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Abstract: Objective: We aimed to develop and validate a predictive machine learning (ML) model
for cardiac surgery associated with acute kidney injury (CSA-AKI) based on a multicenter random-
ized control trial (RCT) and a Medical Information Mart for Intensive Care-IV (MIMIC-IV) dataset.
Methods: This was a subanalysis from a completed RCT approved by the Ethics Committee of Fuwai
Hospital in Beijing, China (NCT03782350). Data from Fuwai Hospital were randomly assigned, with
80% for the training dataset and 20% for the testing dataset. The data from three other centers were
used for the external validation dataset. Furthermore, the MIMIC-IV dataset was also utilized to
validate the performance of the predictive model. The area under the receiver operating characteristic
curve (ROC-AUC), the precision-recall curve (PR-AUC), and the calibration brier score were applied
to evaluate the performance of the traditional logistic regression (LR) and eleven ML algorithms.
Additionally, the Shapley Additive Explanations (SHAP) interpreter was used to explain the potential
risk factors for CSA-AKI. Result: A total of 6495 eligible patients undergoing cardiopulmonary bypass
(CPB) were eventually included in this study, 2416 of whom were from Fuwai Hospital (Beijing),
for model development, 562 from three other cardiac centers in China, and 3517 from the MIMICIV
dataset, were used, respectively, for external validation. The CatBoostClassifier algorithms outper-
formed other models, with excellent discrimination and calibration performance for the development,
as well as the MIMIC-IV, datasets. In addition, the CatBoostClassifier achieved ROC-AUCs of 0.85,
0.67, and 0.77 and brier scores of 0.14, 0.19, and 0.16 in the testing, external, and MIMIC-IV datasets,
respectively. Moreover, the utmost important risk factor, the N-terminal brain sodium peptide
(NT-proBNP), was confirmed by the LASSO method in the feature section process. Notably, the
SHAP explainer identified that the preoperative blood urea nitrogen level, prothrombin time, serum
creatinine level, total bilirubin level, and age were positively correlated with CSA-AKI; preoperative
platelets level, systolic and diastolic blood pressure, albumin level, and body weight were negatively
associated with CSA-AKI. Conclusions: The CatBoostClassifier algorithms outperformed other ML
models in the discrimination and calibration of CSA-AKI prediction cardiac surgery with CPB, based
on a multicenter RCT and MIMIC-IV dataset. Moreover, the preoperative NT-proBNP level was
confirmed to be strongly related to CSA-AKI.

Keywords: cardiac surgery; acute kidney injury; machine learning; logistic regression; external
validation

1. Introduction

Acute kidney injury (AKI), one of the most common complications after adult cardiac
surgery—with an incidence of 20% to 70%—is associated with increased short- and long-
term mortality, long-term renal malfunction, and increased medical costs [1,2]. Therefore,
identifying patients at high risk for AKI after cardiac surgery is fundamental for patients’
prognosis and the success of the health care system. In recent decades, cardiac surgery-
associated AKI (CSA-AKI) has attracted significant attention, and researchers have been
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trying to establish predictive models based on potential risk factors. For the prediction
of CSA-AKI, the Cleveland Clinic model, the Mehta Score, and the Simplified Renal
Index system are commonly used [3–5]. However, these models were developed with the
traditional logistic regression (LR) method, which is mainly applicable for generalized
linear relationships. The machine learning (ML) method has been shown to explore the
potential generalized linear and nonlinear relationships between the outcome and risk
factors. Recently, several surveys have developed risk prediction models based on ML
techniques [6–13]. Nevertheless, most of these model datasets were retrospectively collected
from a single center, with a relatively small sample size, and have not been externally
validated, resulting in limited credibility and generalizability. Hence, the evaluation and
explanation of the ML models for CSA-AKI were relatively inadequate.

Using ML techniques, the “black box” could analyze large quantities of data and
make decisions and predictions in the real world through a complicated algorithm. In
recent decades, ML has been successfully applied to medical fields such as disease pre-
diction [14,15] and clinical deterioration detection [16,17]. ML techniques are adept at
analyzing complex information in nonlinear and highly interactive ways, exhibiting ex-
cellent performance in developing risk prediction models to assist clinicians in making
decisions [18–20].

Therefore, this study aimed to develop and validate predictive models based on
a multicenter randomized control trial (RCT) through ML and traditional LR methods.
Furthermore, the Medical Information Mart for Intensive Care-IV (MIMIC-IV) dataset was
also used to validate the performance of the predictive model.

2. Materials and Methods
2.1. Study Design

This was a subanalysis of a completed multicenter RCT (OPTIMAL) approved by the
Fuwai Hospital Ethics Committee in Beijing, China. (NCT03782350) [21] Data about patients
undergoing cardiac surgery with cardiopulmonary bypass (CPB) from 26 December 2018
to 21 April 2021 were extracted from the electronic medical records. Informed consents
were obtained before enrolment in the OPTIMAL trial. This study was conducted based on
the transparent reporting of a multivariable prediction model for individual prognosis or
diagnosis (TRIPOD) guidelines [22].

Anesthetic and Surgical Procedures

All patients received general anesthesia and underwent tracheal intubation. Anesthesia
was induced intravenously with midazolam (0.02–0.05 mg/kg), sufentanil (2–3 microg/kg),
etomidate (0.2–0.3 mg/kg), and rocuronium (0.8–1.2 mg/kg). The maintenance of anesthesia
was conducted by a continuous infusion of propofol, dexmedetomidine, and rocuronium, with
an intermittent supplement of sufentanil. Sevoflurane (0.4~1.5%) was also inhaled during
ventilation. Volume-controlled ventilation was maintained with a standard volume of 8 to
10 mL/kg. Arterial-line catheters were inserted into the radial arteries. Electrocardiograms, pulse
oximetry, nasopharyngeal and bladder temperature, invasive arterial blood pressure, central
venous pressure, blood gas analysis results, and the end-tidal carbon dioxide concentration were
routinely monitored during surgery. The pulmonary artery catheters were placed as necessary.

2.2. Data Collection

Demographic and perioperative variables associated with postoperative AKI were
gathered from the institution’s electronic medical records. Patients under 18 years of age
or over 70 years of age or without outcome information were excluded. Data on patient
demographics (sex, age, height, weight, New York Heart Association (NYHA) classification,
systolic and diastolic pressure, left ventricular ejection fraction (LVEF), left ventricular end-
diastolic diameter (LVEDD), and other baselines of the medical history) and preoperative
laboratory parameters (neutrophils (NEUT), hemoglobin (HGB), platelets (PLT), alanine
aminotransferase (ALT), alkaline phosphatase (AST), alkaline phosphatase (ALP), glutamyl
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transpeptidase (GGT), direct bilirubin (DBIL), total bilirubin (TBIL), blood creatinine (SCr),
urea nitrogen (BUN), total protein (TP), albumin (ALB), N-terminal brain sodium peptide
(NT-proBNP), and high-sensitivity C-reactive protein (Hs-CRP))were collected. Surgery
and anesthesia-related variables, including emergency, surgery type, surgery time, aorta
clamp time, and CPB time, were also collected.

2.3. Endpoints

The study endpoint of interest was defined as postoperative AKI, which was ascer-
tained by Kidney Disease: Improving Global Outcomes (KDIGO) criteria based on the
perioperative SCr level. [23] AKI was diagnosed when the postoperative SCr level was
1.5-fold higher than the baseline level or when an increase in SCr of 0.3 mg/dL occurred
within 48 h postoperatively.

2.4. Model Development and Estimation

The enrolled data of Fuwai Hospital (Beijing) were randomly assigned, with 80% in
the training dataset and 20% in the testing dataset. The data collected from three other
cardiac centers in China were utilized for external validation (Fuwai Yunnan Cardiovascular
Hospital, the First Affiliated Hospital of Wenzhou Medical University, and Fuwai Central
China Cardiovascular Hospital). Moreover, the predictive models were also validated in
the MIMIC-IV dataset. Development and validation datasets were imputed separately
with mean values for continuous variables and frequency for categorical variables. In
addition, the standard scaler data normalization technique was utilized to convert the data.
Additionally, the least absolute shrinkage and selection operator (LASSO) was used to
identify the variables to enter into the final model; the coefficients of variables under zero
were eliminated from the model.

Data were trained on the following models: (1) LR, set as the benchmark of the
traditional method, (2) support vector machine (SVM), (3) KNeighborsClassifier (KNN),
(4) Naive Bayes (BAY), (5) decision tree (DT), (6) random forest (RF), (7) Gradient Boosting
Classifier (GB), (8) XGBoosting Classifier (XGB), (9) Light Gradient Boosting Machine
(LGBM), (10) CatBoost Classifier (CAT), (11) AdaBoostClassifier, and (12) ExtraTreeClas-
sifier. Additionally, a grid search with five-fold cross-validation was performed on the
training dataset to optimize hyperparameters.

The parameters for model discrimination (area under the receiver operating charac-
teristic curve (ROC-AUC) and the precision-recall (PR-AUC) curve) and calibration (brier
score and calibration curve) were systematically assessed. Meanwhile, the accuracy, pre-
cision, recall score, F1 score, and decision curve analysis were also assessed to evaluate
the models. We selected the best-performing model based on the combination of these
three metrics in the following order of priority: the highest ROC-AUC, PR-AUC, and well
calibration curve. In addition, the visualization of all features was performed, along with
ranked feature importance, as derived from the SHAP interpreter [22].

2.5. Statistical Analysis

Python programming language (Python Software Foundation, version 3.9.7 and inte-
grated development environment JUPYTER Notebook 1.1.0) and SPSS software version
26.0 (IBM Corp., Armonk, NY, USA) were applied to our analysis. The following packages
were used: data processing modules: Numpy 1.20.3, Pandas 1.3.4; data visualization mod-
ule: Matplotlib 3.4.2; ML module: Scikit-Learn 0.24.2, XGBoost 1.4.2, LightGBM 3.2.1; ML
interpreter: SHAP 0.39.0.

The sample size for this analysis was determined by the available data within this
multicenter database. Count variables were presented in numbers and percentages, and con-
tinuous variables were presented as mean ± standard deviation (SD) or median (Q1, Q3).
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3. Results
Patient Characteristics

A total of 6495 eligible patients undergoing cardiac surgery with CPB were eventually
included in this study, 2416 of whom were from Fuwai Hospital (Beijing), for model
development, 562 from three other cardiac centers in China, and 3517 from the MIMICIV
dataset were used separately for external validation. The whole process of the study is
presented in Figure 1. The patient demographics are described in Table 1. In addition, the
incidence of AKI was 26.1% (630/2416) for the development set, 26.0% (146/562) for the
external validation set, and 29.7% (1043/3517) for the MIMICIV dataset.

Table 1. Demographics of development and ex-validation dataset.

Development Dataset
(n = 2416)

Ex-Validation Dataset
(n = 562)

MIMIC-IV Dataset
(n = 3517)

Sex (n, %)
Male 1517 (62.8%) 322 (57.3%) 2676 (76.1%)

Female 899 (37.2%) 240 (42.7%) 841 (30.5%)
Age (y), median (Q1, Q3) 54.7 (45.8, 62.1) 56.3 (48.7, 64) 61.6 (55.3, 66)
BMI (kg/m2), mean ± SD 24.1 (23.1, 25.4) 23.2 (22.3, 24.9) 29.8 (27.3, 32.5)

Medical history (n, %)
Diabetes 259 (10.7%) 27 (4.8%) 1227 (34.9%)

CHD 663 (27.4%) 99 (17.6%) 1997 (56.8%)
Valvular disease 1721 (71.2%) 352 (62.6%) 1071 (30.5%)

Congenital heart disease 413 (17.1%) 62 (11.0%) 31 (0.9%)
PVD 392 (16.2%) 33 (5.9%) 493 (14%)

Previous myocardial injury 392 (16.2%) 11 (5.9%) 493 (14.0%)
Hyperlipidaemia 872 (36.1%) 115 (20.5%) 2426 (69.0%)

Hypertension 802 (33.2%) 219 (39.0%) 2350 (66.8%)
COPD 4 (0.2%) 4 (0.7%) 682 (19.4%)
CKD 5 (0.2%) 6 (1.1%) 397 (11.3%)

Infective endocarditis 18 (0.7%) 12 (2.1%) 163 (4.6%)
Non-invasive tests suggesting carotid artery

stenosis >79% or Stroke 109 (4.5%) 51 (9.1%) 288 (8.2%)

Vital signs
Body temperature, ◦C 36.4 (36.2, 36.5) 36.5 (36.3, 36.7) 36.5 (36.1, 36.8)
Heart rate, bpm/min 77 (68, 86) 74.5 (66, 83) 80 (74, 87)

SD (mm Hg) 53 (49, 58) 45 (42, 50) 52 (48, 55)
Laboratory results

WBC, ×10 L 6.1 (5.2, 7.2) 6.2 (5.2, 7.7) 7.6 (6.1, 9.4)
Hemoglobin/dL 127 (138, 149) 133 (121, 144) 131 (118, 144)
Platelets, ×10/L 200 (167, 240) 199.5 (164, 243.2) 211 (173, 252)

AST (U/L) 25 (21, 31) 21 (17, 28) 24 (19, 30.8)
ALT (U/L) 19 (13, 29) 19 (13, 31) 25 (18, 32)
ALP (U/L) 65 (54, 78) 76.4 (61, 83.3) 71 (57, 84)

Total bilirubin, (µmol/L) 11.9 (8.8, 16.2) 12 (8.1, 16) 8.6 (6.8, 12.0)
Baseline creatinine, (µmol/L) 82 (72, 93.2) 71 (60, 83) 88.4 (70.7, 103.5)

BUN (mmol/L) 6 (4.9, 7.4) 5.8 (4.6, 7.1) 6.1 (5.0, 7.9)
PT*s 13.1 (12.7, 13.7) 12.1 (11.0, 13.5) 12.5 (11.4, 12.9)

ALB (mg/dL) 39.8 (37.7, 41.9) 40.3 (38.2, 42.9) 41.1 (39.0, 44.0)
Surgical information
Surgery type, n (%)

Valvular 1517 (62.8%) 386 (68.7%) 1071 (30.5%)
CABG 719 (29.8%) 105 (18.7%) 1997 (56.8%)

Congenital 342 (14.2%) 60 (10.7%) 31 (0.9%)
AKI 630 (26.1%) 146 (26.0%) 1043(29.7%)
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Figure 1. The overall review of this study.

4. Features Selection

Ten cross-validations were utilized to select the appropriate alpha for the LASSO
model. Notably, the LASSO method showed that the NT-proBNP was strongly correlated
with CSA-AKI (Supplementary Figure S1). Subsequently, we excluded the NT-proBNP to
determine the influence of other variables. The final enrolled variables are presented in
Supplementary Figure S1.

5. Model Performance

The discrimination of the models was presented by the ROC-AUC and PR-AUC
(Figure 2). The ROC-AUC of LR achieved 0.84,0.68,0.75 in the testing, external, and MIMIC-
IV validation datasets, respectively. Additionally, the best ROC-AUC were 0.85, 0.68, and
0.77 in the testing, external and MIMIC-IV datasets performed by the CAT, EX, and CAT
algorithms, respectively. Furthermore, the PR-AUC of LR was 0.69, 0.39, and 0.61 in the
testing, external, and MIMIC-IV validation datasets. Additionally, the best was 0.68, 0.39,
and 0.63 achieved by the EX/XGB, EX, and CAT models, separately. The calibration of the
models was shown by the brier score and calibration curve (Table 2 and Figure 2). The
brier score of the LR model was 0.14, 0.20, and 0.19 in the testing, external, and MIMIC-IV
validation datasets. In addition, the lowest score was 0.14, 0.18, and 0.16 in the testing,
external, and MIMIC-IV validation dataset, achieved by the CAT, EX, and CAT models.
The accuracy, precision, recall, and F1 scores are presented in Supplementary Table S1.

The decision curve between the LR and CAT models is presented in Figure 3. Moreover,
the models with the perioperative surgical variables are illustrated in Supplementary Figure S2.
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Figure 2. (A) The ROC-AUC of logistic regression and eleven machine learning algorithms in
the development dataset. (B) The ROC-AUC of logistic regression and eleven machine learning
algorithms in the validation dataset. (C) The ROC-AUC of logistic regression and eleven machine
learning algorithms in the MIMIC-IV dataset. (D) The PR-AUC of logistic regression and eleven
machine learning algorithms in the development dataset. (E) The PR-AUC of logistic regression and
eleven machine learning algorithms in the validation dataset. (F) The PR-AUC of logistic regression
and eleven machine learning algorithms in the MIMIC-IV dataset. (G) The calibration curve of logistic
regression and eleven machine learning algorithms in the development dataset. (H) The PR-AUC of
logistic regression and eleven machine learning algorithms in the validation dataset. (I) The PR-AUC
of logistic regression and eleven machine learning algorithms in the validation dataset.

Table 2. The ROC-AUC and brier loss score for the development, validation and MIMI-IV datasets.

Classifier ROC-AUC Brier Loss

Development Ex-Validation MIMIC-IV Development Ex-Validation MIMIC-IV

Logistic Regression 0.8355 0.6775 0.7450 0.1411 0.2016 0.1873
Support Vector Machine 0.8269 0.6415 0.7214 0.1454 0.2131 0.1738

KNeighborsClassifier 0.8222 0.6581 0.6942 0.1590 0.1872 0.1900
DecisionTreeClassifier 0.5993 0.5947 0.5420 0.3079 0.3434 0.3651

RandomForestClassifier 0.8295 0.6691 0.7317 0.1587 0.1829 0.1750
GaussianNB 0.7916 0.5817 0.6814 0.2476 0.2782 0.2603

GradientBoostingClassifier 0.8224 0.6491 0.6860 0.1565 0.2225 0.1846
XGBClassifier 0.8384 0.6663 0.7167 0.1446 0.2006 0.1718

LGBMClassifier 0.8333 0.6606 0.6992 0.1746 0.2432 0.2136
CatBoostClassifier 0.8455 0.6706 0.7429 0.1451 0.1920 0.1657
AdaBoostClassifier 0.8302 0.6722 0.6518 0.2355 0.2385 0.2333
ExtraTreeClassifier 0.8327 0.6799 0.7354 0.1546 0.1807 0.1771
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Figure 3. (A) The decision curves of logistic regression and the CatBoostClassifier models in the
development dataset. (B) The decision curves of logistic regression and the CatBoostClassifier models
in the validation dataset. (C) The decision curves of logistic regression and the CatBoostClassifier
models in the MIMIC-IV dataset.

6. SHAP Interpreter for the Models

The distribution of potential risk factors was visualized and ranked by the Shapley
Additive Explanations summary plots box plots using the CAT model (Figure 4). The
importance matrix plot revealed that the top ten variables in the testing dataset were BUN,
PT, PLT, SCr, TBil, SBP, ALB, age, height, and history of congenital conditions. In addition,
the top ten features in the external validation were PT, BUN, PLT, SCr, ALB, TBil, SBP, age,
weight, and history of valvular conditions. Furthermore, the top ten features in MIMC-IV
were BUN, ALB, HGB, PT, SCr, DBP, weight, SBP, history of valvular conditions, and TBil.

Figure 4. The higher the SHAP value of a feature, the higher the probability of postoperative AKI
development (X-axis is for the SHAP values, and the Y-axis is for the important features. Red
represents higher feature values for positive influence, and blue represents lower feature values
for negative impact). (A) The top 20 features of the CatBoostClassifier model in the development
dataset by the SHAP model explainer. (B) The top 20 features of the CatBoostClassifier model in the
validation dataset by the SHAP model explainer. (C) The top 20 features of the CatBoostClassifier
model in the MIMIC-IV dataset by the SHAP model explainer.

The contribution of each feature to the overall outcome can be visualized in the
plot. SHAP values for specific features exceeding zero represented a higher risk of CSA-
AKI development. The models with surgical variables are presented in Supplementary
Figure S2.
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7. Discussion

In the present study, we developed and validated the predictive model of CSA-AKI
with good performance using eleven ML models and the traditional LR method based on a
multicenter RCT. Furthermore, external validation in the MIMIV-IV dataset also showed
excellent performance. Consequently, the CAT model outperformed other ML models in
regards to discrimination and calibration, showing a promising alternative for LR, with a
brilliant performance in the decision curve. In addition, the top ten features in the testing,
external, and MIMIC-IV datasets were comparable. Moreover, preoperative BUN, PT, SCr,
TBil, and age were positively correlated with CSA-AKI; preoperative PLT, SBP, DBP, ALB,
and weight were negatively correlated with CSA-AKI. These discoveries shed light on the
potential for utilizing the CAT model to forecast CSA-AKI risk and guide clinical decision
making in cardiac surgery.

In this study, we conducted comprehensive analyses of various ML models for CSA-
AKI prediction. Moreover, our studies illustrated that the CAT model exhibited excellent
discrimination and calibration qualities. The CAT algorithm, a binary recursive division
technology, could yield effective outcomes with insufficient training data and computa-
tional capacity by decreasing the calculating time, overfitting the possibilities, and tuning
the hyperparameter burden [24,25]. Moreover, previous studies from Tseng, P. Y., etc.,
repeated the positive cases five times to prevent overfitting, which may negatively impact
the accuracy of the model. A grid search with five-fold cross-validation was performed
in our models to avoid overfitting and obtain more accurate models [26,27]. In addition,
previous studies developed predictive models for CSA-AKI without external validation,
which plays an indispensable role in the models’ degree of credibility [8,10,13]. Never-
theless, we performed a good external validation based on the multicenter dataset. Of
note, we utilized the MIMIC-IV dataset to validate the predictive model, with excellent
performance. ML models have provided novel and convenient methods for clinicians to
develop predictive models, which could greatly assist in detecting modifiable risk factors
earlier and establishing standard prevention and treatment procedures for clinical practice.

Many studies have explored the independent predictors for CSA-AKI; moreover, a
considerable number of studies have demonstrated that biochemistry analysis is essential
for understanding the clinical events during cardiac surgery [28–30]. However, the avail-
able predictive models, including biochemistry biomarker predictors for CSA-AKI, are
inadequate. Notably, some studies have identified novel independent risk factors, such
as NT-proBNP [29] and Hs-CRP [31,32], which are associated with CSA-AKI. A recent
study reported by Duchnowski, P. showed that a higher preoperative level of NT-proBNP
in patients who underwent valve surgery might be related to the onset of multiple organ
dysfunction syndromes (MODS), including AKI in the early postoperative period [31].
Consistent with previous studies, NT-proBNP was confirmed to be powerfully relevant to
CSA-AKI in the features selection process using the LASSO method in this study. Notwith-
standing, NT-proBNP, a marker of cardiac dysfunction and congestion, could be utilized to
predict cardiac failure [32]. Notably, the relationship between the kidney and congestive
heart failure is called “cardio-renal” syndrome, which could impact survival, the length
of hospital stay, and the readmission rate [33,34]. Furthermore, patients in hemodialysis
exhibit a higher NT-ProBNP, which is inclined to decrease after dialysis [33], suggesting
that patients with higher NT-proBNP levels are at increased risk of developing AKI and
require renal replacement treatment (RRT) [35]. Additionally, the inflammatory biomarker
Hs-CRP was also identified as related to CSA-AKI by the LASSO method. The probable
mechanism between inflammation and endothelial and tubular cell injury in AKI has been
previously reported [36–38].

Consistent with previous studies, the LASSO selection method also confirmed the risk
factors related to CSA-AKI, such as sex, age, LVEF, LVEDD, NYHA classification, history of
hyperlipidemia, hypertension, smoking, diabetes, etc. Conspicuously, the SHAP interpreter
further simplifies the prediction of the ML model, which has not been extensively used
in previous surveys. In this study, we also detected that preoperative BUN, PT, SCr, TBil,
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and age were positively correlated with CSA-AKI; preoperative PLT, SBP, DBP, ALB, and
weight were negatively correlated with CSA-AKI, which was further confirmed by external
validation in the MIMIC-IV dataset. Still, the identified variables were mainly related
to the function of heptanal. The relationship between the liver and the kidney is called
“hepatorenal syndrome” (HRS), defined as a deterioration in kidney function occurring
in severe chronic liver disease [39–41]. HRS could be activated by dramatically reducing
the effective circulating volume and the sprout of the vasoactive endogenous system [42].
Moreover, systemic inflammation, cirrhotic cardiomyopathy, hepato-adrenal syndrome,
choleric nephropathy, and intra-abdominal hypertension could further exacerbate this pro-
cess [43,44]. Additional research is needed to explore the potential underlying mechanisms.

There are also some limitations to our study. First, the present study did not analyze
the intraoperative fluid balance, which has been shown to play an important role in CSA-
AKI. Second, owing to the lower incidence of stage 2 and 3 AKI in our study, we did not
analyze the data by the stage of AKI; more research is urgently needed to establish all-stage
AKI predictive models. Third, further prospective validation is required before our models
are affirmatively applied to other populations, institutions, and regions. Fourth, although
the sample size in this study for the ML prediction of AKI event rate/numbers is relative
enough, we could not rule out that a larger population may result in better prediction
performance. Fifth, some unknown potential confounding factors for CSA-AKI were not
included as the features, which may result in selection bias. Finally, the development and
validation of the ML models are based on retrospective datasets. Prospective validation is
required before usage in clinical settings.

8. Conclusions

We have developed and validated a predictive model for CSA-AKI based on a multi-
center RCT and an MIMIC-IV dataset. It suggested that the CatBoostClassifier algorithms
outperform other ML models for both discrimination and calibration. Moreover, in this
study, NT-proBNP was confirmed to be strongly related to CSA-AKI.
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The Y-axis is the features coefficient, and the X-axis is the alpha value. The feature coefficients of
nearly zero were excluded. (B) LASSO methods excluded features without blue plots. (C) Feature
variables without NT-pro BNP selection using least absolute shrinkage and selection operator (LASSO)
regression in the development cohort. The Y-axis is the features coefficient, and the X-axis is the alpha
value. The features coefficient of nearly zero were excluded. (D) LASSO methods included features
with blue plots. Figure S2: (A) The AUC of the machine learning models with surgical variables in the
testing dataset. (B) The AUC of the machine learning models with surgical variables in the validation
dataset. (C) The precision recall curve of the machine learning models with surgical variables in the
testing dataset. (D) The precision recall curve in the machine learning models with surgical variables
in the validation dataset. (E) The calibration curve of the machine learning models with surgical
variables in the testing dataset. (F) The calibration curve in the machine learning models with surgical
variables in the validation dataset. Table S1: The accuracy, precision, recall, F1 score, and log loss in
the development and external validation datasets
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