Skip to main content
. 2023 Jan 20;12(3):839. doi: 10.3390/jcm12030839

Table 2.

Performance metrics of the algorithms.

Algorithm Precision Recall F1 Accuracy MCC AUROC (95% CI) AUPRC
mRS XGBoost 0.75 0.923 0.828 0.865 0.729 0.923 (0.825–1) 0.917
LightGBM 0.812 0.929 0.867 0.892 0.781 0.958 (0.886–1) 0.958
CatBoost 0.562 0.9 0.692 0.784 0.574 0.872 (0.748–0.996) 0.871
Random Forest 0.625 0.909 0.741 0.811 0.626 0.929 (0.835–1) 0.917
Mean 0.687 0.915 0.782 0.838 0.678 0.921 0.916
NIHSS Shift XGBoost 0.737 0.7 0.718 0.711 0.422 0.767 (0.615–0.92) 0.813
LightGBM 0.895 0.63 0.739 0.684 0.406 0.787 (0.64–0.934) 0.761
CatBoost 0.737 0.737 0.737 0.737 0.474 0.820 (0.683–0.956) 0.833
Random Forest 0.684 0.765 0.722 0.737 0.476 0.834 (0.702–0.965) 0.870
Mean 0.763 0.708 0.729 0.717 0.445 0.802 0.819

Abbreviations: MCC: Matthew’s correlation coefficient; AUROC: Area under the receiver operating characteristic curve; CI: Confidence interval; AUPRC: The area under the precision-recall curve; mRS: Modified Rankin Score; NIHSS: National Institutes of Health Stroke Scale.