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ARTICLE HIGHLIGHTS

• Long-term exposure to particulate matter with aerodynamic diameters #2.5 mm (PM2.5), including black carbon,
nitrate, ammonium, organic matter, and soil particles was positively associated with diabetes.

• Age might modify the above associations.
• Organic matter might be most responsible for the PM2.5 and diabetes relationship.
• Both single and joint exposure to PM2.5 and its components were positively associated with diabetes.
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OBJECTIVE

Association between particulate matter with aerodynamic diameters £2.5 lm (PM2.5)
components and diabetes remains unclear.We therefore aimed to investigate the as-
sociations of long-term exposure to PM2.5 components with diabetes.

RESEARCH DESIGN AND METHODS

This study included 69,210 adults with no history of diabetes from a large-scale
epidemiologic survey in Southwest China from 2018 to 2019. The annual average
concentrations of PM2.5 and its components were estimated using satellite re-
mote sensing and chemical transport modeling. Diabetes was identified as fasting
plasma glucose ‡7.0 mmol/L (126 mg/dL) or hemoglobin A1c ‡48 mmol/mol
(6.5%). The logistic regression model and weighted quantile sum method were
used to estimate the associations of single and joint exposure to PM2.5 and its
components with diabetes, respectively.

RESULTS

Per-SD increases in the 3-year average concentrations of PM2.5 (odds ratio [OR]
1.08, 95% CI 1.01–1.15), black carbon (BC; 1.07, 1.01–1.15), ammonium (1.07,
1.00–1.14), nitrate (1.08, 1.01–1.16), organic matter (OM; 1.09, 1.02–1.16), and
soil particles (SOIL; 1.09, 1.02–1.17) were positively associated with diabetes. The
associations were stronger in those ‡65 years. Joint exposure to PM2.5 and its
components was positively associated with diabetes (OR 1.04, 95% CI 1.01–1.07).
The estimated weight of OM was the largest among PM2.5 and its components.

CONCLUSIONS

Long-term exposure to BC, nitrate, ammonium, OM, and SOIL is positively associated
with diabetes. Moreover, OMmight be the most responsible for the relationship be-
tween PM2.5 and diabetes. This study adds to the evidence of a PM2.5-diabetes asso-
ciation and suggests controlling sources of OM to curb the burden of PM2.5-related
diabetes.

Numerous recent studies have confirmed that long-term exposure to particulate
matter (PM) with aerodynamic diameters #2.5 mm (PM2.5) is a newly identified risk
factor for diabetes (1–4). For example, long-term (median 8.5 years) exposure to
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PM2.5 was found to be associated with an
increased risk of diabetes in a cohort of
1.7 million U.S. veterans (2). Long-term
(5 years) exposure to PM2.5 was found to
be associated with the risk of diabetes in a
cohort of 2.6 million participants living in
Denmark (4). According to the Global Bur-
den of Disease Study 2017, 26.1% of dis-
ability-adjusted life-years for diabetes were
attributable to air pollution (5). Exposure
to PM2.5, even at concentrations well be-
low World Health Organization air quality
guidelines, can increase the risk of diabe-
tes (2). Mechanism hypotheses have been
developed regarding the association be-
tween PM2.5 and diabetes. Inhalation of
PM2.5 might lead to an increase in reac-
tive oxygen species in the lungs (6), trigger
systemic oxidative stress (7), induce subse-
quent visceral adipose tissue inflammation
(8), and further lead to insulin resistance
(8). Other possible mechanisms include a
disturbed autonomic nervous system (9),
endothelial dysfunction (10), alteration of
gut microbes (11), and mitochondrial dys-
function (12).

Ambient PM2.5 is composed of various
components, including black carbon (BC),
ammonium, nitrate, organic matter (OM),
sulfate, soil particles (SOIL), sea salt (SS),
and others. The toxicity of different PM
components to humans varies (13). A sys-
tematic review of 35 available studies
found that only BC and OM were signifi-
cantly associated with natural, cardiovas-
cular, or respiratory health end points
(14). For diabetes, research showed that
long-term exposure to PM2.5 components
was associated with gestational diabetes
mellitus (GDM) and emergency hospital
admissions for type 2 diabetes (15–17).
However, evidence on the relationship be-
tween PM2.5 components and diabetes is
limited. An improved understanding of
the relationship between different com-
ponents of PM2.5 and diabetes provides a
reasonable explanation for which compo-
nent is responsible for the PM2.5-diabetes
relationship and may further offer new
opportunities to curb the burden of
PM2.5-related diabetes.

To address the above research gap, this
cross-sectional study assessed the individ-
ual and joint associations of PM2.5 and its
components with diabetes among partici-
pants of the China Multi-Ethnic Cohort
(CMEC) study. The findings might explain
the association between PM2.5 and diabe-
tes and provide a basis for targeted pre-
vention and control of PM2.5 components.

RESEARCH DESIGN AND METHODS

Study Population
The research data for this study were ob-
tained from the baseline survey of CMEC,
a general population-based cohort study in
Southwest China in five provinces (Sichuan,
Chongqing, Yunnan, Guizhou, and Tibet).
Considering the ethnic characteristics and
demographic structure of Southwest China,
the CMEC collected baseline data from
99,556 participants aged between 30 and
79 years through multistage stratified clus-
ter sampling from May 2018 to September
2019 (18).

Baseline data for the CMEC included
questionnaire data (sociodemographic, life-
style habits, and health-related history),
physical examination data (height, weight,
blood pressure, bone density, etc.), and
biochemical examination data (blood glu-
cose, blood lipids, liver enzymes, etc.).
Highly trained investigators collected the
questionnaire data through face-to-face in-
terviews using a tablet-administered elec-
tronic questionnaire. The local community
hospital collected physical examination
data after standardized training of per-
sonnel and calibration of instruments.
Biochemical examination data were col-
lected by a third-party company with
corresponding national qualifications. In
the Supplementary Methods, more de-
tails of CMEC quality control are shown
in the Quality Control section. All of the
participants signed an informed consent
form before data collection. Ethical ap-
proval was received from the Sichuan
University Medical Ethical Review Board
(K2016038, K2020022).

Ultimately, a total of 99,556 participants
were enrolled in the baseline survey of the
CMEC. The current study excluded 1) those
without a residential address; 2) Tibetan
herders in Aba since they have no fixed
place of residence and Tibetans in Lhasa
because of concentrated survey sites with
low variability in air pollution; 3) those
with a length of residence at the residen-
tial address at the time of the survey of
<3 years; 4) those with malignant tumors
or ineligible ages (<30 or >80 years); 5)
pregnant women; 6) those with self-
reported diabetes>3 years before the sur-
vey; and 7) those with missing diabetes,
exposure, or covariate data. Finally, we in-
cluded 69,210 participants in this study
(Supplementary Fig. 1).

We excluded 2,005 participants with
missing covariate or diabetes data. The

missing data rate was 2.8%. The varia-
bles with the most missing data were di-
abetes (n = 1,290), metabolic equivalent
(MET; n = 352), and Mediterranean diet
(MED; n = 199), and no particular pattern
of missing data was found, indicating that
the data were missing at random in this
study.

Outcomes
Fasting venous blood was collected
from each participant and tested by a
third-party company with corresponding
national qualifications. Diabetes was de-
fined as fasting plasma glucose (FPG)
$126 mg/dL (7.0 mmol/L) or hemoglo-
bin A1c (HbA1c) $48 mmol/mol (6.5%)
based on criteria from the American Dia-
betes Association (19).

Exposure Assessment
The monthly average concentration data
of PM2.5 and its components from 2001
to 2017 were derived from pollutant data
in the Global Burden of Disease (GBD)
study and found to be precise (20–22).
Briefly, seven different algorithms were
used to estimate satellite aerosol optical
depth measurements inversely weighted
by their errors against the Aerosol Robotic
Network based on 10- × 10-km resolution
satellite imagery. Concentrations data of
PM2.5 and its components were estimated
based on aerosol optical depth data by us-
ing the chemical transport model. Nitrogen
dioxide (NO2) and ozone (O3) data used in
sensitivity analyses were obtained from the
ChinaHighAirPollutants data set (https://
weijing-rs.github.io/product.html, accessed
date: 9 July 2020). More details are shown
in the NO2 and O3 section in the Supple-
mentary Methods.

According to the geocoded residential
address, average concentrations of PM2.5

and its components, NO2 and O3, were
calculated for each participant 3 years be-
fore the baseline survey as the estimated
surrogate of exposure. The cross-sectional
study design is shown in Supplementary
Fig. 3.

Statistical Analyses

Single-Exposure Analyses

We used logistic regression to estimate
the associations between increases in the
3-year average exposure to PM2.5 and its
components and diabetes. For PM2.5 and
each component, we present the odds ra-
tio (OR) and 95% CI corresponding to an
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increase in the SD of pollutants. In model 1
(i.e., the crude model), no covariates
were included. In model 2, we included
the covariates of age, sex, ethnicity, re-
gion, income, and education. In model 3,
we further included alcohol, BMI level,
cigarette smoke, second-hand smoke, in-
door air pollution, MET level, MED level,
3-year average temperature, and 3-year
average humidity. Specific definitions of
each covariate and how they were calcu-
lated are shown in the Variables section
of the Supplementary Methods.

Joint Exposure Analyses

We used the weighted quantile sum (WQS)
method to estimate the effects of the mix-
tures (PM2.5 and its components) adjusted
for the same covariates as in the single-
exposure analyses. The WQS yields a score
for all exposures by assigning weights to all
exposures categorized into quartiles or
more groups and then incorporates that
score into the regression model (23). The
results of WQS included weight estimation
(importance) for every single exposure and
effect estimation for the weighted score,
that is, effects of themixtures.Moredetails
of the WQS method are shown in the
Weighted Quantile Sum (WQS) section of
the SupplementaryMethods.

Subgroup Analyses

In addition, subgroup analyses were per-
formed by adding interaction terms of expo-
sure and stratified variables in the regression
model. Age ($65 years or <65 years) was
considered. We conducted subgroup analy-
ses for the associations between single and
joint exposure to PM2.5 and its components.

Sensitivity Analyses

Sensitivity analyses were performed to
assess the robustness of the results, in-
cluding 1) using 1-year, 2-year, 5-year, and
10-year averages of PM2.5 and its compo-
nents as the exposure; 2) using FPG or
HbA1c as the outcome; and 3) further ad-
justing for gaseous pollutants (NO2 or O3

or both).
In addition, various other statisticalmeth-

ods were used to examine the sensitivity of
the results to statistical methods. We used
ridge regression and the least absolute
shrinkage and selection operator (LASSO)
method to estimate single-exposure ef-
fects. These two methods achieve coeffi-
cient reduction by adding penalty terms
to a logistic regression model that incor-
porates all exposures simultaneously. The

difference is that the former estimates co-
efficients that will be as close to 0 as possi-
ble but not equal to 0, while the latter will
directly reduce some of the coefficients to
0, serving to select important variables.We
used quantile G-computation (QGC) to es-
timate the mixture effect and weights of
a single exposure (24). Based on the
WQS, the QGC obtains causal associations
and estimates both positive and negative
weights by additional statistical assump-
tions. More details of the statistical meth-
ods are shown in the Statistical Methods
section of the Supplementary Methods.

We used four methods in this study to
estimate the association of joint exposure
to PM2.5 and its components with diabe-
tes, including the WQS, ridge regression,
LASSO, and QGC. The advantages and dis-
advantages of these methods are dis-
cussed in detail in Supplementary Table 5.
In brief, compared with ridge regression
and LASSO, the WQS could estimate not
only the weights of different exposures
but also the effects of joint exposure.
Compared with QGC,WQS is more widely
used and based on fewer prerequisite sta-
tistical assumptions. Therefore, the WQS
was used in the main text, and the rest
of the methods were used for the sensi-
tivity analyses.

Furthermore, we calculated the E-value
to evaluate the unmeasured confounding.
The E-value is defined as the minimum
unmeasured confounding effect required
to completely subvert the OR in the study,
controlling for the measured confounding
factor (25,26). The E-value reflects the
sensitivity of the results to unmeasured
confounding. Moreover, we restricted the
cubic spline transformation of exposure
variables to investigate whether the asso-
ciation between exposure and outcome
was linear.

We have presented the OR of PM2.5

and its components corresponding to
an increase in the SDs of concentra-
tions. All analyses were performed by
using R 4.0.1 software. Two-sided tests
with P values <0.05 were considered
statistically significant.

RESULTS

General Characteristics
We included 69,210 participants aged
30–79 years in this study. The study
population was a mean age of 51.8 years
(SD 11.3 years), and 15.2% of the partici-
pants were$65 years old. Men comprised

39.5% of the participants, and 7.4% of the
participants had diabetes. More details are
provided in Table 1.

The distributions of PM2.5 and its com-
ponents are shown in Fig. 1. The 3-year
average concentrations (SD) of PM2.5, BC,
ammonium, nitrate, OM, sulfate, SOIL,
and SS were 40.29 (20.5), 2.07 (1.10),
6.43 (3.28), 8.25 (5.33), 9.02 (4.86), 10.80
(4.76), 3.22 (1.68), and 0.03 (0.03) mg/m3,
respectively, at the participants’ residential
addresses. The primary sources and com-
positions of the seven components are
provided in Supplementary Table 2.

Associations of PM2.5 and Its
Components With Diabetes
In model 3, a per-SD increase in the 3-year
average PM2.5 concentration was positively
associated with diabetes (OR 1.08, 95%
CI 1.01–1.15). The per-SD increases in the
3-year average BC (1.07, 1.01–1.15), am-
monium (1.07, 1.00–1.14), nitrate (1.08,
1.01–1.16), OM (1.09, 1.02–1.16), and
SOIL (1.09, 1.02–1.17) concentrations were
positively associated with diabetes. Per-SD
increases in the 3-year average sulfate (OR
1.05, 95% CI 0.99–1.12) and SS (1.02,
0.97–1.08) concentrations were not signifi-
cantly associated with diabetes (Table 2).

In the joint exposure analyses, the esti-
mated weight of OM was the largest
among PM2.5 and its components (Fig. 2),
suggesting that OM was the most impor-
tant component. Joint exposure to PM2.5

and its components was positively asso-
ciated with diabetes (OR 1.04, 95% CI
1.01–1.07) by the WQS method.

Subgroup Analyses
The effects of PM2.5 (P = 0.03), BC (P =
0.03), ammonium (P = 0.02), and sulfate
(P = 0.01) were higher in those $65
years (Supplementary Table 3). For ex-
ample, a per-SD increase in PM2.5 corre-
sponds to an OR of 1.20 (95% CI 1.07–
1.33) for people $65 years old com-
pared with 1.03 (0.95–1.12) for people
<65 years old. The effect of joint expo-
sure to PM2.5 and its components was
higher in those $65 years, but the dif-
ference was not significant (P = 0.10).

Sensitivity Analyses
The associations of PM2.5, BC, ammonium,
nitrate, OM, and SOIL with diabetes were
steady in their direction, magnitude, and
statistical significance in our sensitivity anal-
yses (Supplementary Tables 6–10 and 12).
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The effects of sulfate and SS were stable
and insignificant (Supplementary Tables 11
and 13).

The selection process of the penalty
term l for ridge regression and LASSO is
shown in Supplementary Fig. 2. Finally,

l = 0.070 and l = 0.008 were chosen.
The ORs of PM2.5 and its components es-
timated by the ridge regression were pre-
dictably much smaller than the ORs in
the manuscript, while the LASSO esti-
mated non-1 ORs for OM (1.06) and SS

(1.02) only (Supplementary Table 4), sug-
gesting that OM and SS are important
components. The QGC estimated both
positive and negative weights (Fig. 2),
with the most significant positive weight
being OM (0.43) and the largest negative

Table 1—The general characteristics of the study population

Total

Diabetes

Yes No

N = 69,210 n = 5,123 (7.4) n = 64,087 (92.6) P value

Female sex 41,845 (60.5) 2,497 (48.7) 39,348 (61.4) <0.01

Age <65 years 58,664 (84.8) 3,815 (74.5) 54,849 (85.6) <0.01

Income, ¥ <0.01

<12,000 12,196 (17.6) 1,038 (20.3) 11,158 (17.4)
12,000–19,999 11,987 (17.3) 930 (18.2) 11,057 (17.3)
20,000–59,999 25,063 (36.2) 1,789 (34.9) 23,274 (36.3)
60,000–99,999 10,454 (15.1) 748 (14.6) 9,706 (15.1)
$100,000 9,510 (13.7) 618 (12.1) 8,892 (13.9)

Education <0.01

Bachelor degree or above 2,998 (4.3) 140 (2.7) 2,858 (4.5)
Junior college 4,964 (7.2) 255 (5.0) 4,709 (7.3)
High school 8,535 (12.3) 629 (12.3) 7,906 (12.3)
Junior high school 18,928 (27.3) 1,282 (25.0) 17,646 (27.5)
Primary school 17,747 (25.6) 1,366 (26.7) 16,381 (25.6)
Illiteracy 16,038 (23.2) 1,451 (28.3) 14,587 (22.8)

Han ethnicity 43,730 (63.2) 3,213 (62.7) 40,517 (63.2) 0.47

Smoking

Never smoked 51,326 (74.2) 3,312 (64.6) 48,014 (74.9) <0.01
Second-hand smoke 35,830 (51.8) 2,522 (49.2) 33,308 (52.0) <0.01

Indoor air pollution 0.06

Severe 10,969 (15.8) 846 (16.5) 10,123 (15.8)
Moderate 54,737 (79.1) 3,990 (77.9) 50,747 (79.2)
Light 3,504 (5.1) 287 (5.6) 3,217 (5.0)

BMI level <0.01

Low weight 2,623 (3.8) 101 (2.0) 2,522 (3.9)
Moderate weight 32,915 (47.6) 1,584 (30.9) 31,331 (48.9)
Overweight 33,672 (48.7) 3,438 (67.1) 30,234 (47.2)

MET level <0.01

1 15,592 (22.5) 1,569 (30.6) 14,023 (21.9)
2 17,029 (24.6) 1,185 (23.1) 15,844 (24.7)
3 18,047 (26.1) 1,208 (23.6) 16,839 (26.3)
4 18,542 (26.8) 1,161 (22.7) 17,381 (27.1)

Alcohol, never drinker 38,302 (55.3) 2,813 (54.9) 35,489 (55.4) 0.52

MED level <0.01

1 20,679 (29.9) 1,766 (34.5) 18,913 (29.5)
2 17,154 (24.8) 1,283 (25.0) 15,871 (24.8)
3 16,583 (24.0) 1,122 (21.9) 15,461 (24.1)
4 14,794 (21.4) 952 (18.6) 13,842 (21.6)

Air pollutants, mg/m3, mean (SD)

PM2.5 40.29 (20.56) 40.79 (20.26) 40.25 (20.58) 0.07
BC 2.07 (1.10) 2.10 (1.09) 2.07 (1.10) 0.10
Ammonium 6.43 (3.28) 6.50 (3.22) 6.42 (3.29) 0.16
Nitrate 8.25 (5.33) 8.37 (5.29) 8.24 (5.34) 0.05
OM 9.02 (4.86) 9.15 (4.82) 9.01 (4.86) 0.03
Sulfate 10.80 (4.76) 10.90 (4.64) 10.80 (4.77) 0.41
SOIL 3.22 (1.68) 3.27 (1.66) 3.21 (1.68) 0.03
SS 0.03 (0.03) 0.03 (0.03) 0.03 (0.03) 0.16

Data are presented as n (%), unless indicated otherwise.
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weight being sulfate (0.87). Joint exposure
to PM2.5 and its components was posi-
tively associated with diabetes (OR 1.09,
95% CI 1.03–1.16) by using the QGC
method. The statistical methods used in
the sensitivity analysis drew similar con-
clusions to those in the main text, which
consistently suggested that OM might be
most responsible for the PM2.5 and diabe-
tes relationship.
The E-values of PM2.5, BC, ammonium,

nitrate, OM, sulfate, SOIL, and SS were
1.36, 1.36, 1.33, 1.39, 1.40, 1.28, 1.40,

and 1.16, respectively. The concentration-
response relationships of the 3-year aver-
age pollutant exposure and diabetes are
presented in Fig. 2. The relationships are
approximately linear, except for the rela-
tionship with sulfate.

CONCLUSIONS

To the best of our knowledge, this is the
first population-based epidemiological study
systematically exploring the associations of
PM2.5 components with diabetes. On the
basis of the cross-sectional data of 69,210

participants in Southwest China, ambient
PM2.5 and its components (BC, ammo-
nium, nitrate, OM, and SOIL) were found
to be positively associated with the prev-
alence of diabetes. The associations are
more substantial among those $65 years
old, and OM might be the most responsi-
ble for the relationship between PM2.5

and diabetes.

Comparison With Other Studies
Although accumulating studies have
thoroughly investigated the relationship

Figure 1—The spatial distributions of the 3-year average PM2.5, BC, ammonium, nitrate, OM, sulfate, SOIL, and SS concentrations (mg/m3).
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between PM2.5 and diabetes, current litera-
ture on PM2.5 component exposure and dia-
betes remains rare. Only three studies have
examined the effects of PM components
on diabetes-related outcomes (15–17). A
study from the U.S., which included data
from the electronic health records of
nearly 400,000 pregnant women from

Kaiser Permanente Southern California,
examined the effect of PM2.5 components
on GDM (16). The results showed that
sulfate, nitrate, ammonium, OM, and BC
exposure were positively associated with
GDM (16). Another study, from Hong
Kong, examined the association between
short-term exposure of PM with aerodynamic

diameters #10 mm and emergency hospital
admissions for type 2 diabetes (15). The
authors found that exposure to BC, OM,
and nitrate may lead to exacerbation of
acute symptoms or complications in type 2
diabetes (15).

All of the above studies focus on PM
components and diabetes-related outcomes.

Table 2—Associations of exposure to PM2.5 and its components (per SD increase, lg/m3) with diabetes in Southwest China

Pollutant

Model 1* Model 2† Model 3‡

OR§ (95% CI) P value OR (95% CI) P value OR (95% CI) P value

PM2.5 1.03 (0.99–1.06) 0.07 1.10 (1.03–1.18) <0.01 1.08 (1.01–1.15) 0.03

BC 1.02 (0.99–1.05) 0.10 1.10 (1.03–1.17) 0.03 1.07 (1.01–1.15) 0.03

Ammonium 1.02 (0.99–1.05) 0.10 1.09 (1.02–1.16) 0.01 1.07 (1.00–1.14) 0.05

Nitrate 1.03 (0.99–1.06) 0.07 1.11 (1.04–1.19) <0.01 1.08 (1.01–1.16) 0.02

OM 1.03 (1.00–1.06) 0.04 1.12 (1.05–1.19) <0.01 1.09 (1.02–1.16) 0.01

Sulfate 1.02 (0.99–1.05) 0.15 1.07 (1.01–1.13) 0.03 1.05 (0.99–1.12) 0.11

SOIL 1.04 (1.01–1.07) 0.01 1.11 (1.04–1.19) <0.01 1.09 (1.02–1.17) 0.02

SS 1.02 (0.99–1.04) 0.30 1.02 (0.97–1.08) 0.50 1.02 (0.97–1.08) 0.48

*N = 69,210, crude model, adjusted for no covariates. †N = 69,210, adjusted for age, sex, ethnicity, region, income, and education. ‡N =
69,210, adjusted for age, sex, ethnicity, region, income, education, alcohol, BMI, smoke, second-hand smoke, indoor air pollution, MET level,
MED level, 3-year average temperature, and 3-year average humidity. §OR of prevalent diabetes.

Figure 2—Weight estimations of PM2.5 and its components and their exposure-response relationships with diabetes (N = 69,210). All of the results
were adjusted for age, sex, ethnicity, region, income, education, alcohol, BMI level, cigarette smoke, second-hand smoke, indoor air pollution,
MET level, MED level, 3-year average temperature, and 3-year average humidity. The first two rows show the exposure-response relationship of a
single exposure to PM2.5 and its components (mg/m3) with diabetes. The solid black line represents the exposure-response relationship, and the
shaded area represents the CI, with the lower quartile used as a reference for each contaminant (i.e., OR = 1, where OR refers to the OR of preva-
lent diabetes). The last row shows the weight estimation of joint exposure to PM2.5 and its components with diabetes by WQS and QGC,
respectively.
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This study identifies BC, ammonium, nitrate,
OM, and SOIL as risk factors for diabetes,
which is broadly consistent with the two
studies mentioned above. Sulfate was not
recognized as a risk factor for diabetes in
this study, which may be due to the concen-
tration gradient (10.80 ± 4.76 mg/m3) in our
research being different from that in the
analysis above (1.3 ± 0.3 mg/m3) (16). This
study adds to the evidence in this area by
examining PM components and diabetes
for the first time.
We used the WQS, QGC, ridge regres-

sion, and LASSO for joint exposure effect
estimation, and the advantages and dis-
advantages of these methods are sum-
marized in detail in the Supplementary
Material. The simultaneous use of the
above methods showed that the results
were robust. However, the above methods
were based on the assumption of a linear
association of PM2.5 and its components
with diabetes. As shown in Fig. 2, the asso-
ciation between sulfate and diabetes is not
completely linear, and caution should be
exercised when viewing the conclusions of
the current study. Bayesian kernel machine
regression (BKMR) is a newly proposed
method that can be used to estimate the
multiexposure effect (27). In addition to
nonlinear associations, BKMR can also esti-
mate the interaction between exposures.
However, the current BKMR runs very
slowly when working with large-sample
data, and BKMR urgently requires im-
provement, or new methods need to
be proposed to meet the needs of mul-
tiexposure analysis of large samples.
Notably, the association of PM2.5 and

its components with diabetes may vary
considerably with exposure concentration
and time window. The concentration of
PM2.5 and its components in this study
are high at the global scale (20). In China,
the concentrations of PM2.5 and its com-
ponents in the southwestern region are
medium to high, but the concentration
range is larger, which is one of the advan-
tages of this study (20). Regarding the ex-
posure time window, this study focuses
on the effect of long-term exposure, which
is defined by the World Health Organization
as 1 year to several years of exposure (28).
In contrast, short-term exposure is usually a
few days to weeks, and medium-term expo-
sure is a few months. Great care must be
taken when comparing and extrapolating
the study results.

Potential Mechanism
The mechanisms of the associations be-
tween the above components (BC, amm-

onium, nitrate, OM, and SOIL) and diabe-
tes are not fully understood. The potential
mechanisms are described separately for
the five components.

BC and OM are mainly from combustion-
related sources, such as vehicle exhaust
and industrial and agricultural combus-
tion (Supplementary Table 2). Exposure
to OM and BC may increase the risk of di-
abetes through the following pathways:
oxidative stress, endothelial damage, sys-
temic inflammation, and lipid abnormali-
ties (29). In vitro experiments showed that
exposure to high concentrations of BC
over 24 h caused reactive oxygen species
and inflammation in human umbilical en-
dothelial cells (30). Other cellular experi-
ments also supported the opinion that BC
might cause endothelial damage (31). At
the population level, a panel study dem-
onstrated that exposure to BC and OM
was positively associated with inflamma-
tory and platelet activation biomarkers
(C-reactive protein, interleukin 6, and tu-
mor necrosis factor-a soluble receptor II)
(32). Another cross-sectional study found
that exposure to OM and BC was nega-
tively associated with brachial artery diam-
eter, a predictor of cardiovascular risk (33).
From the point of view of pollution pre-
vention and control, BC is considered a
tracker of older diesel fuels, and >85% of
environmental BC can be attributed to ve-
hicle emissions (Supplementary Table 2).
In contrast, OM consists of a mixture of
hundreds of organic compounds and can be
either released directly into the atmosphere
(primary organic carbon) or produced from
gas-to-particle reactions (secondary organic
carbon) (Supplementary Table 2). These re-
sults provide a rationale for increased
restrictions on transport-related emis-
sion sources.

SOIL-containing metal elements and sil-
ica are suspended in the air due to me-
chanical movements (transportation and
human activity) (Supplementary Table 2).
Animal experiments showed that exposure
to particulate samples induced inflammatory
activity (tumor necrosis factor-a, interleu-
kin 6, and keratinocyte-derived chemokine)
in healthy C57BL/6J mice, which is espe-
cially true for transition metals (vanadium
and nickel) and SOIL-derived constituents
(calcium ions, aluminum, iron, silicon) (34).
Previous epidemiological studies have
found nickel and potassium ions to be as-
sociated with emergency hospital admis-
sions for type 2 diabetes (15), indicating

the potential hazards of SOIL, which con-
tains metal elements.

Nitrate was derived mainly from the
photochemical transformation of precur-
sor pollutants, for example, NO2. Nitrate
entering the airway may lower the pH
value of the airway and thus cause adverse
reactions (35). In addition, a population ep-
idemiological study showed that nitrate in
PM2.5 is positively correlated with extracel-
lular superoxide dismutase and glutathione
peroxidase 1 in the blood (36), indicating
activation of circulating antioxidant en-
zymes after exposure to nitrate in PM2.5;
that is, nitrate in PM2.5 might cause oxida-
tive damage.

Ammonium is formed by the neutraliza-
tion of atmospheric nitric and sulfuric acids
by ammonia (Supplementary Table 2).
Mechanistic studies of health hazards as-
sociated with ammonium are still scarce,
and current epidemiological studies seem
to yield inconsistent findings. A panel
study found that short-term (24-h) ex-
posure to ammonium was positively as-
sociated with inflammatory biomarkers
(fibrinogen, C-reactive protein, MCP-1,
etc.) (37). However, another panel study
found that exposure to ammonium was
not associated with the arginase-nitric
oxide synthase pathway, an indicator for
the airway inflammatory response (38).
The above research suggests that the ef-
fect of ammonium on cardiovascular risk
may not be mediated through respiratory
inflammation. Animal experiments and
epidemiological studies are needed to fur-
ther investigate the exact mechanism.

Explanation for the Subgroup
Analyses Results
Subgroup analyses indicated that age
might be a potential effect modifier of
the association between diabetes and
PM2.5 components. The effects are stron-
ger among those $65 years. One possible
explanation is that they are more sensitive
to the pollution of PM2.5 and its compo-
nents (39).

Clinical Implications
First, this is the first study exploring the
association of single and joint exposure to
PM2.5 and its components with diabetes.
The results showed the potential risk of
the components, with OM being the most
important. The above results provide new
evidence for existing studies and a novel
perspective on the disease risk of PM2.5

or other environmental risk factors.
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Second, these results have important
public health implications. Despite the
relatively small OR (1.04) of joint expo-
sure to PM2.5 and its components, air
pollution is ubiquitous and can cause a
severe disease burden for the entire
population. Furthermore, the risk per-
sists even at lower concentrations, which
is consistent with Bowe et al. (2). This
finding makes a strong case for redou-
bling efforts to control harmful pollu-
tants, especially OM.

Third, individuals, especially the elderly
and those who already have diabetes
(40), should be aware of the air quality
in the area where they live and avoid
prolonged exposure to harmful exposure.
Personal protection should be enhanced
to mitigate the hazards of air pollution,
especially when automobile exhaust pol-
lution is severe and photochemical smog
is frequent (source of OM).

Limitations and Strengths of
This Study
Our study has several limitations. First,
we matched the study population for ex-
posure to PM2.5 and its components by
registered residential addresses without
considering individual exposure patterns
(e.g., time spent outdoors, breathing rate,
and range of motion).

Second, statistical analyses were con-
ducted based on cross-sectional data.
Even if we used the 3-year average con-
centrations of pollutants before the survey
time as exposure, which roughly ensured
the sequence of exposure and outcome,
the problem of reversal of cause and ef-
fect might also occur. With the collection
of follow-up data, we will be able to ob-
tain more accurate effect estimates based
on the cohort study design.

Finally, considering the possibility of
unmeasured confounding factors, we cal-
culated the E-value, the minimum of
which was 1.16. Small risks exist that our
conclusions might be overturned.

Despite the above limitations, our study
has several strengths. First, the data used
are of high quality. The exposure data
were collected and used in GBD and
were found to have minor errors (21).
The development and implementation of
well-established standard operating pro-
cedures ensure the quality of the ques-
tionnaire data, physical examination data,
and biochemical examination data in CMEC
(see more in the Quality Control section in
the Supplementary Methods).

Second, we involved 69,210 partici-
pants in the study. We obtained relatively
robust associations between diabetes and
PM2.5 and its components based on the
large sample size and further identified
age as a potential effect modifier.

Third, the CMEC collected many indi-
vidual variables, such as indoor air pol-
lution, second-hand smoke, and dietary
patterns, which adequately helped ad-
just the study’s covariates.

Fourth, individuals are exposed to both
PM2.5 and its components, and we used
the WQS and QGC methods to estimate
the association of simultaneous expo-
sure to PM2.5 and its components with
diabetes.

Finally, we used methods that are
widely accepted in the context of environ-
mental mixture exposure and reached
consistent conclusions, which also ensure
the robustness of our conclusions.

In conclusion, long-term exposure to
PM2.5 BC, nitrate, ammonium, OM, and
SOIL is positively associated with diabetes,
age might modify the above associations,
and OM might be the most responsible
for the relationship between PM2.5 and di-
abetes. This study explains to which com-
ponents the PM2.5-diabetes association is
attributed and suggests controlling the
source of OM to curb the burden of
PM2.5-related diabetes.
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