Germany), consisting of poly(glycidyl methacrylate-co-ethylene dimethacrylate), helps
provide a new class of 177Lu and 131I carriers [122]. Methacrylate is formed in beads
that support high radionuclide loading due to macroporous structure and mechanically
stable sphere-shaped particles of 20–40 µm. This concept is being implemented in
G-Gel [43]. The material facilitates the conjugation of functional moieties, such as
chelates and dyes, without negatively impacting the overall properties [70]. In this
respect, DOTA and Quinoline-8-ol have been used as metal-binding ligands because
they readily form stable complexes with nearly all therapeutically or diagnostically
used metal ion radionuclides such as 90Y, 188Re, 166Ho, and 177Lu [54]. This stable
complexation makes G-Gel less useful for drug release as with TACE.

• The interest in using cellulose for TARE comes from its nontoxicity, biocompatibility,
biodegradability, and amenable chemistry for functionalization with, e.g., chelating
groups. Polyhydroxyamic acid polyacrylamide (PHA) has been chosen for its capacity
to form complexes with a wide range of metallic radionuclides [71,123]. In one study
on the efficacy of a PHA loaded with 177Lu [123], PHA microspheres were synthesized
starting from polyacrylamide. Incorporating isotopes such as 177Lu seems straightfor-
ward; modification of the polymers to incorporate dyes/chelates/adamantane seems
impossible due to the complicated chemistry. Thus, PHA-functionalized microspheres
were not applied for TACE, as is the case for resin microspheres. Subsequently, exper-
imental variables such as reaction pH, amount of PHA microspheres, carrier 177Lu
content, and incubation time were optimized for maximum uptake of 177Lu on PHA
microspheres (median particle size to be 54µm, which is still suitable for TARE, but rel-
atively small for an effective TAE). Under optimized conditions, >99% loading of 177Lu
on PHA microspheres with high stability could be achieved. 177Lu-PHA microspheres
exhibited excellent in vitro stability in sodium phosphate solutions, saline, and serum
for up to 5 days at 37 ◦C. In animal studies, 93% of 177Lu-PHA microspheres were
retained in the liver at 96 h post-injection without significant leakage to other organs.
Although the latter is encouraging, this set-up has not yet been evaluated in patients
for HCC [71].

4.2. Bio-Degradable Particles

Biodegradable microspheres have the potential to provide an alternative to stable
microspheres, and they can potentially allow sequential microsphere administrations. Re-
peated injections are an advantage, considering that a single treatment of HCC using TACE
or TARE may not be sufficient for a successful remission. Moreover, they can be armed
with bifunctional payloads, e.g., radioisotopes and elution of anti-tumor drugs. The fol-
lowing section summarizes various microspheres’ characteristics and applications (Table 3,
Figure 2) and mentions the FDA clearance. For TAE only, biodegradable microspheres have
not been evaluated.

• Poly-DL-lactic-co-glycolic acid (PLGA) particles can be formed to the size of micro-
spheres by employing emulsion or microemulsion polymerization, interfacial poly-
merization, and precipitation polymerization, and a monomer as a starting point [124].
Thereafter, they can be modified into biodegradable carriers for the controlled deliv-
ery of drugs and isotopes. PLGA has one reactive COOH group per polymer chain.
Functionalization of PLGA microspheres should be possible, although the influence
on the hydrogel formation in combination with PEG is unclear. PLGA is widely used
for TACE [44–46], although the process of drug release is complex [125]. In general,
drug release occurs mainly via diffusion through pores, osmotic pumping, degra-
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dation, or erosion. More recently, modifications for TARE have been initiated [126].
An application of PLGA in TARE is in Radiogel® (Vivos Inc., Richland, WA, USA),
registered as a medical device under the FDA. InjecTable 90Y-Radiogel® comprises
an insoluble 90Y-phosphate (YPO4) radiation source mixed within an injectable, ther-
mally reversible, temperature-sensitive polymer solution that includes polylactide,
polyglycolide, and polylactic-co-glycolic acid co-polymers, all embedded in a micro-
sphere [126]. This hydrogel is a liquid at temperatures below body temperature but
begins to gel and harden upon injection as the temperature increases to normal body
temperature, thereby locking the particles in place. RadioGel® is drained within tumor
extracellular spaces after injection when it warms to body temperature and has a short
half-life, delivering more than 90% of its therapeutic radiation within 10 days. Over
time, natural breakdown products of RadioGel® include lactic acid and glycolic acid
(also known as non-toxic natural byproducts of the Krebs cycle), and the remaining
radioactivity is excreted via urine [127].

• Hydroxyapatite (Ca10(PO4)6(OH)2) is a natural mineral constituent of bone matrix
and, hence, is biocompatible. Hydroxyapatite particles can be easily synthesized in
the desired particle-size range for embolization, and the abundant PO4

3− moieties
can coordinate 166Ho. Earlier studies have investigated hydroxyapatite lanthanum
oxide composites [128] and the effect of tissue engineering strategies on bone regenera-
tion [129]. The synthesis of these particles requires heating in an oven at 1250 ◦C [130].
Hydroxyapatite particles were uniformly spherical and large (50 µm), with a high
specific surface area, uniform mesopores, and a doxorubicin loading capacity of
460.8 µg mg−1. In vivo, hydroxyapatite particles could be smoothly delivered through
an arterial catheter to achieve chemoembolization. Doxorubicin-loaded hydroxya-
patite particles effectively inhibited liver cancer cell growth in a rabbit liver tumor
model, demonstrating the efficacy of TACE [131]. Pre-clinical studies explored the
possibility of using hydroxyapatite particles with a 20–60 µm size range for vascular
occlusion [78,132]. After 6 weeks of therapy, the biodegradation of the hydroxyapatite
particles was realized by metabolizing Ca2+ and PO4

3− ions [83,84].
• 166Ho-poly L-lactic acid (PLLA) microspheres have been developed as a possible

alternative to TARE with glass- or resin-containing 90Y, as PLLA is biocompatible
with the human body and its degradation reaction is mainly due to hydrolysis to
lactic acid [75,77]. The chelated and stable form of Ho, Sm, or Y is added as an
acetylacetonate compound and mixed with L-Lactic acid (LLA) polymer during mi-
crosphere polymerization [77,133]. When the particles are formed and isolated, they
are irradiated with neutrons, which form the radioactive 166Ho, 153Sm, or 90Y [75].

• Macro-aggregate albumin particles from HSA-B20 (Rotop Pharmaka, Dresden, Ger-
many), Vasculosis®(Global Medical Solutions, Auckland, New Zealand), MAA
(DRAXIMAGE®, Kirkland, QC, Canada), Pulmocis®Curium (London, UK)) are pre-
pared after heating albumin and can be labeled directly with 99mTc, a recipe routinely
used for scout scans in TARE set-up [99,103,134]. Alternatively, different therapeutic
approaches have been investigated for TACE [49] and TARE [86], but, to date, only
188Re-labeled human serum albumin (188Re-HSA) microspheres have made their way
to the clinic [85]. One advantage of HSA is that it is an approved carrier molecule, with
99mTc-HSA (Vasculosis®, Nanocoll® (GE Healthcare Ltd., Milan, Italy), Nanoalbumon®

(Radiopharmacy Laboratoy Ltd, Budaörs, Hungary), Magnevist® (Bayer Inc., Toronto,
ON, Canada) routinely used in nuclear medicine centers, indicated for blood pool
imaging, angiocardiography, and ventriculography [135]. Pre-clinical [87] and clinical
feasibility studies with 188Re-MAA have been published [65,85]. Both clinical studies
demonstrated high product stability, low urinary excretion, good tolerance, and ac-
ceptable toxicity. Larger cohorts are necessary to conclude the usefulness of this device,
which seems to be the ideal match with 99mTc-MAA. More recently, 90Y-DTPA-HSA
microspheres were successfully evaluated in rats [68]. In pre-clinical settings, MAA
was functionalized with adamantane to allow a pre-targeting set-up in the liver of mice.
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With this, targeting and imaging with a radiolabeled CD-PIBMA-Cy5 polymer yielded
uptake in the vasculature with the functionalized MAA in the liver of mice based on
host–guest chemistry [136,137]. Recently, a similar pre-clinical setup was carried out
using click chemistry based on the interaction between azide-functionalized MAA
and a radiolabeled DBCO-carrying moiety [138]. Given these pre-clinical findings,
forming HSA microspheres seems feasible and can be carried out at low costs in a GLP
facility [85].

• Chitosan, a polymer of 2-deoxy-2-amino-d-glucose obtained from the exoskeletons
of crustaceans such as crabs and shrimps, transforms from a liquid to a gel state
above pH 6 [99]. Chitosan is also regularly used in nanoparticle vaccines [139]. The
feasibility of chitosan for TAE was assessed in the renal arteries of a rabbit model [140].
The renal arteries were still completely occluded after 8 weeks, and no inflammatory
reaction was observed. Several strategies are available to modify chitosan, which can
be used to couple additional moieties of interest [141,142]; for example, pre-activation
of the COOH-bearing label (e.g., adamantane) with DIC or EDC in (acidic) water can
be followed by the addition of chitosan PyBOP base to subsequently conjugate the
COOH-bearing label. Kim et al. studied doxorubicin-loaded chitosan microcapsules
in TACE in rabbits [143]. In a recent study, biodegradable chitosan was used to deliver
and retain 166Ho at the tumor site [31,79]. Chitosan was complexed with 166Ho after
mixing 166HoCl3 or 166Ho(NO3)3 at pH 3 for 30 min [144,145]. The holmium/chitosan
complex (Millican, Dong Wha Pharmaceutical Co., Seoul, Korea) was effective in
treating small HCCs in a novel study based on 40 patients with single HCC < 3 cm in
size with satisfactory response rates and survival rates of 87.2%, 71.8%, and 65.3% at 1,
2, and 3 years, respectively [79,89,90].

• Starch-based microparticles (SBMP) were proposed as a unique system for the pre-
therapeutic step (scout scan) after 188Re or 68Ga radiolabeling and TARE after direct
radiolabeling with 188Re using SnCl2 reduction with gluconate or with 68GaCl3 and
sodium acetate [93]. SBMP appeared to be a promising theranostic agent for the
internal radiation therapy of hepatocellular carcinoma. SBMP was first developed
for lung perfusion scintigraphy and formulated as a ready-to-use 99mTc radiolabeling
kit [91,92]. After selecting suitable size particles via mechanical filtration, an aldehyde
is formed, followed by the attachment of a diamine-linker. This chemistry should
be possible with an amine, for example, Ahx [91–93]. The in vivo stability of the
compounds is of primary importance, especially considering the therapeutic one, i.e.,
the SBMP radiolabeled with 188Re, and further investigations in pre-clinical models
are warranted.

5. Advancements and Future Perspectives for Therapeutic Loads

TACE has been employed as drug-eluting microspheres, where embolic microspheres
loaded with positively charged drugs release them locally to the tumor site via ion exchange,
thus reducing systemic drug exposure [146,147]. The drug of choice for loading into mi-
crospheres is doxorubicin, a cytotoxic agent that interferes with DNA tumor growth [148].
Anti-angiogenic strategies are being considered in combination with drug-eluting par-
ticles to combat resistance [149]. It has been shown in pre-clinical and clinical settings
that hypoxic conditions can lead to doxorubicin resistance in HCC cells and angiogenic
upregulation of the formation of new blood vessels feeding the tumor cells [150,151].

Regarding TARE, most of the innovations lie in further integrating scout scans and
actual therapy delivery. One strategy that has been suggested is the use of low-dose thera-
peutic spheres for scout scans [152]. While ensuring that the particles behave identically,
this strategy potentially puts the patient at risk. Alternatives have also been sought after.
Recent pre-clinical studies report on the possibility of microsphere surface modifications
in combination with host–guest [136,137,153,154] and “click” chemistry [155] strategies.
In these pre-targeting approaches, after functionalization with either adamantane (guest-
vector) or azide moieties, microspheres of aggregated albumin (MAA) create a platform for
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the introduction of therapeutic moieties. This feature further integrates the scout scan with
the therapeutic delivery. Uniquely, this strategy allows for the exploratory use of cells as
“bio-microspheres” [156].

Recently, developments have been made in the direction of targeted α-therapy (TAT),
using α-emitting isotopes such as 225Ac [157], 211At, and 223Ra [158]. Generally, α-emitting
isotopes are effective in tissue penetration up to less than 0.1 mm, whereas with β-emitting
isotopes, the radiation range in tissue varies between 2 and 12 mm, depending on their
β-energies. Due to their shorter range, higher linear energy transfer, and presence of
therapeutic daughter nuclides, α-particles are ideal for local tumor treatment [159]. For
embolization therapy with interest in the platform of TARE, advances can be made using
a-emitting radioisotopes instead of b-emitting radioisotopes. A point to consider is the
radiochemistry to prepare a-emitting isotopes inside microspheres.

The BCLC system (Barcelona Clinic Liver Cancer) is recommended as a staging and
treatment algorithm for HCC. For patients who are not a candidate for curative treatments,
locoregional therapies, as discussed in this review, are recommended. On the other hand,
the BCLC system does not recommend systemic molecular therapy for early-stage HCC.
The choice of treatment depends on the availability of the discussed treatment options,
besides patients’ costs and toxicity. Where TARE and TACE can be considered, this will
partly depend on the patient’s characteristics, tumor size and number, local availability
and expertise, and, of course, the decisions made during the tumor board meeting. The
meta-analysis of Chow et al. showed a similar overall survival (OS) for the use of RFA,
TACE, and TARE. Further research is in a more homogeneous group [160].

6. Conclusions

A range of materials has been used for TAE, TACE, and TARE. Hereby, the chemical
composition of the microspheres guided the presence of a therapeutic load, indicating that
specific healthcare needs require specific chemical designs.
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