Skip to main content
. 2023 Feb 1;12(3):1166. doi: 10.3390/jcm12031166

Table 2.

The ROC-AUC and brier loss score for the development, validation and MIMI-IV datasets.

Classifier ROC-AUC Brier Loss
Development Ex-Validation MIMIC-IV Development Ex-Validation MIMIC-IV
Logistic Regression 0.8355 0.6775 0.7450 0.1411 0.2016 0.1873
Support Vector Machine 0.8269 0.6415 0.7214 0.1454 0.2131 0.1738
KNeighborsClassifier 0.8222 0.6581 0.6942 0.1590 0.1872 0.1900
DecisionTreeClassifier 0.5993 0.5947 0.5420 0.3079 0.3434 0.3651
RandomForestClassifier 0.8295 0.6691 0.7317 0.1587 0.1829 0.1750
GaussianNB 0.7916 0.5817 0.6814 0.2476 0.2782 0.2603
GradientBoostingClassifier 0.8224 0.6491 0.6860 0.1565 0.2225 0.1846
XGBClassifier 0.8384 0.6663 0.7167 0.1446 0.2006 0.1718
LGBMClassifier 0.8333 0.6606 0.6992 0.1746 0.2432 0.2136
CatBoostClassifier 0.8455 0.6706 0.7429 0.1451 0.1920 0.1657
AdaBoostClassifier 0.8302 0.6722 0.6518 0.2355 0.2385 0.2333
ExtraTreeClassifier 0.8327 0.6799 0.7354 0.1546 0.1807 0.1771