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Abstract: Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of
prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension
associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity
(ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term
morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in
particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of
the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin
(IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of
these cytokines as therapeutic targets for the development of safe and effective treatments for early
life inflammatory diseases.

Keywords: prematurity; inflammation; bronchopulmonary dysplasia; pulmonary hypertension;
white matter injury; cerebral palsy; necrotizing enterocolitis; retinopathy of prematurity; sepsis; IL-1;
IL-1Ra; IL-33; IL-18; IL-37; IL-36; IL-36Ra; IL-38

1. Introduction

Fifteen million infants are born preterm every year [1]. Defined as birth before
37 weeks of pregnancy, preterm birth is the leading cause of neonatal morbidity and
mortality, with the lowest gestational age (GA) and smallest infants most at risk. Morbidi-
ties, which we will refer to as complications of prematurity, include bronchopulmonary
dysplasia (BPD) and pulmonary hypertension associated with BPD (BPD-PH) affecting the
lung and heart, diffuse white matter injury (WMI) of the brain, necrotizing enterocolitis
(NEC) of the gut, retinopathy of prematurity (ROP) of the eyes and sepsis. Worldwide, one
million infants under 5 years of age died from complications of prematurity in 2015 alone [2].
Associated healthcare costs for prematurity in the United States exceeded US$26 billion
during 2005 [3], which is equivalent to $40 billion today [4]. Though the origins of preterm
birth and complications thereof are heterogeneous in nature and vary between women and
infants, it is understood that pre- and post-natal inflammation (here, collectively called early
life inflammation) underpins the pathophysiology of most early life illnesses, particularly
in the setting of prematurity.

The interleukin (IL)-1 family is a group of cytokines and receptors that facilitate inter-
and intracellular communication to mediate inflammation [5]. The pro-inflammatory cy-
tokine IL-1β has been identified as having a pathogenic role in early life diseases [6,7]; the

Int. J. Mol. Sci. 2023, 24, 2795. https://doi.org/10.3390/ijms24032795 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032795
https://doi.org/10.3390/ijms24032795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6374-9372
https://orcid.org/0000-0002-2446-1739
https://orcid.org/0000-0001-7314-9234
https://orcid.org/0000-0001-9682-4618
https://orcid.org/0000-0002-7439-3834
https://doi.org/10.3390/ijms24032795
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032795?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 2795 2 of 29

IL-1 receptor antagonist (IL-1Ra) is the naturally occurring antagonist of IL-1β. Under
the generic name anakinra, recombinant IL-1Ra has been in clinical use for over 20 years,
with a well-established safety and efficacy profile for the treatment of inflammatory dis-
ease [8–13], including for infants with neonatal-onset multisystem inflammatory disease
(NOMID) [14,15]. Mounting preclinical evidence suggests that IL-1Ra is protective in the
complications of prematurity, including BPD, BPD-PH [16–19] and WMI [20–23]. Research
into the inflammatory mediators responsible for NEC, ROP and neonatal sepsis and the role
of newer IL-1 family members in all the complications of prematurity is preliminary but
opens the field for further studies. This review describes the role that IL-1 family members
play in perinatal inflammation and its clinical implications, with a focus on identifying key
mediators to pioneer the development of new IL-1 based therapeutic strategies.

2. The IL-1 Family

As of today, eleven IL-1 family ligands have been described, consisting of seven pro-
inflammatory cytokines (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β and IL-36γ), two receptor
antagonists (IL-1Ra and IL-36Ra) and two anti-inflammatory cytokines (IL-37 and IL-38).
These cytokines have been organized into three sub-families based on their structural
similarity with other members [5] (Table 1 and Figure 1). The family of IL-1 receptors
(IL-1R) includes ten structurally related receptor molecules (called IL-1R1-10 according
to the latest nomenclature [5,24]) and the distantly related soluble IL-18 binding protein
(BP) that has been identified as an inhibitor of IL-18 [24]. IL-1Rs contain the cytoplasmic
Toll-IL-1-receptor (TIR) domain, a structural element they have in common with Toll-like
receptors (TLRs), which participate in host defense by recognizing potentially harmful
molecular patterns. There are substantial similarities between IL-1 and TLR family signaling
due to this shared TLR domain [25]. The notable exceptions are IL-1R2, which lacks an
intracellular TIR domain [26], and IL-1R8, which comprises a TIR domain with two amino
acid substitutions [27]. Extracellularly, IL-1Rs also possess three immunoglobulin (Ig)-like
domains in the extracellular receptor segment, except for IL-1R8 and IL-18BP, which only
contain one Ig-like domain [28]. The mechanisms of action of the IL-1 family cytokines and
receptors are described in more detail below.

Table 1. IL-1 family ligands and receptors.

Sub-
Family

Cytokine
Ligand Name

Primary
Receptor Co-Receptor

Predominant
Function
Pro-/Anti-

Inflammation

Receptor Antagonists
and Decoy Receptors

IL-1

IL-1α
(IL-1F1)
P01583

IL-1β
(IL-1F2)
P01584

IL-1R1
(CD121a)
P14778

IL-1R3
(IL-1RAcP)
Q9NPH3

Pro
IL-1Ra
(IL-1F3)
P18510

sIL-1R1

IL-1R2
sIL-1R2
(CD121b)
P14778

IL-33
(IL-1F11)
O95760

IL-1R4
(T1/ST2,
IL-1RL1,
IL-33R)
Q01638

IL-1R3
(IL-1RAcP)
Q9NPH3

Pro sIL-1R4

IL-18

IL-18
(IL-1F4, IGIF)

Q14116

IL-1R5
(IL-18Rα,
IL-1Rrp,
CD218a)
Q13478

IL-1R7
(IL-18Rβ,
IL-18RacP,
CD218b)
O95256

Pro IL-18BP
O95998

IL-37
(IL-1F7)

Q9NZH6

IL-1R5
(IL-18Rα,
IL-1Rrp,
CD218a)
Q13478

IL-1R8
(TIR8,

SIGIRR)
A0A291NLA3

Anti None reported
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Table 1. Cont.

Sub-
Family

Cytokine
Ligand Name

Primary
Receptor Co-Receptor

Predominant
Function
Pro-/Anti-

Inflammation

Receptor Antagonists
and Decoy Receptors

IL-36

IL-36α
(IL-1F6)
Q9UHA7

IL-36β
(IL-1F8)

Q9NZH7

IL-36γ
(IL-1F9)
Q9NZH8

IL-1R6
(IL-36R,

IL-1Rrp2,
IL-1RL2)
Q9HB29

IL-1R3
(IL-1RAcP)
Q9NPH3

Pro
IL-36Ra
(IL-1F5)

Q9UBH0

IL-38
(IL-1F10)

Q8WWZ1

IL-1R6
(IL-36R,

IL-1Rrp2,
IL-1RL2)
Q9HB29
* Early

evidence only

Not known Anti None reported

NA
* Early evidence only regarding

ligand candidates

IL-1R9
(IL1RAPL-2,
TIGIRR-1)
Q9NP60 None

reported

* Early
evidence only

regarding
possible
functions

None reported
IL-1R10

(IL1RAPL-1,
TIGIRR-2)
Q9NZN1

Protein name; (synonyms); UniProt ID. Subfamily assignment by structural similarity. NA, not applicable.
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Figure 1. IL-1 family ligands and receptors. The IL-1 family of cytokines comprises ligands (spheres) 

and receptor antagonists (squares). This cytokine family utilizes ten receptors and one structurally 

related binding protein known as IL-18BP. The receptors may exert pro-inflammatory (red arrows) 

Figure 1. IL-1 family ligands and receptors. The IL-1 family of cytokines comprises ligands (spheres)
and receptor antagonists (squares). This cytokine family utilizes ten receptors and one structurally
related binding protein known as IL-18BP. The receptors may exert pro-inflammatory (red arrows) or
anti-inflammatory (green arrows) signals. Most receptors contain three immunoglobulin (Ig) domains
and a Toll-IL-1-receptor (TIR) domain, excluding IL-1R8, which only has one Ig domain. IL-1R2
lacks an intracellular TIR domain, and IL-1R8 has a TIR domain with two amino acid substitutions.
Receptors act as scavengers in soluble form (#); receptors for which ligand binding is preliminary (*);
orphan receptors with no well-established ligands (?). Created with biorender.com.
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2.1. IL-1 Subfamily

The IL-1 subfamily consists of IL-1α, IL-1β, IL-1Ra and IL-33 [29].

2.1.1. IL-1 and IL-1Ra

IL-1 was first described in 1974, originally called leukocytic pyrogen [30] before be-
ing renamed IL-1α and IL-1β 11 years later [31]. IL-1α mostly exerts its effects local
to the producing cell and has been identified in many cell types, including endothelial
cells [32,33]. In contrast, IL-1β is secreted predominantly by monocytes, macrophages
and dendritic cells and then circulated systemically [34]. Both IL-1α and mature IL-1β are
potent pro-inflammatory molecules that activate target cells via the interaction between
two membrane-bound receptors, IL-1R1 and IL-1R3 [35] (Table 1 and Figure 1). Activa-
tion of the IL-1R1:IL-1R3 receptor heterodimer triggers complex signaling transduction
pathways. One such pathway includes the activation of MyD88 (myeloid differentiation pri-
mary response 88), the canonical adaptor for IL-1R1 signaling (and that of most other IL-1
receptors). MyD88 activates the IRAK (IL-1R-associated kinase) family. IRAK activation
leads to a variety of changes in cellular functions, which include the activation of pathways
such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) [36–38],
MAPKs (mitogen activated protein kinases) [39–41] and AP1 (activator protein 1) [42].
Activation of these pathways induces the release of chemokines such as IL-8 [43] and other
cytokines such as IL-6 [44]. The IL-1 signaling pathway is tightly regulated at multiple
levels, including extracellularly by the decoy receptor IL-1R2, which lacks a cytoplasmic
domain and therefore binds IL-1 (with a greater affinity for IL-1β than IL-1α) without
activating a cellular response [5,45,46], and the competitive antagonist IL-1Ra, which binds
IL-1R1 with high affinity, blocking the binding of IL-1 [47]. When bound by IL-1Ra, IL-1R1
does not bind IL-1R3, and therefore does not trigger the activation of downstream mes-
sengers. The drug anakinra is an analogue of endogenous IL-1Ra, with the addition of
a single methionine residue at the N-terminus, which exerts the same anti-inflammatory
action as IL-1Ra. Other strategies to block IL-1 [48] include the soluble IL-1 receptor, neu-
tralizing monoclonal antibodies against IL-1β and blocking antibodies against IL-1R1. The
preclinical peptide rytvela, which has been researched in the retinopathy of prematurity,
also blocks the activation IL-1R1 but does so via an allosteric binding site [49].

The bioactivity of IL-1β has been found to be tightly controlled and to require pro-
tease processing (Figure 2). First, TLRs such as TLR4 are activated by DAMPs or PAMPs
(danger- or pathogen-associated molecular patterns), which activate the NF-κB and MAPK
pathways, amongst others, to initiate transcription and the release of pro-IL-1β into the
cytoplasm [50,51]. Upon encountering a secondary signal, such as another DAMP or PAMP,
the formation of the inflammasome is triggered to activate caspase-1 and cleave pro-IL-1β
into its active secreted form (IL-1β) [50]. Notably, monocytes differ from macrophages in
that they do not need a secondary signal to activate the inflammasome; TLR stimulation
alone is enough [52].

2.1.2. IL-33

IL-33 is a pleiotropic cytokine with contrasting properties in health and disease [53,54].
When secreted, IL-33 binds the membrane-bound receptor IL-1R4 and recruits IL-1R3 to
activate NF-κB and MAPK and other pathways to exert its effects, notably including the
differentiation of helper T cells along the type 2 pathway [53,55,56]. Under steady-state
conditions, IL-33 has been shown to be produced and stored in the nucleus of barrier
cells, including epithelial cells of the gut and lung. Upon cell damage, nuclear IL-33
is passively released into the extracellular space, functioning as an alarmin. Moreover,
IL-33 has also been shown to be produced and released by leukocytes, including murine
macrophages [57–59] and murine dendritic cells [59,60], after stimulation with endotoxin
and pro-inflammatory cytokines, including IL-33 itself. Under healthy conditions, intracel-
lular IL-33 participates in maintaining barrier function [54]. IL-1R4 also exists in a soluble
form (sIL-1R4), acting as a decoy receptor to reduce IL-33 signaling [61].
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Figure 2. Monocyte-derived IL-1β and IL-1Ra signaling pathway in macrophages.
(1) DAMPS/PAMPS bind TLRs on monocytes and (2) activate downstream TFs, which induce the
transcription of pro-IL-1β and release into the cell cytoplasm. (3) In monocytes, TLR signaling also
induces the formation of inflammasomes, which activate caspase-1, which in turn cleaves pro-IL-1β,
thus converting it into the mature and biologically active form. (4) Active IL-1β is released to
(5) activate the IL-1R1:IL-1R3 receptor complex, thus exerting multiple, mostly pro-inflammatory
effects, including inducing the transcription of chemokines to promote immune cell recruitment and
cytokines to promote inflammation. (6) Concurrently, pro-inflammatory mediators, including IL-1β it-
self, (7) increase the production of IL-1Ra. (8) IL-1Ra is released and competitively inhibits the binding
of IL-1 to IL-1R1. The drug anakinra acts in an identical fashion. IL—interleukin; Ra—receptor antag-
onist; DAMP—damage-associated molecular pattern; PAMP—pattern-associated molecular pattern;
TLR—Toll-like receptor; R1—receptor 1; TF—transcription factor. Created with biorender.com.

2.2. IL-18 Subfamily

The IL-18 subfamily comprises the pro-inflammatory cytokine IL-18 and the anti-
inflammatory cytokine IL-37.

2.2.1. IL-18

First described in 1995 [62], IL-18 binds IL-1R5 and recruits IL-1R7 [63,64], leading
to downstream activation of pro-inflammatory transcription factors, including NF-κB.
Macrophages and dendritic cells have been reported to be important sources of active
IL-18 [65]. IL-18 has a range of effects that are important for host defense against pathogens,
which include increased cell adhesion molecules, nitric oxide synthesis, chemokine pro-
duction [5,66] and interaction with IL-12 to induce interferon (IFN)-γ and type 1 polariza-
tion [67–69]. In a negative feedback loop, IFN-γ induces the release of the IL-18-binding
protein (IL-18BP) [70], which binds IL-18 with high affinity and thereby inhibits its func-
tions [71].
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2.2.2. IL-37

Interleukin 37 (IL-37) is a powerful broadly acting inhibitor of inflammation [72] that is
largely uninvestigated in the setting of prematurity or complications thereof. Discovered in
the early 2000s via computational cloning [73], IL-37 binds IL-1R5, but unlike IL-18, it does
not recruit IL-1R7 [74]. Instead, IL-37 exerts potent anti-inflammatory signals via its receptor
complex IL-1R5:IL-1R8 [75] or by shuttling to the nucleus [72]. Though the multi-faceted
anti-inflammatory signal transduction program elicited by IL-37 is complex, the tripartite
complex IL-37:IL-1R8:IL-1R5 assembles rapidly on the surface of PBMCs (peripheral blood
mononuclear cells), for example, upon stimulation with LPS (lipopolysaccharide, a bacterial
endotoxin [75]). In most PBMC subsets, IL-37 abundance is low at baseline. In contrast,
monocytes and myeloid dendritic cells (mDCs) [76] store and secrete IL-37 in response to
inflammatory stimuli, thus acting in an alarmin-like fashion [76]. Mice transgenic for IL-37
(IL-37tg) are protected from endotoxemia, whereas in IL-37tg mice deficient in IL-1R8, this
protection is substantially weaker [75]. Moreover, IL-37 impairs the activation of IL-1β and
IL-18 by inhibiting inflammasome function [77]. A small subset of mDCs constitutively
express and secrete IL-37 and potentially contribute to immune homeostasis, providing an
anti-inflammatory milieu at a steady state [76].

2.3. IL-36 Subfamily

The IL-36 subfamily comprises the pro-inflammatory cytokines (IL-36α, IL-36β, IL-36γ)
and the anti-inflammatory receptor antagonist (IL-36Ra) and cytokine (IL-38).

2.3.1. IL-36 and IL-36Ra

IL-36 agonists signal through a common receptor complex IL-1R6:IL-1R3 [78,79]. Simi-
lar to the mechanism of action of IL-1Ra, IL-36Ra competitively antagonizes the binding
of IL-36 agonists to IL-1R6 [80]. Both the agonists and the receptor antagonist require
processing to exert their activity; native IL-36α, β and γ are 100–1000 times less active than
their processed counterparts, and native IL-36Ra exerts no antagonist activity [80]. Upon
the receptor heterodimer IL-1R6:IL-1R3 activation by IL-36 agonists, a multitude of inflam-
matory pathways are activated, including those mediated by NF-κB and MAPK [78]. IL-36
agonists are capable of inducing or amplifying Th1 and Th3 immune responses in T cells
and myeloid cells. Among T cells, IL-36R is predominantly expressed on naive T CD4(+)
T cells; IL-36 cytokines promote T cell proliferation and IL-2 secretion [81]. IL-36β acts in
synergy with IL-12 to promote Th1 polarization [81]. Unilateral ureteral obstruction (UUO)
in mice deficient for IL-36R exhibit markedly reduced NLRP3 inflammasome activation
and macrophage/T cell infiltration in the kidney as compared to wild-type mice subjected
to UUO [82]. In vitro, recombinant IL-36α facilitated the activation of the NLRP3 inflam-
masome in epithelial cells, macrophages, and dendritic cells, and it also induced T cell
proliferation and Th17 differentiation [82]. IL-36 dysregulation in skin leads to keratinocyte
and immune cell induction of the Th17/Th23 signaling axis, and it induces a psoriasis-like
skin disorder [83–85]. However, evidence on the physiological and pathological functions
of IL-36 in other organs in which IL36 is expressed, such as the lungs, the gut, and the brain,
remain poorly studied.

2.3.2. IL-38

IL-38 is a poorly characterized member of the IL-36 subfamily. Discovered 20 years
ago [86,87], IL-38 has shown an affinity for IL-1R1 [87], IL-1R6 [88] and IL-1R10 [89], but it
is still not clear which receptor(s) is/are essential for IL-38 signaling. IL-38 also has a strong
homogeneity to the IL-1 and IL-36 receptor antagonist (39% and 43% homology in humans,
respectively) [87]. IL-38 expression has been identified in many organ systems, including
the skin, placenta, heart and brain [86,90]; the IL-38 protein is induced by monocytes and
macrophages after stimulation with LPS in vitro [91]. IL-38 has been shown to inhibit IL-17
in multiple disease models of skin inflammation [92], liver injury [93] and arthritis [94].
IL-1R10 is required for IL-38 to suppress γδT cell IL-17 production [92]. Interestingly, the
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ablation of IL-38 in a mouse model of autoimmune encephalomyelitis, which is traditionally
IL-17-driven, improved clinical outcomes and reduced inflammation in affected mice [95].
The role of IL-38 in perinatal inflammation has not been studied.

3. Preterm Birth and Sources of Fetal Inflammation

The risk of preterm birth increases with the adverse inflammatory status of the mother
and infant during pregnancy [96,97]. Besides maternal ethnicity and age [98], such inflam-
mation underpins most other known risk factors for preterm birth to a considerable degree,
which include stress, drugs, smoking, alcohol, maternal autoimmune conditions (such
as systemic lupus erythematosus [99], rheumatoid arthritis [100], inflammatory bowel
disease [101], type 1 and 2 diabetes [102]), conditions that only manifest during preg-
nancy such as preeclampsia [103] and chorioamnionitis [104–106] and premature rupture
of membranes (PROM) [107].

One of the most common causes of preterm birth, chorioamnionitis, results from
inflammation of the chorioamniotic membranes and can precipitate an inflammatory re-
action in the fetus [108]. Increased production of IL-1β in both the mother and fetus
during chorioamnionitis has been reported by multiple studies, including in amniotic
fluid [109,110], placenta and chorioamniotic membranes [109,111,112], the umbilical cord
in the case of funisitis [113,114] and in maternal serum [115–117]. Chorioamnionitis often
occurs following PROM [118,119], and increased production of IL-1β in chorioamnionitis
is a major contributor to tight junction destruction in placental tissues [120,121]. Prema-
ture infants born to mothers with chorioamnionitis presented with elevated pulmonary
IL-1β in tracheal aspirates when compared to infants that had spontaneous preterm birth
without chorioamnionitis [122,123]. Systematic reviews and meta-analyses highlight that
chorioamnionitis may be associated with complications in the offspring underpinned by
inflammation, including sepsis [124], BPD [125], NEC [126], ROP [127] and neurological
injury [128], including cerebral palsy [129].

Another complication of this inflammation, namely, fetal inflammatory response syn-
drome (FIRS), occurs when a fetus mounts its own inflammatory response when exposed
to intrauterine infection. FIRS is characterized by elevated umbilical cord blood mediators
of inflammation, including IL-6 and IL-1β, in the setting of funisitis and chorionic vasculitis
(inflammation of the umbilical cord and vessels, respectively) [130–132]. A systematic re-
view and meta-analysis of FIRS patients and adverse neonatal outcomes summarized that
the FIRS is associated with a higher incidence of sepsis, BPD, intraventricular hemorrhage
(IVH), respiratory distress syndrome (RDS) and death [133].

4. The Role of the IL-1 Family in Early-Life Inflammation and Injury

Though multifactorial in etiology, most complications of prematurity (Figure 3) share a
common underlying pathophysiology, namely, inflammation. Of importance to note is that
infants who incur one of these complications are predisposed to others. On these grounds,
a better understanding of the underlying signaling pathways leading to inflammation
could translate into novel targets for the prevention and treatment of the complications
of prematurity.

4.1. IL-1 and the Preterm Cardiopulmonary System

Bronchopulmonary dysplasia (BPD) and pulmonary hypertension associated with
BPD (BPD-PH) are cardiopulmonary morbidities faced by premature infants. These condi-
tions are underpinned by a surge in pulmonary inflammation [134]. In Australia and New
Zealand, 34% of infants born prior to 32 weeks’ gestation develop BPD [135]. Of these BPD
infants, about 17% develop the subsequent condition BPD-PH, which carries a mortality
rate as high as 14–38% [136]. Survivors present with altered lung volumes, reduced lung
compliance and increased airway resistance at school age [137] and also a greater risk of
elevated blood pressure [138], asthma [139] and neurodevelopmental impairment [140,141].
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Infants born very prematurely (i.e., at less than 32 weeks’ gestation) have lungs that
are in the canalicular and/or saccular phase of development [142] and have a thicker
diffusion barrier, a reduced surface area for gas exchange and a deficiency in surfactant. As
a result, lower gestational-aged infants are likely to develop respiratory distress and require
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respiratory support, such as mechanical ventilation and an increased fraction of inspired
oxygen (FiO2), to overcome the reduced diffusing capacity of the lung [143]. Mechanical
ventilation can damage the lung via multiple mechanisms due to increased transalveolar
pressure, increased alveolar volume, and the repetitive collapse and re-expansion of alveoli
required for air breathing [144]. This causes stress on the immature bronchial, alveolar
and capillary epithelium, resulting in a local inflammatory response [134]. In addition,
hyperoxia increases the production of reactive oxygen species (ROS). ROS can then react and
cause cellular damage, which has functional repercussions, including the overactivation
of immune cells, apoptosis, necrosis and subsequent cellular and tissue damage mediated
by inflammation [145,146]. Such inflammation results in increased pro-inflammatory
cytokines such as TNF (tumor necrosis factor), IL-6 and IL-1β [147,148] in the lungs of
preterm infants, resulting in the arrest of alveolar and microvascular development. Fewer
and larger alveoli, together with an accompanying reduction in capillary density and
alveolar septal thickening, reduce the diffusing capacity of the lung [149,150]. Diminished
angiogenesis decreases the cross-sectional area of the pulmonary vasculature and increases
vascular resistance and ultimately pulmonary blood pressure [138,151–153].

Despite recognition that inflammation is the common pathogenetic pathway in the de-
velopment of early life cardiopulmonary disease, there remains a lack of safe and efficacious
treatments. Systemic corticosteroids are the only anti-inflammatory drugs in clinical use,
but they have limited efficacy at reducing BPD/BPD-PH and are associated with serious
adverse events [154], including cerebral palsy [155]. Concurrently, glucocorticoids inhibit
alveolar growth, thereby impeding the process needed to recover from BPD [134,156,157].

4.1.1. IL-1 Mediates Preterm Cardiopulmonary Pathophysiology

Extensive preclinical work has established IL-1 as a key driver of early-life cardiopul-
monary disease. A murine “double hit” model pivotal for understanding this relationship
was developed in 2013 by subjecting pregnant mice to an intraperitoneal (i.p.) injection
of 150 µg/kg lipopolysaccharide (LPS) at day 14 of gestation (hit 1) and subsequently
placing the pups in hyperoxia (65% O2) to develop BPD/BPD-PH (hit 2). Pups reared in
room air (21% O2) acted as control animals [16,158]. The manifestation of murine BPD
and BPD-PH in this model is precipitated by a rise in pulmonary inflammation. In the
lungs of 3-day old pups, antenatal inflammation alone elevated IL-1α 2.5-fold, but when
combined with hyperoxia, IL-1β was increased 20-fold [16]. The placement of pups in
hyperoxia (65% O2) for 28 days (end of alveolar stage of lung development in mice) resulted
in a change in the pulmonary architecture, with emphysematous changes to lung mor-
phology, including reduced alveolar number (24–44%), increased alveolar size (40–230%)
and reduced surface:volume ratio (18–35%), all of which were exacerbated with increased
oxygen exposure [16,17,159]. In addition, the double-hit mice exhibited increased airway
smooth muscle proliferation and airway hypercontraction to the muscarinic acetylcholine
receptor agonist, methacholine (MCh) [17]. Furthermore, the number of small blood vessels
(4–5 µm diameter) was reduced by 84% as measured by micro-CT, and pulmonary vascular
resistance was increased as measured by echocardiography [18,19]. Daily administration of
anakinra (10 mg/kg) to neonatal mice abolished the increases in IL-1α and IL-1β at day
3 of the model and prevented the structural damage to the alveoli seen at 28 days [16].
Anakinra also afforded protection against increased airway smooth muscle, reduced the
number of pulmonary small vessels and increased pulmonary vascular resistance in vivo,
but did not counteract the airway hyperreactivity to MCh [17–19].

The IL-1-driven pathology in early life has been confirmed in other in vivo models of
antenatal inflammation and BPD, including in rodents, sheep and baboons. Intra-amniotic
injection of 100 µg IL-1α to sheep 1, 3 or 7 days prior to delivery at 124 days’ gestation
(equivalent to 34 weeks of human GA) was accompanied by increased immune cell recruit-
ment in the bronchoalveolar lavage fluid from fetal lungs (neutrophils, monocytes and
lymphocytes) [160]. Neonatal wild-type (WT) mouse pups reared in 85% O2 from postnatal
days (P)3-14 incurred a 40-fold increase in whole lung Il1b mRNA on P10 and a 10-fold in-
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crease in bronchoalveolar lavage (BAL) IL-1β protein on P15. Pups deficient in NLRP-3, one
of the inflammasomes responsible for the cleavage of IL-1β into its active form, reported a
similar increase in Il1b mRNA, but not IL-1β protein. Notably, WT pups had a simplified
distal lung architecture and larger saccular structures, and NLRP-3 knockout (KO) pups
had a normal lung architecture and well-formed alveoli, highlighting the importance of
the NLRP-3 inflammasome and IL-1-mediated inflammation in the pathophysiology of
BPD [161]. A primate study investigated the effect of ventilation and oxygen exposure
on lung inflammation in preterm baboons. Preterm baboons were delivered via cesarean
section at different gestations, and tracheal IL-1β was measured. A gradual increase in
the IL-1β:IL-1Ra ratio from 125 days to 185 days’ gestation (equivalent to a human infant
at 28 weeks’ gestation to term) was observed, which was in keeping with the increasing
inflammatory state [161]. Premature baboons, delivered at 125 days’ gestation, treated with
exogenous surfactant and ventilated for 14 days presented with IL1B mRNA expression up
to 60-fold higher, IL-1β protein 3-fold higher and interrupted alveolarization, as compared
to the non-ventilated fetal baboons harvested at 125 and 140 days’ gestation. Accordingly,
the IL-1β:IL1Ra ratio was increased in the ventilated baboons, further highlighting the
immune dysregulation in BPD [162,163]. These examples highlight the mounting evidence
in pre-clinical models of the pathological role of IL-1 in development of BPD.

Though there is ample preclinical evidence of the role of the IL-1 subfamily in damage
to the respiratory system in early life, the role of newer IL-1 family members is less clear
cut. IL-33 production has been observed to be initiated from the pressures exerted by the
first breath of neonatal mice, inducing a type-2 immune environment [164]. A high IL-33
environment during the alveolar phase of lung development has been shown to lead to
a Th2 response with infiltration of eosinophils, mast cells and basophils, resulting in an
increased incidence of airway hyperreactivity [165]. This suggests that when the immature
lungs of premature infants are exposed to air breathing, with or without mechanical
ventilation, resultant IL-33 production could lead to the development of asthma. In a
murine BPD model, IL-33 has also been observed to be increased on P3 compared with non-
BPD mice, believed to be induced by hyperoxia [19]. A transgenic mouse model induced
to overexpress IL-33 in the lung epithelial cells of neonatal mice resulted in a mortality of
61% by P14, with affected mice exhibiting a simplified alveolar structure and increased size
consistent with BPD pathology [166]. Interestingly, overexpression of IL-33 in adult mice, or
neonatal IL-1R4-KO mice, did not have increased mortality or emphysema [166]. Another
murine model induced BPD by the intra-amniotic injection of LPS (1 µg) to pregnant
mice on day 16.5 of gestation, and pups administered with 0.2 µg recombinant mouse
IL-33 i.p. on P7 exhibited aggravated BPD changes. Conversely, in pups administered
with 0.5 µg anti-IL-1R4 antibody i.p. every alternate day from P7, lung architecture was
preserved [167]. Moreover, blocking IL-33 and/or its receptor improved disease outcome in
other murine models of BPD [168,169]. Collectively, these studies highlight the pathogenic
role of IL-33 in the premature lung in which the timing of IL-33 exposure is important,
and they demonstrate that blocking IL-33 signaling might prove useful for the prevention
of BPD.

Another pro-inflammatory IL-1 cytokine, IL-18, was elevated in the lungs of neonatal
rodents subjected to hyperoxia or environmental pollutants [170,171]. This IL-18-mediated
pathology warrants further investigation. Recently, the anti-inflammatory IL-37 has been
suggested to be a potential therapeutic agent in inflammatory disease [172]. Though largely
undescribed in early life, IL-37 has been shown to be beneficial in an animal model of
neonatal respiratory distress syndrome (RDS) [173]; pre-treatment with 1 µg of recombinant
human IL-37 ameliorated pathological changes [173] induced at P6 old mice injected i.p.
with 10 mg/kg LPS. Pups presented with elevated pulmonary inflammation (IL-1β, TNF,
IL-8 and CCL2), apoptosis and lung pathology (alveolar congestion, hemorrhage, edema
and inflammatory cell infiltration) within 24 h of LPS plus vehicle injection, whereas
IL-37-treated pups were protected [173]. Though there is strong evidence for the role of the
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IL-1 subfamily members in the development of BPD, more research is needed on the role of
IL-36 and IL-18 subfamily members.

4.1.2. Clinical Association between IL-1 and Preterm Cardiopulmonary Morbidity

In the literature, IL-1β is the most prevalent cytokine in predicting infants at risk
of cardiopulmonary morbidity. In 25 infants with respiratory distress syndrome, the
12 infants whose initial bronchoalveolar lavage (BAL) sample (within first hour of life) was
positive for IL-1β were associated with chorioamnionitis (clinical and histologic) and were
smaller in size, more immature and required a longer time on mechanical ventilation and
supplemental oxygen therapy than the 13 infants whose initial BAL sample was negative
for IL-1β [122]. Both serum and BAL IL-1β levels were significantly higher in infants with
BPD compared to non-BPD infants [174]. Serum from premature infants taken on day 14 of
life and analyzed for inflammation revealed that infants ventilated for two weeks had an
elevated level of IL-1β compared to the infants ventilated for less than 7 days [175]. Serial
BAL samples taken from 16 infants with BPD revealed an elevated IL-1Ra on the first day
of life compared to 19 infants without BPD. This early abundance of IL-1Ra, though initially
protective, proves suboptimal due to the stronger abundance of IL-1β as seen by day 5
and 7 [176]. Intubated premature infants had increased mRNA expression of IL1A, IL1B
and IL1RN (gene for IL-1Ra) by day 7 of life in tracheal aspirates of infants that went on to
develop BPD [177]. Mesenchymal stromal cells taken from tracheal aspirates of premature
infants with severe BPD exhibited an increase in NF-κBp65 (a key transcription factor of
the IL-1-signaling pathway). In vitro stimulation of mesenchymal stem cells with IL-1β
confirmed an increase in NF-κBp65 [178].

Another emerging biomarker to diagnose, monitor and guide the treatment of early
life pulmonary disease is IL-33. Serum IL-33 was elevated at the time of BPD diagnosis at
36 weeks corrected GA in infants born prematurely [179]. Moreover, there was elevated
serum IL-33 on days 1, 14 and 28 of life in infants that developed BPD compared to those
that did not [180]. IL-33 consistently decreased after hydrocortisone treatment in infants
with BPD, and therefore, serum IL-33 can be used to monitor an infant’s response to
treatment [179,180]. Another study found conflicting results, that IL-33 in cord blood
and peripheral blood from preterm infants on day 14 post birth was not associated with
BPD. Instead, this study detected that soluble IL-1R4 was closely associated with BPD
severity [181].

The pro-inflammatory IL-18 was also found to be elevated postnatally on day 14 in
the serum of infants that developed BPD [182]. However, polymorphisms in the gene
coding for IL-18 did not translate to increased incidence of BPD [183], but single nucleotide
polymorphisms (SNPs) of the IL-18 receptors (IL-1R5 and IL-1R7) were associated with
BPD in an African American (AA) (but not Caucasian) population [184]. In summary, there
is a strong link between aberrantly elevated IL-1β and its pathogenic role in BPD, though
the evidence for other IL-1 family members is sparse.

4.2. IL-1 and the Preterm Brain

Extremely premature infants are at high risk of long-term neurodevelopmental compli-
cations, including cerebral palsy, intellectual disability, microcephaly and autism spectrum
disorders [185], which all are inversely correlated with GA and birth weight. Injury to
the developing white matter is one of the most common pathological substrates seen in
preterm infants. White matter injury (WMI) can be diffuse or focal and result in cystic
(necrotic) or non-cystic lesions that lead to reduced axonal myelination within the affected
areas [186]. Premature infants are also at increased risk for intracranial/intraventricular
hemorrhage (ICH/IVH), which in itself invokes an inflammatory response in surrounding
tissue [187]. Magnetic resonance imaging (MRI) performed at term-corrected age in infants
born between 23–30 weeks’ gestation demonstrated diffuse WMI in up to 80% of the cohort
and subsequent neurodevelopmental impairment in up to 35% [141,188]. The cause of
WMI is multifactorial, with risk factors including a multitude of pre- and postnatal factors
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(e.g., chorioamnionitis, hypoxia/ischemia (HI), ICH/IVH and postnatal sepsis), which
trigger systemic and central nervous system inflammation [189–195].

The term “white matter” refers to the paler tissue of the brain and spinal cord, com-
prising primarily nerve axons and myelin. Myelin is a multi-layered glial membrane that
surrounds axons to provide nutrition and to insulate axons, thus increasing the conduction
speed of action potentials [196]. The production of myelin occurs predominantly after
32 weeks’ gestation by mature oligodendrocytes [186,196]. Between 23 and 30 weeks, the
oligodendrocyte precursors, pre-myelinating oligodendrocytes, make up the majority of
oligodendrocyte lineage. These immature oligodendrocytes are particularly vulnerable to
inflammation; exposure to excessive inflammation causes WMI via either apoptosis of, or
impaired maturation of, immature oligodendrocytes, which results in reduced numbers of
mature oligodendrocytes and reduced myelination [186,194,196].

There are currently no anti-inflammatory therapies for the prevention of WMI in
preterm infants. In fact, the only commonly used treatment targeting inflammation, namely,
glucocorticoids, can exacerbate brain injury and increase the risk of cerebral palsy [197].
The potential for glucocorticoids to cause deleterious effects in the preterm brain relates
to the stage of neurodevelopment at the time of exposure, and the dose and duration of
exposure relative to the insult, as previously reviewed [198,199], though the underlying
mechanism remains unknown. Magnesium sulfate (MgSO4) for preterm neuroprotection,
currently recommended for maternal administration when preterm labor is expected before
30 weeks’ gestation, may in part act through inhibition of the NF-κB inflammatory path-
way [7,141,194]; however, recent follow-up studies to school age suggest it does not signifi-
cantly improve longer-term neurodevelopmental outcomes compared to placebo [200,201].
Furthermore, preclinical evidence has shown that MgSO4 may be associated with the loss of
oligodendrocytes, likely due to the NMDA-induced inhibition of oligodendrocyte develop-
ment [202]. MgSO4 has also been associated with a lower risk of type 2 immune polarization
in the infant, reducing the risk for BPD, though the significance of this to neurodevelop-
ment is unknown [19]. Collectively, these data suggest that current therapies aimed at
improving neurodevelopmental outcomes of premature infants are variably effective, and
the development of targeted anti-inflammatory treatments is urgently needed.

4.2.1. IL-1 Family-Mediated Pathophysiology of Preterm Brain Injury

IL-1β is a key mediator in the pathogenesis of neonatal brain injury. As in the lung,
early life animal models have been essential in investigating the role of inflammation
in early life brain injury. The effects of HI injury following birth asphyxia have been
widely investigated in both term and preterm animal models (mouse, baboon, sheep),
with a consensus that excessive IL-1β exacerbates WMI in the fetus [6,194,203]. Neonatal
rats administered with 10 ng of recombinant IL-1β via intracerebral injection into the left
hemisphere on day 5 after birth exhibited increased astrogliosis and apoptotic cell death and
developed oligodendrocyte loss 24 h after injection [204]. Newborn mice administered with
10 µg/kg recombinant mouse IL-1β twice daily via i.p. injection over 5 days presented with
impaired oligodendrocyte maturation and long-lasting myelination defects at P30 [205].
Therefore, localized and systemic injections of IL-1β are sufficient to induce WMI in the
neonatal rodent brain.

In a sheep model of LPS-induced fetal inflammation, repeated i.v. injections of IL-1Ra
reduced circulating cytokines (IL-1β, TNF, IL-6 and IL-10) and improved the recovery of
fetal movement and electroencephalogram activity compared to LPS plus vehicle [20]. In
line with the improvements in neurophysiology, histopathological analyses revealed less
microgliosis, reduced accumulation of IL-1β and improved pre-oligodendrocyte survival
in the large white matter tracts of the LPS+IL-1Ra group when compared to LPS plus
vehicle, demonstrating that IL-1Ra protected against inflammation-induced WMI [20].
Similarly, neonatal rodent studies have shown that IL-1Ra-induced reductions in placental
and CNS inflammation and improvements in oligodendrocyte survival, myelination and
neurobehavioral outcomes after exposure to inflammatory and or hypoxic insults [21–23].
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Though an overabundance of IL-1 adversely affects neurodevelopment, so too does too
little, with animal studies using knockout or transgenic models to obliterate IL-1 signaling
showing adverse effects to hippocampal volume, memory and behavior [159,206,207].
These studies highlight the importance of the balance of the IL-1:IL-1Ra ratio for normal
neurodevelopment [159].

Neonatal rodent studies suggest a neuroprotective role for IL-33 in some experimental
settings. For example, IL-33 promoted the release of neurotrophic factors from astrocytes
essential for neuronal survival against oxygen-glucose deprivation [208]. Neonatal mice
administered with recombinant mouse IL-33 for 3 days after HI injury on P7 incurred
less brain damage as compared to mice injected with saline [208]. Conversely, IL-1R4
(IL-33 receptor) deficiency exacerbated brain infarction and neurological injury after HI
insult [208]. Recurrent neonatal seizures (RNS) can be modeled in rats via the inhalation of
volatile flurothyl from P7 for 7 days. RNS mice develop a phenotype of neurobehavioral
deficits, weight loss and apoptosis. Prophylactic i.p. administration of recombinant mouse
IL-33 (300 ng) prevented RNS [209,210]. The role of IL-18 has also been investigated in
rodent studies. In P9 neonatal mice, knockdown of IL-18 improved myelination and
axonal integrity after HI brain injury [211]. Indeed, reduced IL-18 has been associated with
diminished WMI in several rodent models of neonatal brain injury [212–218]. However,
further preclinical studies are required to understand the mechanisms that underpin the
potential protective roles of IL-33 and reduced IL-18 in the preterm brain.

4.2.2. Clinical Association between IL-1 and Preterm Brain Injury

There is a strong association between excessive IL-1β and preterm brain injury. A
systematic review from 2010 on cytokine abundance in maternal, cord and postnatal blood
highlights that elevated IL-1β is associated with neurologic damage [219]. In both ex-
tremely premature and late preterm infants, elevated systemic and cerebrospinal IL-1β
during the first 48 h of life were associated with impaired cerebral metabolism and devel-
opmental delay at 2 years of age. Moreover, in postmortem preterm brain tissue, areas
of WMI had increased immunoreactivity of IL-1β, IL-1R1 and IL-1R2 on astrocytes and
microglia [220]. In the same study, IL-1Ra abundance was also increased, but to a lesser
extent than IL-1β, suggesting an imbalance towards pro-inflammatory mediators at sites of
tissue damage [220]. In neonatal sepsis, plasma, serum and cerebrospinal fluid (CSF) IL-1β
were elevated in infants at a greater risk of neurological impairment [221–223]. In preterm
infants with damaged periventricular white matter, known as periventricular leukomalacia
(PVL), who later developed cerebral palsy, cord blood IL-18 was higher compared to healthy
term infants [224].

Collectively, this growing body of clinical evidence and preclinical mechanistic studies
suggests that targeting IL-1β could be an effective therapeutic approach for promoting
neuroprotection in the preterm brain. Other IL-1 family cytokines could also be targets of
interest, though the evidence is less advanced.

4.3. Other Complications of Prematurity
4.3.1. Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is the most common cause of blindness in premature
infants. ROP results from inhibition of the growth of retinal vessels followed by abnormal
proliferation, which in the most severe cases can result in retinal detachment [49,225,226].
Hyperoxia is an important driver of retinal inflammation, activating microglia to produce
pro-inflammatory cytokines such as IL-1β, resulting in arrested vascular growth; this
leads to hypoxia of the distal retina, which triggers abnormal vasculogenesis [49,227–229].
Blockade of IL-1β using anakinra, as well as a selective allosteric inhibitor of the IL-1
receptor, rytvela, have been trialed in animal models of ROP [230,231].

The inflammatory pathophysiology of ROP begins with antenatal exposure to inflam-
mation [231]. To compare the effect of IL-1β inhibition by anakinra and rytvela antenatally,
a mouse model of antenatal inflammation was used. Dams were injected subcutaneously
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with anakinra 4 mg/kg, rytvela 1mg/kg or placebo at 12h intervals from gestational day
16.5 through 18; 30 min following the initial injection, a single intrauterine injection of
1 ug of IL-1β was administered. Three to five pups per group were sacrificed at days
17, 17.5 or 18, and their eyes were examined. Pups born at full gestation of 19 days had
regular eye imaging over the first 3 weeks; others were sacrificed at P1, 4, 8, 15, 22 or 30 for
histological eye examination. Eyes of pups within the placebo group exhibited a higher
concentration of activated microglia and associated damage when compared to pups from
dams administered with anakinra or rytvela [231].

Dual hits, such as postnatal exposure to hyperoxia, intensified antenatal inflammatory
responses mediated by TNF and IL-1β [232]. Pups exposed to 80% oxygen for 20 hr at P6
revealed a four-fold increase in retinal Il1b mRNA compared to rats raised in normoxia,
with no increase in endogenous IL-1Ra until P10. These eyes exhibited an influx of acti-
vated microglia and retinal vaso-obliteration consistent with ROP, which was prevented by
treatment with anakinra [229]. An oxygen-induced retinopathy (OIR) rat model has been
established, whereby rats born at term were exposed to oxygen levels that cycled between
50% and 10% every 24 h from P0 to P14, then remained at 21% thereafter; control pups were
reared only in 21% oxygen [49,232]. At P14, pups reared in hyperoxia had higher IL-1β in
retinal tissues, choroidal thinning and subretinal hypoxia (measured by hypoxyprobe stain-
ing) compared with those raised in normoxia [232]. With the application of the same OIR
model, pups received i.p. injections of anakinra 20 mg/kg, rytvela 1 mg/kg or no treatment
to serve as controls, and their eyes were imaged at P14 and P30, before being sacrificed at
P30 to examine eye histology. At P30, retinal thinning was observed in the untreated OIR
group compared with the treated and normoxia groups on retinal imaging [49]. Histology
of the same eyes showed a reduction in preretinal neovascularization, suggesting IL-1R1
blockade is protective against ROP [49,232].

Human studies examining vitreous fluid and tear samples from infants with and with-
out ROP illustrate such inflammatory changes. Vitreous fluid taken from infants with severe
ROP at the time of laser treatment had more activated microglia and macrophages, along
with significantly increased cytokine abundance, including of IL-1Ra, when compared
to control samples taken from infants with congenital cataracts [233]. Interestingly, tears
of infants with severe ROP had significantly higher abundance of the anti-inflammatory
IL-1Ra compared with those with mild or no ROP, pointing to a counter-regulatory mecha-
nism [233].

The role of IL-33 in the pathology of ROP remains unknown; however, increased IL-33
has been associated with severe ROP, suggesting that IL-33 could be used as a biomarker
for ROP. In an observational study on infants born less than 32 weeks’ gestation with a birth
weight less than 1500 g, IL-33 was evaluated in cord blood and serum from ROP infants
pre- and post-laser treatment and compared to gestation- and weight-matched controls.
Cord blood IL-33 was similar between control and ROP groups, although pretreatment
levels in infants with ROP rose to 3.5 times those of controls, suggesting that IL-33 could be
used as a biomarker for ROP [225]. Similarly, the role of IL-37 in ROP is also unclear, with
only one study investigating the use of recombinant IL-37 in a mouse ROP model [234].
Mice reared in 75% oxygen from P7 to P12 and then returned to normoxia were injected
i.p. with placebo or IL-37 at 1, 5 or 20 ng/gram body weight on P12, P14 and P16. Eyes
examined on P17 revealed those treated with IL-37 had increased neovascularization, in
a dose-dependent manner, suggesting IL-37 promotes pathological angiogenesis. In a
sub-group co-treated with anti-IL-37, this effect was inhibited [234].

4.3.2. Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is the most common intestinal disease in preterm
infants and is a major cause of morbidity and mortality, particularly in infants born prior to
32 weeks’ gestation or weighing less than 1500 g [235–237]. In infants, the mortality rates
of NEC average around 20–30% and can be as high as 70% in infants that require surgical
treatment [238–240]. The pathogenesis of NEC is poorly understood, but several risk
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factors are known to contribute. Prematurity, intestinal microbial imbalance (i.e., dysbiosis),
genetics, formula feeding and impaired intestinal barrier function increase the likelihood
of infants developing intestinal microbial imbalance and dysregulated immune responses
that lead to severe intestinal inflammation, pneumatosis and tissue necrosis characteristic
of NEC [240–243]. Mimicking a multifactorial disease, such as NEC in vivo, NEC can be
established by subjecting animals to one or a combination of the following stress factors:
hypoxia, asphyxia formula feeding, cold stress, LPS and/or enteric bacteria derived from
an infant with NEC [244,245]. Altered abundance of several IL-1 family cytokines in gut
tissues and in blood has been linked to NEC.

Intestinal tissue resected from NEC infants revealed elevated pro-inflammatory (IL1B,
IL1A, IL36A, IL36B, IL36G) and reduced anti-inflammatory (IL37, IL1R8) mRNA expression
of IL-1 family cytokines compared to tissue resected from the same infants at re-anastomosis
following recovery from NEC and non-inflamed tissue from healthy control infants [246].
Serum IL-1β [247], IL-18 [248] and IL-33 [249] were increased in NEC infants. IL-1β and
IL-18 also increased in intestinal tissue from rats and mice subjected to experimentally
induced NEC [250–252]. IL-1Ra was significantly reduced in buccal cells of NEC infants
compared to age-matched healthy controls [253]. Blockade of IL-1β with anakinra in a
neonatal rat model of NEC resulted in a reduction in IL-1β intestinal tissue levels and
overall tissue injury scores [254]. Formula supplementation of the probiotic Lactobacillus
rhamnosus GG was protective in a mouse NEC model and was associated with reduced
IL-1β and increased IL-1R8 [252]. A similar effect was observed in rats; the addition of
Bifidobacterium adolescentis to formula significantly reduced histological injury scores
and increased Il1r8 expression in intestinal tissue 3-fold [255].

A number of IL1R8 gene mutations, resulting in non-functional variants, have been
identified in infants that have succumbed to NEC [256]. Transgenic mice that were cre-
ated via CRISPR-Cas9 technology with a premature stop codon, resulting in the Il1r8 TIR
domain being truncated at amino acid 174, exhibited spontaneous small intestine inflam-
mation [257]. Although dam-fed, IL-1R8-KO pups presented with spontaneous intestinal
inflammation. Induction of NEC increased IL-1β in IL-1R8-KO pups when compared
to controls [258]. Altogether, the findings indicate a critical role of IL-1R8 in controlling
intestinal inflammation.

In addition, anti-inflammatory immune cell subsets, such as systemic IL-37+CD45+
leukocytes, were lower at birth in preterm infants compared to term infants. The percentage
of IL-37+CD45+ leukocytes is decreased in infants that develop NEC at weeks 1–2 of life
(time period when NEC most commonly develops) [259].

In a neonatal mouse model of NEC, newborn mice were separated from their dams,
fed formula and subjected to brief periods of asphyxia and 4 ◦C cold stress for 72 h [259].
WT mice presented with severe intestinal inflammation, pneumatosis and tissue necrosis;
however, IL-37tg mice were protected from intestinal injury and NEC-associated mortal-
ity [259]. These data demonstrate that IL-37 holds substantial promise as a new therapeutic
in this field.

4.3.3. Sepsis

Neonatal sepsis refers to a systemic infection of the newborn and is the cause of
substantial morbidity and mortality. Neonatal sepsis is categorized as either early-onset,
usually defined as occurring within the first 3 days after birth [260], or late-onset, which
occurs after day 3. In the majority of EOS cases, the source of the infecting pathogen can be
attributed to in utero infection or to maternal flora during the birth process. The cause of
late-onset sepsis is mostly acquired from the environment, for example, from indwelling
cannulae. The accurate early diagnosis of neonatal sepsis remains difficult, as signs and
symptoms are non-specific, and widely used blood markers such as C-reactive protein
(CRP) are also non-specific and evolve over time [261]. As such, finding an early, accurate
and consistent blood marker for neonatal sepsis is the subject of much research. Though
unwell infants are often treated for suspected sepsis, an infecting organism is not always
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identified. Preterm infants are particularly at risk in the postnatal period due to their
immature immune system and requirement for hospitalization [262,263].

During neonatal sepsis, as a response to a pathogen, a wide range of systemic inflam-
matory markers increase in the infant. Given the causal role of inflammation as a driver
of adverse neonatal outcomes, sepsis has now been recognized as a major risk factor for
BPD [264–266], BPD-PH [267] and WMI [219,221,268], among other complications.

A strong clinical association between IL-1β-mediated inflammation and neonatal
sepsis has been widely reported in the literature. Reports from as early as 1993 revealed
increased IL-1β abundance in plasma from 10 newborns with clinical sepsis, in addition to
increased TNF and IL-6, as compared to 22 healthy controls [269]. Since then, many clinical
trials have informed on the pathophysiological role of IL-1β in neonatal sepsis, including
in umbilical cord blood from infants with early onset sepsis [270,271], or increased plasma
IL-1β [269,272–274] and serum IL-1β in septic infants [275,276]. However, selected studies
differ and do not confirm increased IL-1 [277–280]. Another study considered IL-1β inferior
at predicting sepsis when compared to CRP, TNF and IL-6 [273]. However, increased
IL-1α in plasma or serum of infants with either late-onset sepsis [281], neonatal sepsis or
meningitis shows promise as a predictive biomarker for neonatal sepsis [282].

In a prospective multicenter study, plasma from 21 infants with clinical sepsis was
analyzed for biomarkers, including IL-1Ra, IL-6, circulating intercellular adhesion molecule-
1 (clCAM-1) and CRP, in a ten-day period over a septic episode and compared to 20 infants
with no infection [283]. IL-1Ra and IL-6 increased significantly 2 days before the diagnosis
of sepsis, and both emerged superior at predicting sepsis when compared to clCAM-1 and
CRP one or more days before clinical diagnosis [283].

Sepsis can be modeled in neonatal mice with an i.p. injection of adult cecal slurry
(consisting of cecal contents suspended in dextrose, to simulate bowel perforation and
peritonitis) [284]. Single prophylactic administration of IL-1Ra (100 µg/mouse i.p.) prior to
slurry injection in neonatal WT mice did not increase survival [285]. Moreover, the blockade
of IL-1 signaling with genetic (IL-1β-KO and caspase-1/11-KO) and pharmacological
targeting (prophylactic treatment with 100 µg/mouse anti-IL-1β i.p.) of IL-1β did not
increase survival either. Conversely, IL-1α-KO mice had increased survival as compared to
WT mice, but when prophylactic treatment of 100 µg/mouse anti-IL-1α was administered
i.p. to WT mice, only a trend for reduced mortality was observed. Collectively, the results of
this study suggest that IL-1α, but not IL-1β, is responsible for IL-1R1-dependent neonatal
murine sepsis lethality, and that pharmacological inhibition of IL-1α has little therapeutic
value, likely due to the difficulty of neutralizing the local production and paracrine action
of IL-1α with a systemic treatment [285].

Amongst other IL-1 family members, IL-33 emerges as a potential biomarker for the
prediction of neonatal sepsis. In a cohort of 152 neonates at risk of early-onset sepsis,
serum IL-33 was an independent predictor of sepsis, with greater predictive power when
combined with progranulin and procalcitonin. An earlier study also reported an increased
abundance of serum IL-33 upon the diagnosis of sepsis, which decreased on the 3rd and
7th day of antibiotic treatment [286].

Research into other IL-1 family members is more preliminary. IL-18-KO neonatal mice
were highly protected from polymicrobial infection [287], and blocking IL-17A reduced
IL-18-potentiated mortality to neonatal sepsis and endotoxemia [287]. In summary, the
IL-1 subfamily has been associated with excessive inflammation in neonatal sepsis. Interest
remains in finding a sensitive and specific marker to aid in the prompt diagnosis of the
septic neonate.

5. Conclusions

Premature birth is a significant cause of neonatal morbidity and mortality. There is a
wealth of evidence that the underlying pathophysiology of the complications of prematurity
is inflammation, which is often initiated in utero by maternal inflammation and perpetuated
by the challenges of post-natal life. This review highlights the role that IL-1 family cytokines
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play in the development of the complications of prematurity and identifies the areas in
which further research is needed. The best-known member of the IL-1 family, IL-1β, plays
a crucial role in the inflammatory damage to the lung, brain, eye and gut in premature
infants, and preclinical models demonstrate using IL-1Ra in this population can curb the
inflammatory cascade and reduce injury. Therefore, IL-1Ra shows promise as a therapeutic
agent to reduce the risk of infants born extremely prematurely developing complications
such as chronic lung disease, cerebral palsy, NEC and retinopathy of prematurity. Research
into newer IL-1 members is less advanced. Preclinical animal models of complications of
prematurity have identified a pathogenic role of IL-18 in lung and brain tissue and IL-33
in lung tissue. Moreover, a potentially protective role for IL-33 in the brain and IL-37 in
the lung and gut has been identified, but these findings should be confirmed with further
studies. In humans, some of these cytokines may assist the prediction of conditions of
prematurity, including IL-33 for BPD and IL-18 for both BPD and PVL. IL-36 subfamily
cytokines remain understudied in relation to the complications of prematurity but have
been associated with NEC. Further research into the IL-1 family of cytokines could uncover
a range of novel biomarkers and therapeutic targets for the better prediction and prevention
of neonatal disease.

6. Patents

The Hudson Institute at Monash University (M.F.N. and C.A.N.-P.) holds two patent
families on IL-37, namely, PCT/AU2016/050495 and PCT/EP2020/087031, and one patent
on IL-38 PCT/AU2022/05146.
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