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Abstract: As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has
become a powerful tool for describing cell subpopulation classification and cell heterogeneity by
achieving high-throughput and multidimensional analysis of individual cells and circumventing the
shortcomings of traditional sequencing for detecting the average transcript level of cell populations.
It has been applied to life science and medicine research fields such as tracking dynamic cell differen-
tiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses
on the recent technological innovations in scRNA-Seq, highlighting the latest research results with
scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology,
and immunology. In addition, this review outlines the prospects for its innovative application in
traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed
by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug
therapeutic targets in combination with multiomics technologies.

Keywords: single-cell RNA sequencing; technological innovations; applications; perspectives

1. Introduction

The transcriptome, the whole repertoire of transcripts of a particular tissue or cell at a
certain stage of development, is a collection of all mRNAs [1]. Transcriptome sequencing
is the sequencing of a cDNA library of all RNA transcripts in a cell to monitor the overall
transcriptional activity of a tissue or cell at the single nucleotide level, which can be
utilized to not only analyze the structure and expression level of transcripts, but also to
discover certain unknown and rare transcripts and precisely identify variable shear sites.
Accordingly, transcriptome sequencing greatly promotes researchers’ understanding of
cellular gene expression and regulation and shows great potential in disease diagnosis,
clinically personalized treatment, and the elucidation of drug action mechanisms.

Cell division and differentiation trigger variability in genetic information, which is
the underlying cause of the heterogeneity that exists between cells. Traditional RNA-Seq
can only detect the average gene expression of the cell population; it cannot identify the
heterogeneity between cells and can easily ignore the specific expression of cell subsets [2,3].
With the continuous progress of science and technology, high-throughput single-cell tran-
scriptome sequencing methods have been gradually developed. The new methods have
enhanced the throughput and detection limits of transcriptome sequencing, enabling unbi-
ased, high-throughput transcriptome analysis of individual cells. They have become a new
technology for revealing tissue composition and gene regulatory relationships.

Single-cell sequencing extends the study of genes and their functional alterations to
the single-cell level. Somatic mutations, including single-nucleotide variations (SNVs)
and copy-number variations (CNVs) [4], are usually rare and specific but can now be
detected as such. The accumulation of DNA mutations in somatic cells is thought to
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be one of the causes of aging. For example, genome-wide somatic SNVs (sSNVs) in
prefrontal cortical and hippocampal neuronal DNA were revealed using whole genome
sequencing at the single-cell level. Neuronal sSNVs accumulate slowly with age in the
normal human brain and more rapidly in early-onset neurodegeneration due to genetic
disruptions in DNA repair. In addition, neuronal sSNVs are increased in both the prefrontal
cortex and hippocampus, with a higher rate of increase in the hippocampus [5]. The
accumulation of somatic mutations is associated with age and inter-disease molecular
signaling. Genome-wide sequencing at the single-cell level identifies sSNV-rich genes in
endocrine cells associated with oxidative damage with specific alternative markers [6]. In
conclusion, combining single-cell transcriptional information with genomic information can
identify mutational behaviors, such as single-nucleotide variants, reveal genes associated
with cellular heterogeneity during disease development, enhance the throughput and
accuracy of single-cell transcriptome sequencing technologies, and also provide deeper
insights into clinical mechanisms.

This paper reviews the latest development of scRNA-Seq technology, including the
development, and the latest research results of scRNA-Seq in the life science and medicine
research fields, and discusses the possibility of its application in the TCM research field.

2. Evolution of scRNA-Seq Technologies

The total amount of RNA in a single mammalian cell is about 10 pg, of which only 1–5%
is transcriptomic RNA, which is far from the minimum standard for single-cell transcrip-
tome library construction [7]. To profile the gene expression activity in cells, transcriptomes
require a larger total amount of starting RNA. In addition, traditional transcriptome se-
quencing techniques introduce amplification bias and loss of nucleic acid information in
the process of mRNA reverse transcription to form cDNA. Therefore, applying the tran-
scriptome to single-cell analysis needs to address two major issues: obtaining single cells
and amplifying single-cell cDNA for library construction. The workflow of scRNA-Seq
includes the following parts: single-cell isolation, reverse transcription, cDNA synthesis,
single-cell library, high-throughput sequencing, and data analysis [8] (Figure 1).

Compared with traditional RNA-Seq, scRNA-Seq has great advantages in revealing
the expression of some cell subsets at the molecular level, screening early diseases, evaluat-
ing clinical conditions, and clarifying the mechanism of drug action. In 2009, Tang [9] used
scRNA-Seq for the first time to analyze the cDNA expression profile of a single blastomere
of four-cell stage embryo mice and identify abnormal expression genes in oocytes and blas-
tocysts, which laid a foundation for the subsequent development of scRNA-Seq. Regarding
the two core aspects of scRNA-Seq, obtaining single cells and amplifying single-cell cDNA
for library construction, researchers have been experimenting with technological innova-
tions in recent years, establishing a series of sequencing technologies such as STRT-seq,
Smart-seq, CEL seq, Fluidigm C1, Smart-seq2, MARS-seq, Cyto-seq, Drop-seq, inDrop-seq,
10× Genomics, Seq-Well, Smart-seq3, and VASA-seq [9–27]. The principles and advantages
and disadvantages of the different methods are presented (Table 1).
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Figure 1. An overview of the single-cell RNA-sequencing procedures. (A) collect cells from tissue 
samples. (B) Single-cell capture process. (C) Cell isolation process. (D) Reverse transcription of 
mRNA and amplification of cDNA. (E) Construction of the scRNA-Seq library. (F) Complete deep 
sequencing of scRNA-Seq. (G) Analysis of scRNA-Seq data. 
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Figure 1. An overview of the single-cell RNA-sequencing procedures. (A) collect cells from tissue
samples. (B) Single-cell capture process. (C) Cell isolation process. (D) Reverse transcription of
mRNA and amplification of cDNA. (E) Construction of the scRNA-Seq library. (F) Complete deep
sequencing of scRNA-Seq. (G) Analysis of scRNA-Seq data.
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Table 1. Comparison of different ScRNA-Seq technology approaches.

Platform Name Separation
Method

Amplification
Method

Using
UMI

Amplification
Range Advantages Disadvantages Release

Date References

VASA-seq FANS PCR YES All transcripts Low cost and accurate dosing / 2022 [10]
Smart-seq3 Microfluidics PCR YES 5′ end High sensitivity Time-consuming 2020 [11,12]
DNBelabC4 Microfluidics PCR YES All transcripts Precise quantification / 2019 [13]

Seq-Well Microfluidics PCR YES 3′ end Low cost and precise quantification Unsuitable for variable splicing
and allelic expression 2017 [14]

MATQ-seq FACS PCR YES All transcripts Precise quantification Low cell throughput 2017 [15]

10× Genomics Microfluidics PCR YES 3′ end
High cell capture efficiency, fast

cycle time, high cell suitability, and
reproducibility

Sequencing can be performed
only for the 3′ end 2016 [16]

Cyto-Seq Microfluidics PCR YES 3′ end Low cost and high throughput Cross-contamination between
RNAs 2015 [17]

SC3-seq Micromanipulation PCR YES 3′ end Good reproducibility and accurate
quantification Recognize DNA at the 3′ end 2015 [18]

inDrop-seq Microfluidics IVT YES 3′ end Low cost and linear amplification Long operating time and high
initial cell concentration 2015 [19]

Drop-seq Microfluidics PCR YES 3′ end Low cost and high throughput Low cell capture rate 2015 [20]
MARS-seq FACS IVT YES 3′ end High specificity Low amplification efficiency 2014 [21]

STRT-seq Microfluidics PCR NO All transcripts
Accurate positioning of transcripts

at the 5′ end to reduce
amplification bias

Low sensitivity, only available
for identification of 5′ end DNA 2014 [22,23]

Quartz-seq FACS PCR YES 3′ end High sensitivity, reproducibility,
and operational simplicity Higher noise levels 2013 [24]

Fluidigm C1 Microfluidics PCR NO All transcripts Simple process High cost and low throughput 2013 [25]

Smart-seq2 FACS PCR NO All transcripts Full-length cDNA detects
structural and RNA shear variants

High cost, low throughput, and
time-consuming 2013 [13,26]

Smart-seq FACS PCR NO All transcripts High sensitivity to reduce the rates
of nucleic acid loss

Low throughput and the
existence of transcript length

bias
2012 [22]

CEL-seq FACS IVT YES 3′ end Good reproducibility and highly
sensitive

Low throughput and
amplification efficiency, library
biased toward the 3′ end of the

gene

2012 [27]

Tang-2009 FACS PCR NO 3′ end Good reproducibility High cost and low throughput 2009 [9]
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Single-cell separation is the most critical step in scRNA-Seq. Traditional cell sepa-
ration methods include serial dilution, micro-manipulation, fluorescence-activated cell
sorting (FACS), and laser capture microdissection (LCM) [7,28]. With the creation of
high-throughput sequencing platforms, the application of cell sorting platforms based
on magnetically activated cell sorting (MACS) and microfluidics has greatly improved
the efficiency, scale, and precision of single-cell isolation [29,30]. Microfluidics, a new
highly integrated system with individual steps reacting on a micron-sized chip, is also
called “lab-on-a-chip”. At present, this is the preferred method for single-cell separation
on a transcriptome platform and is mainly divided into integrated fluidic circuits (IFCs),
microporous methods, and droplet methods [14,17,25,31–34].

The construction of a cDNA library is the core of scRNA-Seq. At present, PCR-based
amplification, in vitro transcription amplification (IVT), and Phi29 polymerase replication
are mainly used among them, and PCR-based cDNA amplification is currently the pre-
dominant library construction method, including the end-tailing and template-switching
methods [35]. The end-tailing method is speedy but causes amplification error, and the
termination of reverse transcriptase reaction can reduce the coverage rate of 5′ end of
transcription. The template-switching method is one of the commonly used cDNA amplifi-
cation methods and can reduce the rate of nucleic acid loss, but its sensitivity is lower than
the end-tailing method. IVT [31] using cDNA double strands as a T7 polymerase template
is a linear amplification process, but the amplification efficiency is inefficient and IVT tends
to cause amplification bias at the 3′ end of the cDNA. In order to solve the problem of
amplification bias, researchers have developed unique molecular identifiers (UMIs) [36],
which are used to label every single cell during reverse transcription to achieve accurate
quantification of transcripts. The Phi29 polymerase replication method is a continuous
amplification of cDNA using Phi29 polymerase after reverse transcription of RNA to form
cDNA. This method is capable of forming complete cDNA strands during amplification, is
suitable for longer sequence runs, and can enhance single-cell amplification efficiency when
used in conjunction with a microfluidic system [37]. However, it was found to produce
incomplete expression of low-abundance mRNAs when cells were treated and tended to
result in sequence loss at the 3′ end of mRNA [38].

Analysis of scRNA-Seq data typically includes sequencing fragment alignment, cell
quality control (QC), quantification, data normalization, removal of confounding factors,
dimensionality reduction and feature selection, cluster analysis, and downstream anal-
ysis of the data. The raw data are first generated in the “fastq” format utilizing tools
such as TopHat2, HISAT, and STAR [39–42], and QC is completed with FastQC, SinQC,
and Scater [43–45]. Inter/intra sample normalization was carried out using sctransform,
BASiCS, scran, Linnorm, etc., to offset data bias due to cell separation, mRNA amplifi-
cation, etc. [46]. Then, the data were submitted to batch correction using MNNs, CCA,
kBET, REBET, etc. [47–50]. Finally, dimensionality reduction was performed to resolve
high-dimensional experimental data, and downstream analyses such as pseudo-temporal
analysis and differential expression analysis were performed to reveal the functional and
biological significance of the target cell subpopulations [51–55].

With a large number of scRNA-Seq methods being reported, the selection of the
appropriate method to complete sequencing among the many scRNA-Seq methods has
become a primary concern for researchers. The 10× Genomics method has gradually the
primary choice for most scRNA-Seq due to its high throughput and low cost. In 2016, The
10× Genome company developed a novel scRNA-Seq platform based on a microfluidic
droplet system, which is based on GemCode technology [56]. The platform combines cell
suspensions and gel beads in emulsion (GEMs) containing reverse transcription reagents
and barcoded oligonucleotides forming “GEMs” in an eight-channel microfluidic chip.
Subsequently, the GMEs were lysed and their oligonucleotides were released for cDNA
amplification, and cDNA libraries containing UMIs were prepared for eventual introduction
into the Illumina platform for scRNA-Seq analysis. The researchers found UMI mapping
rates of 38% and 33% for human and mouse (3T3) cell mixtures, respectively, which
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is comparable to the previously reported scRNA-Seq system. The results of principal
component analysis (PCA) performed on a mixture of 293T and Jurkat cell lines at different
ratios confirmed the ability of the system to perform unbiased assays on rare single cells.
Subsequent clustering analysis of PBMCs identified three major cell subpopulations and
several small cell clusters and generated transcriptome profiles to verify heterogeneity
between 68K and PBMCs, demonstrating that this method has the capability to parse
the function between immune cell populations. Finally, the genotypes of bone marrow
mononuclear cells (BMMCs) after transplantation were compared with the host genes, and
the differences in cell subsets between healthy people and patients with acute myeloid
leukemia (AML) were revealed, which provided new insight into the analysis of cell
composition and cell interaction in vivo.

To test the effectiveness of 10× Genomics, Wang et al. [16] used two transcriptome
sequencing methods to analyze and compare hepatocellular carcinoma cells and found
that compared with Smart-seq2, 10× Genomics had lower sensitivity and a higher dropout
rate, which indicated that Smart-seq2 had certain advantages in detecting genes with
low expression level, but the high throughput of 10× Genomics and the improvement of
single-cell capture rate could offset the ineffectiveness caused by noise and provide stronger
clustering. In addition, the cost of 10× Genomics is considerably lower than Smart-seq2,
suggesting that the former may have a higher priority for the analysis of larger numbers
of single-cell transcriptomes. Based on the above studies, 10× Genomics sequencing has
becomes the primary choice for cell and cell subpopulation analysis.

While current scRNA-Seq methods are able to quantify and determine cell status with
high precision, most methods accomplish cell capture and cDNA synthesis by poly(A) se-
quence hybridization of barcoded oligonucleotide primers and polyadenylated transcripts.
The remaining sequences of polyadenylated RNA molecules cannot be detected, resulting
in the inability to detect non-coding RNA and selective promoters (AP), etc. In addition, the
absence of UMI triggers the accurate quantification of splicing events. To overcome these
barriers, Fredrik et al. [10] invented a novel technology for scRNA-Seq called “VASA-seq”
in 2022, the main process of which is to first disassemble single cells to obtain RNA with
end-repair and introduction of poly(A), followed by molecular quantification using UFI.
Finally, PCR was used to complete the amplification, and the process was similar to cel-seq
(Figure 2). The advantage of the method is that VASA-seq is adjusted to two formats, plate
and drop, with the advantage of the plate format being that it can meet most scRNA-Seq
requirements, while the drop format has the advantage of capturing the flux cell subsets
and reducing the operation time and cost.

To validate the superior performance of VASA-seq technology [10], researchers per-
formed species-mixing experiments on mouse embryonic stem cells (MESCs) and human
HEK293T cells, demonstrating better droplet spacing integrity with microfluidic technology.
Subsequently, VASA-seq was compared with 10× Genomics, Smart-seq3, and Smart-seq-
total, and the results showed that VASA-seq was able to maintain uniform coverage of
the entire gene body. In addition, VASA-seq was superior to the other three methods in
terms of sensitivity, gene detection rate, sequencing coverage, and new transcripts. By
mapping scRNA-Seq at different stages after mouse embryo implantation, it was found
that VASA-seq detected a slightly lower percentage of protein-coding transcriptome, but
the capture rates of long non-coding RNAs (lncRNAs), short non-coding RNAs (sncRNAs),
and transcription factors (TFs) were higher than other methods. Identification of cell sub-
populations present in both VASA-seq and 10× Genomics showed that VASA-seq detected
more differentially upregulated genes, indicating that VASA-seq was able to complete the
expansion of known genes, and the subsequent identification of cell cycle status by detec-
tion of histone genes confirmed the ability of the technology to ensure cell cycle and cell
type-specific histone assays. Finally, the ability of VASA-seq to measure alternative splicing
(AS) in different cell types to probe cell type-specific gene function was demonstrated by
detecting changes in stable AS in cells. In summary, VASA-seq has further advanced the
single-cell field with its high sensitivity, full-length transcriptome coverage, and ultra-high
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throughput, while the technology is expected to be a new scRNA-Seq technology and
an alternative to methods, such as 10× Genomics and Smart-seq3, with inexpensive and
convenient operation.
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3. Application Progress of scRNA-Seq

As an essential method to reveal cellular metabolites and expressed genes, scRNA-Seq
is mainly used to analyze the interaction between cell subsets and gene regulation processes.
At present, it is used in various research fields (Figure 3), such as embryonic, tissue and
organ development [57,58], tumor [59,60], and immune system research [61].
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3.1. Application of scRNA-Seq in Embryonic, Tissue and, Organ Development Research
3.1.1. Embryonic Research

The mammalian embryonic development process is the essential molecular event in
the growth of a living organism, and embryonic stem cells gradually differentiate into
multiple-level cells and then form organs and tissues [62]. During development, all cells
remain highly dynamic and heterogeneous. Interpretation at the single-cell level is required
to reveal changes in specific genes during development in individual animals. Currently,
scRNA-Seq can classify cells at various levels, track the developmental process and identify
specific markers, and identify key genes associated with embryonic competence indicators
by mapping the cell transcriptional profile at individual developmental stages [63,64].
Liang P. et al. [65] developed a machine learning platform HelPredictor using three fea-
ture selection methods and four algorithms to predict human embryonic lineage gene
expression patterns and molecular events. This strategy reveals the detailed process of
blastomere cell division into trophectoderm (TE), primitive endoderm (PE), and epiblast
(EPI) cells. Through cluster analysis, genes were divided into eight clusters and a variety
of key biomarkers were found, which improved the analysis rate of scRNA-Seq data and
accurately predicted embryonic lineages.

The scRNA-Seq characterizes cell types at high resolution, sequencing and analyzing
cells differentiated at variable rates and performing computational searches for cell-specific
gene expression patterns to obtain significant marker genes [66]. Ilsley G.R. et al. [67]
applied scRNA-Seq to the 16-cell stage of the Ciona embryo (a marine chordate) and used
a novel computational approach to discover gene expression patterns. Firstly, as maternal
mRNA levels varied considerably between unfertilized eggs of different individuals, and
the variability and reproducibility of this technique needed to be assessed, the data were
normalized. Subsequently, the gene expression pattern of individual genes was clustered
and the two top clusters were generated to determine the on/off pattern for cell type
per gene. An approach that does not require changes in parameter estimation or disper-
sion was used to rank the results, resulting in new cell-specific patterns, and cell-specific
gene expression patterns were validated by in situ and single-cell qPCR. This provides an
extremely valuable research model for embryonic development studies. Embryogenesis
in mammals is dependent on glycolysis and oxidative phospho-uptake. Malkowska A.
et al. [68] found that data were collected on the mammalian single-cell embryo atlas, and
their different patterns of metabolic kinetics were determined by glycolysis and oxidative
phosphorylation-related gene expression. According to modules in Computational Seurat
4.0 used to analyze the transcriptional programs of enzymes involved in glycolysis and
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oxidative phosphorylation, it is associated with glucose consumption during blastocyst
formation in mice. The enrichment of oxidative phosphorylation genes is associated with
high oxygen consumption in mouse blastocysts. Therefore, inferring metabolic regulation
from scRNA-Seq data can overcome the technical problems of its metabolic profile during
mammalian embryonic development, and combined computational analysis can be utilized
to explore in vivo embryonic samples and identify differences in metabolic gene regulation,
providing a novel genealogical model for studying embryonic development. Therefore,
inferring metabolic regulation from scRNA-Seq data can overcome the technical prob-
lems of its metabolic profile during mammalian embryonic development, and combined
computational analysis can be utilized to explore in vivo embryonic samples and identify
differences in metabolic gene regulation, providing a novel genealogical model for studying
embryonic development.

Autophagy is thought to play an essential role in the development of early mammalian
embryonic cells [69]. To ensure normal development and differentiation of eukaryotes,
autophagy-associated genes and mTOR mediate the degradation of cytoplasmic compo-
nents, which are rapidly activated within the first 3–4 h after fertilization, independent
of mTORC1 activity [70]. Zhang, K. et al. [71] studied the human transcriptome and
metabolome patterns of autophagy-associated genes in early embryonic cells. The results
showed that most autophagy-related genes, such as LC3B, PARP1, and PINK, maintained
their genetic activity and expressed stably throughout embryonic development, but their
dynamic changes were different at various developmental stages. This evidence indicates
that the autophagy pathway is activated and plays an essential role in early human embry-
onic development, which lays a foundation for further study of the molecular mechanism
of early human embryonic development.

Cell differentiation is an essential factor influencing the development of living organ-
isms [72]. Hematopoietic stem cells (HSCs) are involved in the critical events influencing
arterial vasculogenesis in living organisms [73]. Hadland et al. [74] used scRNA-Seq to
analyze the transcriptional profile of cells derived from the aorta-gonadal-mesonephric
(AGM) region in the transition of hematopoietic endothelial cells to HSCs, determined
using the AGM-derived endothelial cell matrix model (AGM-EC). Hematopoietic precursor
maturation signal and transcription factor Sox177, etc., and VE-Cadherin+CD61+EPCR+

cell subsets determined the dynamic transcriptional characteristics of HSC precursors, and
pseudo-timing analysis revealed downregulation of Notch target gene Hey1/Hey2 and
increased expression of Cdca7 during hematopoietic endothelial (HE) cell to HSC transfor-
mation, and revealed interactions between ligands and receptors during HSC development.
Identifying cell cluster classes by scRNA-Seq demonstrated the molecular diversity of
hematopoietic endothelial cells and obtained new matrix types, ultimately mapping a
unique molecular picture of hematopoietic stem cells. Through this atlas, some subpopu-
lations of cells directly related to hematopoietic genes were identified, linking the genes
found so far with their corresponding specific cell types and making the hematopoietic
genes substitute for the corresponding regulatory pathways of the corresponding cellular
environment to elucidate the mechanism, which is helpful for the search and identification
of targets.

The scRNA-Seq atlas, as a high-dimensional search space that covers multiple endoder-
mal organs, such as human respiratory and gastrointestinal development, can be utilized to
identify transient and differentiated cell states in different cell lineages, with an emphasis
on transcriptional regulators associated with cell fate specification, benchmark cellular
composition and molecular profiles in intestinal organoids in vitro and in vivo, quantifying
similarity to primary counterparts, and identifying their non-targeted cell types [75,76].
Qianhui Yu et al. [77] identified NRG1, an intestinal stem cell ecotropic factor secreted by
the subepithelial mesenchyme that promotes the maturation of intestinal epithelial stem
cells in intestinal-like organs according to scRNA-Seq. In addition, the major intestinal
regulator CDX2 was identified as a factor required in the specification of the human intesti-
nal epithelial cell fate and the appropriate pattern of the intestine-associated mesenchyme.
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Therefore, through projecting cells onto a multi-organ atlas in development, examining the
expression patterns of each organ marker gene, and identifying differences between organ
characteristics of epithelial growth cells in different media, this study provides valuable
information for cellular embryo development studies.

3.1.2. Tissue and Organ Development Research

In addition to embryonic cell research, scRNA-Seq can characterize the development
of distinct cell populations in organs or tissues, providing ideas for understanding some of
the critical changes in the development of animal tissues and organs [78,79]. ScRNA-Seq
has been reported as a developmental transcriptional map of a variety of organs (Table 2),
such as the brain [80–82], heart [83], kidney [84], and liver [85].

Table 2. Latest applications of ScRNA-Seq in tissue and organ research.

Tissues and
Organs Methods Stromal Cell Subtypes Key Difference Genes Mechanisms References

Liver 10×
Genomics

ID3+ hepatocytes
NCAM1+ cholangiocytes

Sox9+ cholangiocytes

ID3
Inhibition of the Wnt signaling pathway maintains ID3+

cells in an undifferentiated hepatocyte-like state.
[85]

COL1A1

HAND2

Brain 10×
Genomics

Astrocyte
Radial glia cell

BMP single-related cells

CLIC6 Pathways associated with metabolic stress, such as
glycolysis, ER stress, and hypoxia, are significantly less

activated in IVD-like organs.

[86]
ZBTB20

STRN3

Heart STAR
Valvular interstitial cells

Cardiac fibroblasts
Endothelial cells

HAND1 Endocardial cells highly express ligands and receptors of
the Notch signaling pathway, which regulates

neuromodulin (NRG)/ERBB signaling to promote
cardiomyocyte differentiation from the trabecular layer.

[87]
HEY2

IRX3

Kidney 10×
Genomics

CDH1+/JAG1+ cells
JAG1+/Jag1+ cells

SLC39A8
Notch pathways in JAG1 and HES1-expressing

proximal/medial renal vesicles are tightly linked.
[88]

LAMP5

HNF4A

Pharynx 10×
Genomics

Parathyroid
mTEC
cTEC

Irf628 Hippo signaling is active in the developing thymus, but
absent in the Foxn1 thymus, suggesting that this pathway

may function downstream of Foxn1.

[89]
Trp63

Vim29

Ovary 10×
Genomics

Vascular smooth muscle cells
Ovarian luminal
epithelial cells

Stromal progenitor cells

Foxl2l
Inhibition of BMP and Wnt signaling pathways can keep

prefollicular cells in an undifferentiated stem cell-like state.
[90]

Wnt9b

Nanos2

In conclusion, the study of scRNA-Seq has explored the spatial and temporal pro-
grams during the development of various mammalian organs, established gene expression
networks during tissue and organ development, and revealed organ developmental tra-
jectories, which lays a solid foundation for elucidating the mechanism of human organ
tissue development in vivo and potentially identifying potential factors and targets for the
pathogenesis of individual organs or tissues to reveal disease mechanisms and provide a
partial reference for etiology and disease treatment.

3.2. Application of scRNA-Seq in Tumor Research

Tumors, as the primary cause of global harm, have brought a heavy burden on human
health [91]. The statistics in 2022 showed that there were approximately 23.6 million cancer
cases and 10 million cancer deaths worldwide in 2019, which increased by 26.3% compared
with the number of cases in 2010, and the number of deaths increased by 16% [92]. The
formation of tumor cells arises from the mutation of normal cells and differentiation gene
mutation in organisms. The cells with mutated genes evolve to form different types of cells
or different subtypes of uniform types of cells, resulting in heterogeneity between tumor
cells [93].

At present, the heterogeneity of stromal cells and immune cells in tumor infiltration in
the microenvironment and the molecular mechanism between them have not been clarified
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in depth, which makes clinical diagnosis and treatment of most cancer patients challeng-
ing [94]. ScRNA-Seq can measure the whole transcriptome with single-cell resolution,
clarify the transcriptome characteristics of each cell in the tissue, reveal the tumorigenesis
mechanism and cell mutation process from the molecular level, explore the development
track of different subtypes of tumor cells, construct the blueprint of the tumor cell microen-
vironment, discover cell groups, draw cell maps, discover new biomarkers and clarify
the mechanism of drug resistance, and discover new therapeutic targets [95,96]. It can
also develop a combination therapy strategy to establish multiple related cell groups by
targeting tumors [97] (Table 3).

Table 3. Latest applications of scRNA-Seq in cancer research.

Cancer Method Stromal Cell
Subtypes

Key Differential
Genes Mechanisms References

Gallbladder
cancer

10×
Genomics

Lymphocytes
CTLA4
TIGIT

Immunoproteins CTLA4 and TIGIT are highly expressed in CD8+ T
cells, and bile acid and fatty acid metabolism levels are disturbed.

[98]
Macrophages

Dendritic cells

HL 10×
Genomics

Macrophages
LAG3
FOXP3 Differential protein LAG3 and FOXP3+ T cells increase, leading to HL. [99]

T cells

B cells

Lung adeno-
carcinoma

10×
Genomics

Macrophages SFTPA2 High expression of the angiogenic markers VWA1 and HSPG2 through
the TGFβ and JAK/STAT signaling pathways lead to an elevated

expression of genes, such as EGFR.

[100]
NK cells CXCL9

T cells EGFR

PDAC 10×
Genomics

Endothelial cells
Fibroblasts

HIF1A The expression levels of cell type-specific markers for
epithelial–mesenchymal transition (EMT+) cancer cells, activated

fibroblasts (CAFs), and endothelial cells are strongly correlated with
patient survival.

[101]
COL1A1

VEGFA

PitNETs 10×
Genomics

Fibro fibroblasts LHB The differential gene SOX9 is highly expressed in tumors expressing
T-PIT and SF-1 (P11), leading to transcriptional dysregulation

in tumors.

[102]
Endothelial cells ZFP36

Immune cells BTG1

Colorectal
cancer

10×
Genomics

Fibroblasts FABP4
The Wnt signaling pathway is activated and promotes granulocyte

migration, resulting in abnormal ferroptosis.
[103]

T cells SPP1

B Cells RBP7

Prostate
cancer

10×
Genomics

T cells KRT5
KLK3
TP63

Elevated KLK3 in T cells inhibits TNF-α, leading to prostate cancer. [104]
B Cells

HGSTOC 10×
Genomics

Lymphatic
endothelial cells COMP

Activation of IL6 and JAK/STAT in fibroblast and HGSTOC cancer cell
subsets is involved in pathogenesis.

[105]
Myofibroblasts LTBP2

Plasma cells TGFBI

NSCLC 10×
Genomics

CD8+ T cells SERPINA9 Increased expression of CD54 and decreased expression of CD62L in
CD8+ T cells led to the development of lung cancer. Furthermore,

CD20+ B cells produced low levels of SERPINA9 and directly
promoted the growth of non-small lung cancer cells.

[106,107]
CD4+ T cells EGFR

B cells CD83

AITL 10×
Genomics

B Cells XCL2 Upregulation of the chemokines XCL2 and XCL1 results in deranged
metabolic levels of the biomarkers CD73 and CXCR5 in CD8+ T and

AITL CD19+ B cell populations.

[108]
T cells XCL1

Plasma cells CXCR5

Breast
cancer

10×
Genomics

Natural killer cells BDH2 Upregulation of aerobic glycolysis and mitochondrial oxidative
phosphorylation leads to dysregulation of the metabolic level of CD8+

T cells and T cells.
[109–112]

T cells DECR1

B cells PHLDA2

Liver and
biliary
tumors

10×
Genomics

B cells MALAT1 The metabolically dominant organoid HCC272 can remodel the tumor
microenvironment by accelerating glucose, enhancing

hypoxia-induced HIF-1 signaling, and lead to upregulation of NEAT1
in CD44 cells, thereby inducing hyperactivation of Jak-STAT signaling.

[113]
CD44 cells NEAT1

HCC272 cells SAT1

3.2.1. Research on the Tumor Microenvironment (TME)

Tumors are formed by cancer cells and a variety of non-cancerous cell types, which
together with the extracellular matrix form the tumor microenvironment. The involvement
of these cancer-related cells, components, and immune mechanisms affects the development
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of cancer and is also relevant to the diagnosis and treatment of patients, as well as their
prognosis [114–116]. Stromal cells can be divided into tumor-infiltrating T-lymphocytes
(TIL-T), B cells, cancer-associated fibroblasts (CAFs), tumor-infiltrating myeloid cells (TIMs),
angiogenic vascular cells (AVCs), and infiltrating immune cells (IICs) [117]. They can
also be utilized to develop a combination therapy strategy to establish multiple related
cell groups by targeting tumors. In the work of Aoki T. [99], the phenotypic single-cell
expression profile of the Hodgkin’s lymphoma (HL) specific immune microenvironment
was analyzed with single-cell resolution for the first time, and a new HL-related T cell
subset with significant expression function of inhibitory receptor LAG3 was identified.
LAG3 + T cell population was identified as the mediator of immunosuppression. ScRNA-
Seq was applied to lung adenocarcinoma, and Bischoff P. et al. [100] identified two major
microenvironment patterns called N3MC and CP2E. Microenvironment marker genes
and signals identified in the single-cell map have predictive value in the whole tumor
map in scRNA-Seq, providing significant clinical insights for TME biology, identifying
potential biomarkers for anti-cancer, and leading to the development of new therapeutic
strategies for targeted therapy. In addition, single-cell transcriptomics regulates somatic
mutations and epigenetic modifications in gene expression and function and identifies
minor subgroups that play critical roles in disease. Screening and detecting human disease
with very small numbers of cells or individual cells in the clinical setting is an important
tool for early disease screening. This will help us better understand, prevent, and ultimately
cure the disease.

The phenotypes produced by intercellular interaction are not only related to the ligand-
receptor, but also the interacting cell type. Lin W. et al. [101] used scRNA-Seq to analyze the
transcriptome of individual cells in primary tumors or metastatic biopsy tissues isolated
from patients with pancreatic ductal adenocarcinoma (PDAC). Different cell types such
as tumor-cells endothelial cells, CAFs, and infiltrating immune cells were identified by
unsupervised clustering analysis and a new supervised classification algorithm SuperCT.
Cui Y. et al. [102] performed high-precision scRNA-Seq on pituitary neuroendocrine tumors
(PitNETs) and identified three normal endocrine cell types by unsupervised clustering
(PIT-1, T-PIT, and SF-1, the most specific markers for tumor classification), and the dif-
ferential gene SOX9 is highly expressed in tumors expressing T-PIT and SF-1, leading to
PitNETs. Zhang Y. et al. [103] used scRNA-Seq to identify twelve clusters of colon cancer
corresponding to six cell types, namely cancer cells, T cells, bone marrow cells, endothe-
lial cells, fibroblasts, and B cells. Pathway enrichment analysis showed that activation
of the Wnt signaling pathway can promote granulocyte migration and lead to abnormal
iron death-mediated granulocyte death and colon cancer disease. Therefore, scRNA-Seq
allows for the discovery of higher-resolution cellular interactions in the microenvironment,
identifying new therapeutic pathways and, as a result, effective therapeutic targets and
biomarkers for patient disease stratification.

CD4+ regulatory T cells (Tregs) expressing the transcription factor FoxP3 promote
tumor progression by effectively suppressing anti-tumor immunity, and scRNA-Seq iden-
tified many genes associated with Tregs [118–121]. Yang L. et al. [106] found that several
immune checkpoints and their ligand transcripts were upregulated in non-small cell lung
cancer (NSCLC)-infiltrating lymphocytes. Tregs and expressed specific signaling molecules,
such as programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1),
were also studied on the surface in EGFR-mutant NSCLC. Kieffer Y. et al. [109] found that
the 0/ecm-myCAF cluster in breast cancer upregulated PD-1 and CTLA-4 protein levels in
Tregs, which in turn increased CAF-S1 cluster 3/TGFβ-myCAF cell content, highlighting
a positive feedback loop between the CAF-S1 cluster and Tregs. Using scRNA-Seq, Chen
S. et al. [104] showed significant heterogeneity in three clusters (2, 3, and 5) consisting of
CD8+ T effector cells, with reduced lipid and amino acid metabolism and increased levels
of glycolysis observed in Tregs. In addition, high levels of KLK3 were seen in clusters 3 and
5 and Tregs, and KLK3 expression was detected in all T cell subsets, suggesting that the role
of extracellular vesicles may accompany different stages of tumor-infiltrating T cells. There-
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fore, these findings highlight the need to assess gene expression patterns of lymphocytes at
tumor sites and suggest that transcriptional data from subpopulations of tumor-infiltrating
lymphocytes may help to understand the dynamics of immune regulation in the tumor
microenvironment, providing novel markers for predicting antitumor immune responses.

It is well known that CAFs can promote tumor escape progression and migration [122–124].
Significantly increased expression of epithelial–mesenchymal transition (EMT) markers in
CAFs and EMT is induced by hypoxia or activated TGF-β pathways, presumably driven
by upregulation of EMT-related genes in high-grade serous tubo-ovarian cancer (HGSTOC)
through changes in expression in CAFs [105]. This may reflect a metastatic role between CAFs
and malignant cells, thus providing clues to the underlying mechanisms of tumor invasion
and tumor metastasis rates.

B cells are heavily enriched in tumor tissue; however, the types of B cells in tumor tissue
and whether there are subtypes are not clear [125–127]. The scRNA-Seq results showed six
clusters of B cells in NSCLC, namely naive B cells with TLR10 and FCRL1, plasma-like B
cells with high levels of AP2A1 and AP2M1 expression, CD20−CD19−CD79A+CD79B+ B
cells with high levels of AP2A1 and AP2M1 expression, CD20−CD19−CD79A+CD79B+ B
cells, CD20+ B cells in NSCLC, TRIM21-mediated immunoglobulins B cells, and targeting
immunoglobin (IgG) B cells. The results demonstrate the heterogeneity of B cells in tumor
tissue [107]. Pritchett J.C. et al. [108] used mass spectrometry flow cytometry and scRNA-
Seq analysis to identify B cell features found in angioimmunoblastogenic T cell lymphoma
(AITL), including reduced expression of CD73 and CXCR5 key markers. Therefore, scRNA-
Seq can infer B cell populations that cannot be detected by other analytical methods.

3.2.2. Research on Metabolic Heterogeneity

Metabolic heterogeneity is a key early factor in cancer metastasis, and specific metabolic
pathways may exhibit stage-specific effects [128–130]. This difference leads to differences in
tumor proliferation capacity, aggressiveness, and drug sensitivity, which ultimately affect
the diagnosis, treatment, and disease progression of tumor patients. Yu T.J. et al. [110]
established a metabolic classifier by scRNA-Seq to classify 10 primary breast tumors at the
single-cell level, identifying different cell subpopulations and finding that malignant cells
were able to promote metabolic heterogeneity. In addition, CD8+ T cells with dysfunction
at the single-cell immune level showed metabolic activity and metabolic differences with
other stromal cell subtypes. Davis R.T. et al. [111] used scRNA-Seq and metabolomic path-
way analysis to find that mitochondrial oxidative phosphorylation was the main pathway
upregulated in micrometastases, and glycolytic enzyme levels were higher in primary
tumor cells, demonstrating oxidative phosphorylation and the functional importance of
chemotaxis in cancer metastasis. Therefore, the identification of cancer cells’ metabolic
subtypes, with the potential to improve patient prognosis and indicate treatment response,
will contribute to understanding the metabolic heterogeneity of breast cancer and provide
a new perspective for revealing the energy metabolism heterogeneity of breast cancer.
Zhao Y. et al. [113] explored through single-cell transcriptome sequencing and found that
the metabolic organoid HCC272 could reshape the tumor microenvironment by accelerat-
ing glucose, augmenting hypoxia-induced HIF-1 signaling, and causing upregulation of
NEAT1 in CD44-positive cells, thereby inducing over-activation of Jak-STAT signaling and
ultimately leading to drug resistance. Consequently, to improve drug targeting, scRNA-Seq
identifies rare genes associated with drug resistance in tumor patients. Therefore, identi-
fying cancer metabolic subtypes can improve patient prognosis and indicate therapeutic
response and will help to elucidate the metabolic heterogeneity of breast cancer tumors,
providing a novel perspective to reveal the heterogeneity of energy metabolism in breast
cancer tumors.

Tumor-associated macrophages (TAMs), derived from myeloid precursors, are im-
munosuppressive and tumorigenic, and are present in high levels in gliomas [131–133].
Zhang et al. [134] applied scRNA-Seq to demonstrate EGFR signaling from TAM-secreted
ligands to tumor cell receptors and then to downstream target genes in glioma, and iden-
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tified novel multilayer network biomarkers (MNBs). There is still a gap regarding the
function of TAMs in vivo and how cellular activity can be harnessed to improve anticancer
therapy, and the use of scRNA-Seq to find its key influencing genes and identify its poten-
tial signaling pathways could be extremely helpful for in vivo drug action and improving
treatment options.

3.3. Application of scRNA-Seq in Immune System Research

The immune system is an essential part of the body’s internal environment and consists
of immune organs, immune cells, and immune molecules, which are responsible for the
recognition and removal of antigenic foreign substances from the body [135,136]. Immune
cell responses include the coordinated and balanced behavior of different cells at each stage,
and their heterogeneity has not yet been revealed. Therefore, the utilization of scRNA-Seq
can identify immune cell subpopulations and their interrelationships, elucidate immune
cell differentiation trajectories, and reveal the pathogenesis of immune diseases and the
regulatory processes of the immune system after the disease.

3.3.1. Research on Immune Cell Differentiation

The heterogeneity of the immune system contributes to an effective defense against
many different pathogens. The response of immune cells to antigenic substances is char-
acterized by complex and heterogeneous heterogeneity. The skin is the outermost organ
of the body, preventing the entry of pathogens and protecting against environmental
damage [137,138]. Currently, a detailed characterization of the human fetal skin immune
system is lacking, and it is likely that many immune cell subsets have not been identified.
Xu Y. et al. [139] identified bone marrow cells, early lymphocytes, and immune cells by
scRNA-Seq analysis of hematopoietic cells in fetal skin (7–17 weeks estimated gestational
age). The different distribution patterns of fetal skin lymphocytes suggest that the cells
undergo in situ differentiation and specialization during development. At the single-cell
level, lymphocyte responses are highly heterogeneous. In some lymphocytes, many of the
genes known to regulate inflammatory responses have been fully activated, while in others
they are only minimally activated or inactivated, and this heterogeneity in response is
associated with the stochastic nature of the gene regulatory network. The finding provides
a resource for further study of the skin immune system, which can help in the diagnosis
and development of effective therapies for skin diseases.

Variants associated with immune-mediated diseases are enriched with enhancers
and promoters, the activity of which is upregulated upon activation of CD4+ T cells [140].
Soskic B. et al. [141] elucidated the heterogeneity, dynamics, and transcriptional profile of
human CD4+ T cells, by performing scRNA-Seq on more than 1000 CD4+ T cells in view of
regulatory T cells, a subset of CD4+ T cells that can control T cell activation and prevent
excessive inflammation. Gene expression regulation was also mapped using scRNA-Seq
spanning four time points of CD4+ T cell activation. The finding underscores the importance
of studying the regulation of gene expression in specific environments and demonstrates
the positive correlation between immunosuppression and poor prognosis by mapping the
immune ecological environment on a single-cell basis. The large-scale single-cell mapping
deepens our insights into immune disease-mediated genetic susceptibility and further
defines the importance of the immune system for targeted therapies.

3.3.2. Research on the Mechanism of Immune Disease

The immune system in the process of fighting pathogens may trigger an autoantigenic
response causing immune disease and resulting in damage to organs or tissues [142,143].
With approximately 80 identified immune diseases [144], the variety and complexity of
mechanisms make the rapid identification of disease triggers imperative for the treatment of
immune diseases. As a new high-throughput technology, scRNA-Seq can identify the state
of different types of cells in the immune system, discover the expression between different
cell subsets, reveal the pathogenesis and disease changes, and provide some references for
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subsequent treatment. Systemic lupus erythematosus (SLE) [145], a classic human immune
disease, is an essential factor in the development of diseases, such as lupus nephritis, and
increased type I interferon (ISG-1) signaling is an essential hallmark of the disease [146]. To
reveal the pathogenic mechanism of SLE, Deng et al. [147] analyzed the data of SLE patients
and healthy controls using scRNA-Seq and found 20 cell subsets, among which monocytes,
B cells dendritic cells of SLE patients, and granulocytes were significantly increased, and
T cell subsets were significantly decreased. The results of differentially expressed genes
of type I interferon showed that granulocytes and neutrophils were the most active in
ISG activity, indicating that cell subsets were mainly related to leukocyte activation, cell
secretion, and pathogen infection; transcription factors IRF9, STAT1, PLSCR1, and TCF4
were highly expressed; and the expression of genes in kidney tissue in lupus nephritis is
consistent with that in SLE. The study identified new cellular markers and determined
immune cell subtypes that may provide a partial reference for a cure for SLE.

Systemic sclerosis (SSc) is a disabling and usually fatal autoimmune disease [148,149].
Alyxzandria M. et al. [150] identified circulating and tissue-resident T cell subsets in healthy
and SSc skin utilizing scRNA-Seq. A cluster of recirculating CXCL13+ T cells was identified
in SSc skin that expressed a T-helper follicle-like gene expression signature and facilitated
B cell responses in patients with inflamed skin. In addition, the inflammatory immune
mechanisms of SSc have been studied by scRNA-Seq. Elevated expression of cytokines such
as IL-32, IL-26, and IL-16 was found in the serum and lesioned skin of SSc patients, and
these cytokines stimulated macrophages to secrete other inflammatory cytokines (TNFα,
IL6) and chemokines (IL8, CXCL2), which in turn lead to the occurrence of inflammatory
immune diseases. This discovery identifies the mechanisms driving the pathogenesis
of SSc.

3.3.3. Research on the Regulatory Processes of the Immune System

In addition to revealing the pathogenesis of immune diseases, scRNA-Seq can reveal
the regulatory processes of the organism’s immune system caused by other factors. COVID-
19 is an acute respiratory syndrome coronavirus that activates the innate immune response
through the cytoplasmic DNA-sensing cGAS-STING pathway, posing a significant chal-
lenge to the security of human health [151,152]. Understanding the pathogenesis of new
coronary pneumonia infections is important to prevent transmission, reduce the severity of
the infection, and rapidly and effectively develop new treatment strategies. To date, there
have been many studies using scRNA-Seq to fully understand the mechanisms of immune
cell action in COVID-19 patients.

Huang et al. [153] used scRNA-Seq to unravel the human immune process. Eight
different peripheral blood mononuclear cell (PBMC) types, such as CD4+ T-lymphocytes,
were identified. Compared to healthy subjects, COVID-19 patients had increased DCs,
CD14+ monocytes, and MPs/platelets and decreased CD16+ monocytes and NKs; sub-
sequently, five metabolic pathways, such as IFN-I and mitogen-activated protein kinase
(MAPK), were found to be upregulated using STRING analysis. However, MAPK and its
transcription factor FOS were downregulated during the recovery period, suggesting that
MAPK downregulation is a key event in COVID-19 healing. Meanwhile, KEGG analysis
showed that genes related to iron death, such as GPX4, and others were upregulated during
disease and downregulated during recovery, indicating the presence of iron and lipid
peroxidation during COVID-19 pathogenesis. Finally, immunofluorescence staining results
showed significant upregulation of IFI27 and BST2 in COVID-19 patients as key genes for
COVID-19 infection. To reveal the difference in immune response between asymptomatic
and moderate patients with COVID-19, Zhao et al. [154] found increased proportions
of NK, plasma B cells, and platelets in critically ill patients compared to asymptomatic
patients by scRNA-Seq of PBMC in 19 subjects, resulting in the identification of 16 cell
types. T cell and NK cell data showed that the proportion of effector CD8+ and CD4+ T
cells was reduced in asymptomatic patients compared to moderate patients and healthy
individuals. CD56briCD16− NK cell abundance was significantly higher in asymptomatic
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patients than in moderate and severe patients and showed an increase over time in moder-
ate patients, and XCL1, XCL2, and IFNG were highly expressed in NK cells, suggesting
that CD56briCD16-regulatory NK cells play a crucial role in the fight against COVID-19
infection. Subsequently, IFN-I pathway activity at the single-cell level was explored, and
four stage-dependent expression patterns were identified based on NK cells and effector
T cells from moderate patients. Genes such as EGR1 and NR4A1 were found to be up-
regulated at later stages, and the type 1 interferon (IFN-I)-related genes ISG15, MX1, and
XAF1 were more expressed in early patients and decreased over time, again suggesting that
reduced IFN-I is an essential marker for recovery from COVID-19. In summary, scRNA-Seq
technology has led to additional scientific insights in the fight against COVID-19 and can
be used to detect important biomarkers in SARS-CoV-2 and other pathogens, reveal new
subtypes of viral cells, and construct cellular profiles that are more capable of precisely
identifying and tracking the origin of virus-infected cells and self-attacking T cells in blood
and target tissues.

In conclusion, scRNA-Seq can identify new subpopulations of immune cells at the
single-cell level and reveal patterns of immune cell differentiation and development, re-
veal the pathogenesis and evolution of certain complex immune diseases by identifying
cellular heterogeneity, and lead to novel strategies for the diagnosis and treatment of
immune diseases.

4. Application and Prospects of scRNA-Seq in TCM

Despite the fact that research on scRNA-Seq in TCM is still in its infancy, breakthroughs
have already been made in the TCM syndrome differentiation study, the discovery of
mechanisms of action and efficacy of TCM, and the elucidation of the toxic mechanisms in
TCM, which also highlights the significant potential of scRNA-Seq in TCM research.

4.1. Research on TCM Syndrome Differentiation

In clinical diagnosis, TCM has always adhered to the basic principles of “holistic
concept and syndrome differentiation treatment”, and through observation, auscultation,
interrogation, and palpation to understand the state of the body’s reaction and its changes at
the overall level during the disease process. However, the treatment lacks data support, and
new testing technologies are needed for data integration and analysis. Using scRNA-Seq
technology can solve this challenge. Colorectal cancer (CRC) is one of the most common
cancers of the gastrointestinal tract [13,155]. Lu et al. [156] used Smart-seq2 to isolate 662
cells from 11 primary CRC tumors and identified and validated 14 different cell clusters
and 14 differential genes such as MUC2, REG4, and COL1A2. In order to elucidate the
relationship between CRC cells and TCM symptoms and microenvironmental heterogeneity,
the distribution of three tumor single-cell subpopulations, excess syndrome (ES), deficiency
syndrome (DS), and deficiency–excess syndrome (DES) in CRC was analyzed. It was found
that DS runs through the whole process of the functional evolution of CRC tumor cells, with
DES in the middle stage and mainly ES in the late stage. This technology elucidates the main
pathogenesis of colon cancer from the pathway of tumor cell development and provides a
scientific basis for the study of tumor cells and their microcirculatory heterogeneity.

In addition, osteoarthritis (OA) is a common chronic disease of joint dysfunction and
is considered by TCM to be a “paralysis”, with deficiency of “Vital Qi” being the root cause
of the disease, which can be classified into four types according to the different syndromes:
wind-cold, damp paralysis, Qi-blood stagnation, damp-heat paralysis, and liver-kidney
deficiency [157,158]. To investigate the differences between different symptoms of OA,
Quanbo et al. [159] performed an scRNA-Seq analysis of chondrocytes from ten patients
and identified seven molecularly defined chondrocyte populations. Among them, effector
chondrocytes (ECs) and regulatory chondrocytes (RegCs) are early chondrocytes, while
prehypertrophic chondrocytes (preHTCs), hypertrophic chondrocytes (HTCs), and fibrocar-
tilaginous chondrocytes (FCs) are late-stage chondrocytes. The pseudospace trajectory axis
reveals that preHTCs are key cells in transforming value-added chondrocytes (ProCs) into
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HTCs and identifies genes associated with cartilage and connective tissue development in
two distinct clusters of HTCs. Identifying specific genes, such as BIRC5 and CENPU, in
chondroprogenitor cells (CPCs) demonstrates that CPCs mainly maintain cartilage home-
ostasis and cellular multidirectional differentiation. ScRNA-Seq can determine the degree
of OA lesion development based on the expression of specific genes among different cell
populations, elucidating the role of different cell types in the early diagnosis and treatment
of OA and enhancing the scientific and standardized nature of the dialectical treatment.

4.2. Research on the Interaction Mechanisms of TCM

As a treasure of the Chinese nation, TCM has been dedicated to the prevention and
treatment of disease for thousands of years and has proven its efficacy through clinical
practice. However, TCM contains a large number of compounds with multi-component,
multi-target, and multi-pathway characteristics, and the interactions between its individual
components make the specific mechanisms in clinical treatment unclear. Therefore, new
research strategies need to be integrated to elucidate and study the mechanism of action of
TCM at a deeper level. ScRNA-Seq, one of the most popular analytical methods in recent
years, can precisely identify the cells and cell subpopulations on which the drug acts and
establish the gene expression profile of the TCM component after it has been applied to the
cells, the transcriptional differences of which can elucidate multi-target and multi-pathway
mechanisms of action of TCM [160].

Qiu, Z.C. et al. [161] proposed a four-step integrated strategy of animal models to
simulate the efficacy of TCM, serum chemistry to characterize the major components
of absorption, transcriptomics to discover differentially expressed genes, and network
pharmacology to predict potential targets and their mechanisms. In this study, in order
to elucidate the protective mechanism of osteoporosis in rats, scRNA-Seq analysis was
performed on bone marrow-derived stem cells (BMSCs) isolated from rats treated with
Xian–Ling–Gu–Bao (XLGB) capsules for 3 months. Eighteen representative genes, including
HDC, CXCL1, CXCL2, MIRL1, and MGP, were identified and validated by PCR for real-
time quantitation. XLGB can be used as an antagonist of histamine decarboxylase (HDC)
to treat post-menopausal osteoporosis. In addition, XLGB can prevent estrogen-deficient
osteoporosis through ERα upregulation of CXCL1/2, elucidating the anti-osteoporosis
mechanism of the systemic regulatory effect of XLGB.

In early 2020, the COVID-19 virus swept through the world, posing a serious threat to
human health, and TCM treatment was found to alleviate the fever symptoms of COVID-19
patients [162–165]. Wu H. et al. [166] used scRNA-Seq and virtual screening techniques,
such as network pharmacology and molecular docking, to investigate the specific mecha-
nism by which the Xin Guan Yi (XG-1) compound prevented COVID-19 from invading the
lungs of organisms. Eight cell types were identified by scRNA-Seq analysis of human lung
tissues, and angiotensin-converting enzyme 2 (ACE2) receptor protein was found to be
highly expressed in alveolar type II (AT2) epithelial cells. A co-expression analysis of 853
herbal targets derived from network pharmacology screening yielded 12 common genes,
among which PLA2G1B, SFTPD, and SLCO4C were associated with human immunity, sug-
gesting that XG-1 may play a preventive role against viruses through immune regulation.

Hepatic fibrosis is a histological lesion caused by liver disease with complex patholog-
ical mechanisms and no specific drugs are available to treat the disease [167,168]. In order
to reveal the specific mechanism of liver fibrosis in rats treated with Ganxianfang (GXF),
Liu Z et al. [160] created a rat liver fibrosis model with CCl4 and treated it with GXF, and
finally constructed a liver gene map of rats by scRNA-Seq, which finally identified 2384
differential genes. These genes were significantly enriched in the ECM receptor interaction
map and GXF significantly downregulated Col1a1 expression, which demonstrated that
GXF could alleviate the disease in rats through collagen deposition. Meanwhile, scRNA-Seq
revealed that GXF could significantly inhibit the expression of macrophage-related genes,
such as CCL2, and Western blot results also confirmed that GXF could inhibit macrophage
regeneration and delay liver fibrosis.
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Impaired glucose tolerance (IGT) is one of the major causes of diabetes [169,170].
ZuoGuiWan is a classic formula made from a blend of eight herbs to treat IGT caused by
high fat and sugar. To reveal the mechanism of action of ZuoGuiWan, Liang. et al. [171]
performed scRNA-Seq on mouse embryos affected by high glucose in the 2-cycle model
and identified 115 upregulated genes and 174 downregulated genes when comparing the
model group with the drug-administered group. Enrichment analysis revealed that high
glucose affects glucose metabolism and mitochondrial function in mice, while ZuoGuiWan
can induce glucose metabolism through the upregulation of oxidative phosphorylation
and respiratory chain genes via the tricarboxylic acid cycle, thereby reducing glucose load-
induced mortality in embryonic cells. ScRNA-Seq can enable a network-based multi-target
drug design approach to discover drug targets and target–target interactions and to analyze
the mechanism of action of herbal medicines for treating diseases by comparison.

4.3. Research on Pharmacodynamic Substances of TCM

ScRNA-Seq is also used to study the pharmacodynamic of drugs for the treatment of
certain diseases. Alzheimer’s disease (AD) is a disorder characterized by age-dependent
memory loss and cognitive impairment [172]. The main pharmacological active ingredients
in Panax ginseng are ginsenosides Rg1 (GRg1) and Rb1 (GRb1), which can effectively treat
AD [173]. Zhang S. et al. [174] used scRNA-Seq to analyze the mRNA profiles of brain
mRNA in the GRg1 and GRb1-treated 7-month senescence-accelerated mouse prone 8
(SAMP8) model. GRg1 successfully identified and validated six upregulated and twelve
downregulated genes, and among the twelve downregulated genes was TRPC6, a transient
receptor potential canonical (TRPC) related gene and a molecular entity associated with
Ca2+ entry activity and involved in the AD process. GRb1 successfully identified and
validated eight upregulated genes and ten downregulated genes, and among the ten
downregulated genes, MAPK11 is one of the most important Aβ-degrading enzymes
in preventing AD pathology. Therefore, GRg1 and GRb1 may be potential therapeutic
agents to stop or prevent AD progression, which provides a theoretical basis for exploring
functional drugs with active ingredients in anti-AD herbal medicine.

A host of TCMs have been clinically proven to have anti-tumor effects [175]. As a
high-throughput method for screening natural anticancer compounds and their target
genes in TCM, scRNA-Seq provides new insights into developing alternative anti-tumor
chemotherapy for tumors. Breast cancer is one of the leading causes of death among
women in developing countries [176]. Kui L. et al. [177] screened 74 herbal ingredients for
anticancer activity by high-throughput screening and scRNA-Seq to discover its antitumor
chemical components and potential mechanisms and analyzed the differential expression
and weighted gene co-expression networks (WGCNAs) to obtain key pro-inflammatory
and antitumor genes FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6, which
are closely associated with the development of breast cancer. In addition, by comparing
the changes in gene expression in cancer-related pathways of cellular pathway lines after
treatment with herbal chemical components, three herbal medicines with potential anti-
cancer effects—Ricinus communis, Gentiana, and Excoecaria cochinchinensis Lour—and
three key anti-cancer signals—TNF, IL 17, and NF-kappa B—were finally identified. The
scRNA-Seq technology can greatly enhance the screening of active ingredients in TCM
by identifying the differentially expressed genes of medicinal substances to determine
their potent components and mechanisms of action and is an important cornerstone for
promoting the modernization of TCM research.

4.4. Research on the Toxicity of TCM

The quality uniformity and safety of Chinese medicines are still bottlenecks that
currently limit the rapid development of the TCM industry [178–180]. Currently, there is
a lack of toxicity data for many toxic herbal medicines, especially for multi-base source
TCM, and there is confusion about the variety of herbs marketed. Is the toxicological
profile consistent across different multi-base source TCM for the same medicinal use? At
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present, there are two key challenges. Firstly, the information on toxicity mechanisms is
fragmented, and there is a lack of comprehensive consideration of toxicity outcomes from
multiple cellular perspectives. Secondly, there are significant differences in component
categories and contents between species; the basis of toxic substances is unclear, and there
is a lack of “equivalent toxic component groups” that can characterize the toxicity of TCM
as a whole. In view of this, how to investigate the content of toxic components and the
mechanism of toxicity in multi-base source TCM is a critical problem in ensuring the
safety and quality control of clinical usage. The group proposed a “hazard identification
of multi-genotoxic TCM based on scRNA-Seq” by taking into account the three elements,
namely toxicity effects, toxicity mechanisms, and toxic substances, and considering the
migration and metabolism of components and interactions, with the help of scRNA-Seq
and other multidisciplinary tools (Figure 4). Firstly, the toxicity of target organ tissues due
to long-term administration was clarified by animal administration, the toxicity trends
and key toxicity indicators were identified by plotting the dose–toxicity curves, and the
consistency and characteristics of the toxicity effects of multi-base source TCM on target
organs were clarified. Subsequently, scRNA-Seq and a quantitative real-time polymerase
chain reaction (q-PCR) were used to reveal the cellular targets, key cellular subgroups, and
toxicity pathways of TCM in target organs at the molecular and cellular levels. Through
mass spectrometry analysis, the migration and metabolism rules of toxic components for
different genes were found. Surface plasmon resonance technology and virtual screening
technologies, such as network pharmacology and molecular docking, were used to screen
out “toxic substances”, analyze cell types, and use Western blotting to verify the toxicity
pathway. Finally, a variety of analytical methods were utilized to construct an “equivalent
toxic component group” capable of characterizing the toxicity of multi-base source TCM.
The method constructs a “components–targets–pathways–effects” network from three
aspects (toxic effects, toxic mechanisms, and toxic substances), providing technical support
for the identification of multi-origin toxic TCM hazards, which has been applied in the
study of the mechanisms of toxic action of TCM, such as Uncaria.
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5. Concluding Remarks and Future Perspectives

As a novel analytical method, scRNA-Seq has played a significant role in the life
sciences and medicine. The paper reviews the latest research results of scRNA-Seq in
embryonic, tissue, and organ development, as well as tumor and immune system research;
presents an outlook on its application in TCM; and proposes an scRNA-Seq-based research
strategy in the study of the toxicity of multi-base source TCM.

As scRNA-Seq technology is widely used in a number of basic research areas and
clinical trials, there are still some critical technical issues that need to be addressed. Firstly,
the single-cell capture process tends to disrupt cell integrity and activity, and there is
still potential to improve cell throughput and precision; secondly, sequencing generates
high-dimensional data with a large amount of noise, and how to reduce the impact of
noise on high-throughput data analysis is a critical issue that needs to be addressed to
improve the accuracy of scRNA-Seq. Furthermore, cell differentiation and reproduction are
dynamic processes, and current scRNA-Seq makes it difficult to distinguish the specific
details between cell types. In addition to technical reasons, the cost of scRNA-Seq analysis
remains high compared to other analytical methods, and these are the limiting factors for
the development of scRNA-Seq as a routine analytical tool. Currently, scRNA-Seq is mainly
used at the gene level to reveal the mechanism of action of specific regulatory genes. In
the areas of disease diagnosis, personalized clinical treatment, reproductive development,
and elucidation of drug mechanisms of action, more in-depth systematic studies are still
needed by combining advanced technologies at the metabolic and protein expression
levels, such as spatial transcriptomic, single-cell proteomic, spatial metabolomic, and mass
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spectrometry flow technology, to comprehensively and accurately explain life science
phenomena and drug mechanisms of action. The spatial transcriptome technology can
record the original spatial location of individual cells and in combination with scRNA-Seq
can localize individual cells with transcriptional signatures and generate high-resolution
maps of cell subpopulations, spatially elucidating the specific roles of individual cell
molecule expression and specific cell subpopulations. The single-cell proteomic technology
enables quantitative and qualitative analysis of proteins between individual cells and the
construction of protein molecular maps, which can be coupled with scRNA-Seq to further
elucidate the status and differences between different cell types. Spatial metabolomics
enables the precise identification and characterization of functional metabolites in tissues
and in combination with scRNA-Seq, which enables the high-resolution localization of
different types and states of cell subpopulations in tissues. The combination of mass
spectrometry flow technology, which enables large-scale cell counting of specific proteins,
enables not only the fine sorting of cells but also the precise analysis of cellular pathways
and cell reproduction cycles within cell subpopulations. The development of scRNA-Seq
and its linkage with other multiomics technologies are essential not only for elucidating
the growth and differentiation of individual cells and the regulatory relationships between
different genes, but also for elucidating the heterogeneity of cells in complex tissues and
thus for elucidating the pathogenesis of diseases and developing novel drugs.
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