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Abstract
For experimental research on language production, temporal precision and high quality of the recorded audio files are impera-
tive. These requirements are a considerable challenge if language production is to be investigated online. However, online 
research has huge potential in terms of efficiency, ecological validity and diversity of study populations in psycholinguistic 
and related research, also beyond the current situation. Here, we supply confirmatory evidence that language production can 
be investigated online and that reaction time (RT) distributions and error rates are similar in written naming responses (using 
the keyboard) and typical overt spoken responses. To assess semantic interference effects in both modalities, we performed 
two pre-registered experiments (n = 30 each) in online settings using the participants’ web browsers. A cumulative semantic 
interference (CSI) paradigm was employed that required naming several exemplars of semantic categories within a seemingly 
unrelated sequence of objects. RT is expected to increase linearly for each additional exemplar of a category. In Experiment 
1, CSI effects in naming times described in lab-based studies were replicated. In Experiment 2, the responses were typed 
on participants’ computer keyboards, and the first correct key press was used for RT analysis. This novel response assess-
ment yielded a qualitatively similar, very robust CSI effect. Besides technical ease of application, collecting typewritten 
responses and automatic data preprocessing substantially reduce the work load for language production research. Results of 
both experiments open new perspectives for research on RT effects in language experiments across a wide range of contexts. 
JavaScript- and R-based implementations for data collection and processing are available for download.

Keywords Language production · Online experiments · Overt speaking · Keystrokes · Typewritten naming · Cumulative 
semantic interference · Picture naming

Conducting experiments online has huge potential to 
advance behavioural research, beyond the challenges of the 
current pandemic situation. By running experiments through 
web browsers and online platforms, large numbers of par-
ticipants can be recruited for cross-sectional, longitudinal 
or single-time-point studies at their homes (e.g. Palan & 
Schitter, 2018). Moreover, access to diverse ethnicities, 
across countries, age groups and social status is facilitated 
(e.g. Gallant & Libben, 2019; Peer et al., 2017). Larger and 
more diverse study populations can increase statistical power 
and ecological validity (Henrich et al., 2010; Speed et al., 
2018). While other fields started to tap into the potential of 
online experiments more than two decades ago (e.g. Krantz 
& Reips, 2017), language production experiments—espe-
cially when targeting reaction times—have rarely been 
implemented in web-based settings (but see e.g. Gilquin, 
2010 for a non-reaction time language production experi-
ment). This is partially due to the sensitivity to small effects 
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in the range of tens of milliseconds and concerns regarding 
technical reliability and data quality when measuring overt 
language production. Recent evidence, however, suggests 
that studying language production via online platforms is 
possible. Overt naming responses acquired online have been 
demonstrated to be precise enough to detect speech onset 
reaction time effects in the critical range of ~15–50 ms (Fairs 
& Strijkers, 2021; Vogt et al., 2021). In a picture-naming 
paradigm, Fairs and Strijkers (2021) replicated lab-based 
effects of word frequency in an online experiment run on 
the platform FindingFive (FindingFive Team, 2019) with 
100 participants. For the picture word interference (PWI) 
effect (Bürki et al., 2020; Lupker, 1979), which requires 
naming object pictures overlaid with semantically related 
or unrelated distractor words, Vogt et al. (2021) showed 
online feasibility reproducing the lab-based findings. They 
implemented the experiment on two different platforms 
(SoSci Survey, Leiner, 2019 and jsPsych, de Leeuw, 2015) 
with different participant cohorts (each n = 48). A compari-
son of overt naming and manual name classifications via 
key press responses revealed similar semantic interference 
effects for both response modalities, replicating lab-based 
effects (Abdel Rahman & Aristei, 2010). The results are 
highly encouraging, but online assessment of overt spo-
ken responses was also shown to require careful planning 
of the technical setup and a considerable offline processing 
effort. Specifically, the authors note caveats regarding the  
large sample size needed for online studies, the increased 
(technical) noise and the effortful (pre)processing of the data. 
Similar to lab-based experiments, offline processing of the 
experimental data, i.e. participants’ audio recordings, requires 
some cumbersome classification of correctness and post-pro-
cessing of the vocal onset times within the audio files. There 
are programs to assist such tasks (Boersma & Weenink, 2020; 
Roux et al., 2017), but depending on the number of trials and 
participants, preprocessing the files can still take several days.

Typing instead of overtly pronouncing the word may be 
an alternative which could ease analyses and application. 
Indeed, studies have shown that typewritten responses can 
be a valid alternative modality of language production (Pinet 
& Nozari, 2018; Torrance et al., 2018). This highlights the 
fact that the study of written language is coequal to spoken 
language in many linguistic questions. In an online format, 
this modality may have much fewer limitations as it can be 
implemented and processed more easily. Latencies of sim-
ple key presses (e.g. “c” for correct) or mouse clicks are 
regularly used in both lab-based and online experiments. 
Since their implementation is rather undemanding, they have 
been implemented in a wide variety of online experiments, 
including psycholinguistic experiments using categorization 
tasks (Mathôt & March, 2021; Vogt et al., 2021). Analys-
ing a typed whole word response in language production 
is slightly more challenging, but it has been shown that 

typewritten responses can be pre-processed automatically, 
and a wide range of different procedures exists, even con-
trolling for typing errors (Borrie et al., 2019; Bosker, 2021; 
Navarro, 2001). Experiments with typewritten answers can 
thus be an easy-to-implement, time-efficient alternative to 
spoken responses in reaction time-sensitive language pro-
duction experiments.

To further explore the potential of web-based experiments 
targeting language, we here address three questions: (i) Can 
the well-documented cumulative semantic interference (CSI) 
effect be replicated in a web-based study design? (ii) How 
similar is the effect between two modalities, i.e. typed vs 
microphone-recorded, spoken response? (iii) What recom-
mendations can be provided regarding technical challenges 
of both approaches?

(i) Can the cumulative semantic interference (CSI) be rep-
licated online?

In Experiment 1, we set out to replicate lab-based lan-
guage production effects using the CSI paradigm in the same 
experimental platform and audio-recording method (SoSci 
Survey; Leiner, 2019; Khan, 2020) as described in Vogt 
et al. (2021; Experiment 1). The CSI paradigm requires the 
naming of several exemplars of semantic categories within 
a seemingly unrelated sequence of objects. In lab-based 
experiments, reaction times increase linearly for each addi-
tional exemplar of a category being named. If this semantic 
interference effect replicates in an online setting, we confirm 
the feasibility of time-sensitive overt naming experiments in 
participants’ web browsers.

 (ii) Are web-based recordings of the CSI effect com-
parable for spoken versus written (typed) response 
modalities?

In Experiment 2 of the current study, we ran the same 
language production paradigm on the same experimental 
platform, but collected typed instead of spoken responses 
to the target pictures. Since spoken and written language 
production share underlying linguistic processes, the experi-
ment targets the question whether typing may serve as a reli-
able alternative response modality in online experiments on 
language production which are targeting especially timing 
but also accuracy of the responses.

Of note, writing requires additional skills, acquired later 
in life. The degree of shared and unique processes in the two 
response modalities is still a matter of debate, but most theories 
assume that lexical processing stages are shared across different 
output modalities (Levelt et al., 1999; Logan & Crump, 2011; 
Pickering & Garrod, 2013; Roelofs, 2018). Keyboard typing—
today undoubtedly the major way of peer-to-peer distant inter-
action (Brandt, 2015; Pinet, Dubarry, & Alario, 2016a)—and 
handwriting diverge regarding certain aspects of motricity and 
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motor planning (e.g. for complex writing systems Higashiyama 
et al., 2015), but research suggests that they share central linguis-
tic mechanisms (e.g. Pinet, Ziegler, & Alario, 2016b; see also 
Qu et al., 2020). With regard to written versus spoken responses, 
it has been shown that both are modulated by lexical frequency, 
age of acquisition and image agreement (Bertram et al., 2015; 
Bonin et al., 2002; Pinet, Ziegler, & Alario, 2016b; Torrance 
et al., 2018). Moreover, phonological priming effects are simi-
lar in both modalities (Breining et al., 2016; Chen & Li, 2011; 
Qu & Damian, 2020; Roux & Bonin, 2012; Zhang & Damian, 
2010). For picture naming, written naming was mostly found to 
be slower compared to spoken naming (Bonin & Fayol, 2000; 
Chen & Li, 2011). Interestingly, differences tend to disappear 
when participants see what they write (Perret & Laganaro, 2013; 
Snyder et al., 2015). Extending the modality comparison to web-
based assessment may be of special interest in future studies 
targeting cohorts with special requirements since they may profit 
from assessing the effect in one rather than the other modality 
(e.g. people with aphasia, people with dysarthria).

 (iii) What are the technical challenges and how can we 
address them?

Regardless of response modality, technical demands 
of online experiments involve specific computational and 
hardware/software-related characteristics (see e.g. Groot-
swagers, 2020 for an overview of the general infrastruc-
ture of online experiments). One computational aspect 
is the integration of recording of the audio input and 
the typing latencies themselves. Recent JavaScript-based 
implementations make this possible. JavaScript is a pro-
gramming language native to all modern browsers and 
thereby does not need installation prior to testing, either 
on the programmers’ or on the users’ side. In combina-
tion with HTML and CSS, it forms the core technology 
of the World Wide Web. It is event-driven; that is, it 
allows for programming reactions to any “event” with 
high temporal precision and without reloading the web 
page. Events can, for instance, be key presses or mouse 
clicks. JavaScript can also time the presentation of ele-
ments, such as pictures and texts, defined and styled with 
HTML and CSS. JavaScript-based implementations can 
be combined with most platforms for online surveys 
and experiments which allow the experimenter to enter 
JavaScript code chunks. For the current study, audio 
recordings were acquired using a JavaScript plugin avail-
able on GitHub (Khan, 2020). For detecting key stroke 
latencies, we programmed a custom JavaScript (Stark, 
2021b) which we make available for download.

Regarding hardware and software demands, a major 
aspect is the variability between participants. A precise 
time lock between stimulus presentation and onset of 
the recording or timer is crucial. In the lab, the technical 
properties can be controlled and are mostly stable across 

participants. In online experiments, the hardware and 
software varies between participants and can corrupt data 
quality and signal-to-noise ratio (Anwyl-Irvine, Dalmaijer, 
et al., 2020a; Bridges et al., 2020). Sources of variance are 
the experimental platform and browser used, the operating 
system and the type and quality of participants’ micro-
phones and their interface to the further hardware. For 
instance, one study found that the interface between audio 
system and operating computer (analogue-to-digital and 
digital-to-analogue conversion) introduced uncontrolled 
latency jittering of about 5–10 ms (Kim et al., 2020). 
However, when put into practice, the overall noise seems 
to affect data quality less than expected. Being relatively 
stable for a single participant, we can assume relatively 
high precision for within-subject comparisons with a suf-
ficient amount of trials (Bridges et al., 2020; Pinet et al., 
2017; Vogt et al., 2021; see Baker et al., 2020 for a recent 
article on how sample size and number of trials affect 
statistical power). Regarding key presses, a previous 
study compared the objective timing of different devices 
(Reimers & Stewart, 2015). Absolute overestimation of 
RTs ranged from 30 to 100 ms on different hardware/soft-
ware systems and web browsers. The variability within a 
single system, however, was comparatively low (< 10 ms). 
Hence, the authors conclude that “within-subject compar-
ison of response times across two conditions is almost 
unaffected” in web-based research. Although estimations 
of the actual noise introduced by a single participants’ 
system are extremely difficult regarding both within- and 
between-participant data, the reported results are encour-
aging (see also more recent studies by Anwyl-Irvine et al., 
2020a, b; Bridges et al., 2020). We thus proceed from the 
assumption that the additional noise does not affect the 
interpretation of within-subject comparisons if the effects 
are well above 10 ms and if no randomization between 
participants is necessary.

In summary, the two experiments presented here are 
aimed at (i) providing confirmatory evidence that web-
based language production experiments yield reliable 
within-subject effects if a sufficient number of trials 
is employed (Experiment 1). Furthermore, we investi-
gated (ii) whether reaction time (and, exploratory, error 
rate) effects are comparable for typewritten and spoken 
response modalities (Experiment 2). Addressing the issue 
of preprocessing after data collection, we compared man-
ual and automatic classification procedures of typewritten 
answers. This aimed at (iii) improving the workflow and 
technical ease of application. To encourage broader use 
of web-based language production research, we provide 
materials and guidelines that may help researchers to plan 
their own reaction time experiments online.

Both experiments (Experiment 1: spoken responses; 
Experiment 2: typed responses) were programmed and 
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run on the platform SoSci Survey (Leiner, 2019), a Ger-
many-based platform for conducting social and behavioural 
research. For Experiment 1, audio recording was imple-
mented using the JavaScript-based plugin RecordRTC 
(Khan, 2020). For Experiment 2, the keystroke onsets were 
detected using customized JavaScript (Stark, 2021b). Mate-
rials, design and procedure of the two experiments were 
largely identical and are described in detail below and visu-
alized in Fig. 1. Both experiments and the analyses were 
preregistered on the open science framework (Experiment 
1: https:// osf. io/ dbmpu; Experiment 2: https:// osf. io/ s5gy3).

Experiment 1: CSI with Spoken Responses

Methods

Participants

Forty native German speakers between 18 and 35 years of age 
were recruited via the commercial platform Prolific (www. proli 
fic. co. uk) and completed the full experiment. Following the 
preregistered criteria, the final sample comprised only partici-
pants who reached a minimum of 80% of valid or correct tri-
als and passed the criteria to ensure sufficient attention during 
online performance. Accordingly, we excluded one participant 
who had failed the second attention check (item vs non-item), 

one due to missing audio recordings, and eight due to too many 
null responses or other errors resulting in trial loss >80%. To 
determine the necessary final sample size, we ran an a priori 
power analysis using the R package simr (Green & MacLeod, 
2016) based on estimates from a previous, lab-based continuous 
naming study (Rose & Abdel Rahman, 2016). This resulted in 
a suggested sample size of 24 for a power estimate of 80%. To 
account for expected noise in the data sample due to the online 
setting, we a priori decided to increase the estimated sample 
size by 25%. The final sample thus consisted of 30 participants 
(16 female, aged 19–35, Mage = 26.5, SDage = 5.1).

Experimental procedures were approved by the Institu-
tional Review Board of the University of Leipzig, Germany, 
in accordance with the Declaration of Helsinki (amendment 
to ethical approval AZ 144/18-ek, Ethics Committee Univer-
sity Leipzig). All participants gave their informed consent 
at the beginning of the study and were rewarded monetarily.

Material

The 160 experimental stimuli used in the study were col-
oured photographs of everyday objects. The 120 target stim-
uli consisted of 24 semantic subcategories with five closely 
related members each. For example, /shark/, /eel/, /ray/, /
goldfish/ and /dolphin/ constituted the subcategory “fish” 
as part of the superordinate category “animals”. Other cat-
egories included fruit (food), seating furniture (furniture); 
for a full list see Appendix Table 8. Additionally, 40 fillers 
were added to the overall item set (25%).

Design

The 24 categories were distributed across eight blocks 
of three categories each. To each block, five filler 
items were added, resulting in eight blocks of 20 items. 
Five block orders were created in a pseudorandomized 
fashion such that categories that shared a superordi-
nate semantic category (e.g. fish and insects: animals) 
were as far apart as possible. Trial randomization was 
done using the program MIX (Van Casteren & Davis, 
2006). Six randomized trial lists were created for each 
block order, resulting in a total of 30 randomized lists. 
When participants opened the survey in Prolific but 
did not complete the experiment, they were assigned 
a randomized list but were not listed amongst the 40 
paid participants. Due to the random assignment of the 
lists by SoSci Survey, few lists were hence used several 
times, whereas others were not used at all. Trial rand-
omization was constrained in that within each block, 
members of each category were separated by at least 
two (lag = 2) and a maximum of eight items (lag = 8), 
including fillers and members of different categories. 

Fig. 1  Overview of the experimental procedures in Experiments 1 
and 2
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Note that previous research suggests that lag, i.e. the 
distance between two ordinal positions within one 
semantic subcategory, does not affect the cumulative 
semantic interference effect across ordinal positions 
(e.g. Schnur, 2014).

Procedure

The experiment started with an instruction of the gen-
eral procedure to which the participants consented. They 
were then familiarized with the materials by presenting 
eight pictures each on the screen with their names writ-
ten underneath. The participants were instructed to look 
at the pictures closely, read their names (if possible, 
aloud), and to proceed to the next set of pictures in a 
self-paced manner by pressing the space bar or enter key. 
After familiarization, a catch trial showed two previously 
seen and two novel items to check whether participants 
had paid attention to the pictures. Response was manda-
tory but was only used for later assessment of data qual-
ity, and participants were able to proceed regardless of 
their answer. This was followed by instructions to allow 
the browser to access the computer microphone. After 
that, participants were instructed to name each presented 
picture as quickly and accurately as possible. Follow-
ing four practice trials, the main task started. After a 
fixation cross, presented for 500 ms, the target picture 
appeared for 2 s. The audio recording was started with 
the appearance of the picture and lasted for 2.5 s. The 
next trial started automatically. After completion of the 
160 trials, the experiment finished with another atten-
tion check (two previously named and two novel items), 
a debriefing page and the option to leave comments. 
The whole experiment lasted around 15 min on average 
(range = 10–20 min).

Data Processing

The recorded audio files were retrieved from the SoSci 
Survey server and converted into wav files. Vocal onset 
times (VOTs) were detected using the Chronset algo-
rithm (Roux et al., 2017) and checked manually using a 
customized Praat script (Boersma & Weenink, 2020; van 
Scherpenberg et al., 2020). The final VOTs were deter-
mined at the start of each word, excluding stuttering or 
“uhms”. These VOTs were considered the overt response, 
i.e. the reaction times.

From the overall 4800 observations (160 tr i-
als × 30 participants), 100 were excluded due to miss-
ing responses or technical errors. A total of 269 trials 
were excluded due to incorrect naming. These included 
semantic errors (e.g. “car” for “carriage”, n = 187), 
naming of unrelated words (e.g. mushroom for ball, 

n = 31) or other errors such as naming of articles before 
the word or stuttering (n = 51). On average, 7.69% of 
participants’ responses were considered as incorrect 
(SD = 3.85%).

Statistical analyses were thus based on 3264 observations 
(4800 observations excluding the 1200 filler trials (40 tri-
als × 30 participants) and 369 erroneous trials).

Statistical Analyses

Statistical analyses for both experiments were done in R 
(version 4.0.2; R Core Team, 2020). Following the proce-
dure suggested by Lo and Andrews (2015), to account for 
the non-normal, skewed distribution of the raw reaction 
time data, generalized linear mixed models (GLMM) were 
run with a gamma distribution and identity link function 
using the R package lme4 (version 1.1-23; Bates et al., 
2014). P-values were calculated using the Wald Z-statis-
tics. Reaction times (RTs) were entered as the dependent 
variable, and ordinal position as a continuous, mean-
centred predictor. The model converged with the fully 
specified crossed random effects structure (Barr et al., 
2013) including intercepts and slopes of the ordinal posi-
tion for both subjects and categories. For the exploratory 
analyses of error rates, a generalized linear mixed model 
with a binomial distribution was computed. Initially, the 
model was specified with the same fully crossed random 
effects structure as for the RT analyses. Due to conver-
gence problems, we then adopted our preregistered model 
reduction procedure, following the recommendations by 
Brauer and Curtin (2018) by increasing the number of 
optimizer iterations to 2 ×  105, and subsequently reduc-
ing the random structure. The model converged with a 
random intercept for subjects and a random intercept and 
slope for categories. Anonymized data and scripts are 
provided on the Open Science Framework: https:// osf. 
io/ w6ptm/.

Results

The mean RTs across ordinal positions are visualized in 
Fig. 2. As can be seen, they follow a linear increase with 
a plateau at ordinal position 4. To confirm this linear trend 
statistically, we ran a GLMM as described above with a 
fully specified random structure. The results are sum-
marized in Table 1. This confirmed that RTs increased 
significantly with an average of ~31 ms per ordinal posi-
tion. As shown in Table 2, error rates also increased with 
ordinal position. Averages for each participant and each 
category (RTs and error rates) are provided in Appendix 
Figs 6 and 7.
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Experiment 2: CSI with Typewritten Picture 
Naming

Methods

Participants

For Experiment 2, another group of 33 native German 
speakers aged between 18 and 35 years was recruited via 
Prolific (www. proli fic. co. uk), none of whom had partici-
pated in the first experiment. All participants entered the 
experiment using a computer or laptop and a QWERTZ 
keyboard, the most widely used keyboard type in Germany. 

Based on our preregistered inclusion criteria, which were 
identical to Experiment 1 (a minimum of 80% of valid trials 
in the CSI task and correct answers in the attention checks), 
three participants were excluded1. Thus, the final sample 
consisted of 30 participants (nine female; four left-handed; 
aged 18–35, Mage = 25.4, SDage = 4.6). Their mean typing 
speed was 15.3 five-character words per minute (SD = 7.5; 
range 4.0 to 34.1), and their accuracy was 80% (SD = 9.5; 
range 64 to 94), as assessed by a typing test (see below).
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Fig. 2  Mean naming latencies (RTs) in milliseconds as a function of 
ordinal position. Note. Mean reaction times (RTs) were calculated 
across semantic categories and participants. Error bars show stand-
ard errors of the mean. Values were adjusted for within-participant 

designs using the method suggested by Morey (2008) as implemented 
in the summarySEwithin( ) function from the R package Rmisc 
(Hope, 2013)

Table 1  Generalized linear mixed model (GLMM) with gamma identity link function predicting vocal onset latencies (RTs) by ordinal position

Number of participants = 30; number of categories = 24; total N = 3264; SE = standard error; CI = confidence interval around the estimate; 
LL = lower limit; UL = upper limit. P-values are based on a Wald Z-test. Significant p-values of p < .05 are shown in bold

Effect Estimate SE 95% CI t-value p

LL UL

Model: RT ~ ordinal position + (ordinal position | subject) + (ordinal position | category)
Fixed effects

  Intercept 1007.04 7.78 991.80 1022.28 129.51 < .001
  Ordinal position 30.78 5.87 19.29 42.28 5.25 < .001

1 One of these participants was excluded based on her comment that 
she was living abroad and was no longer used to typing in German. 
The other two were excluded due to trial loss >20%.
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Sample size was determined to be identical to Experi-
ment 1, and an a priori power analysis (simr, version 1.0.5; 
Green & MacLeod, 2016) based on the fixed and random 
estimates from Experiment 1 suggested a power >85% to 
detect an effect of similar magnitude with 30 participants. 
Experimental procedures were approved by the local ethics 
board of the Humboldt-Universität zu Berlin, in accordance 
with the Declaration of Helsinki (ethical approval 2020-
68). All participants gave their informed consent and were 
rewarded monetarily.

Material, Design and Procedure

The 160 experimental stimuli were identical to Experiment 
1, and design and procedure of both experiments were kept 
largely identical. The different response modality resulted in 
four modifications of the design of Experiment 1: (1) Upon 
opening the study link, participants were screened for using a 
QWERTZ keyboard (i.e. the six first letters of the upper letter 
row being Q, W, E, R, T and Z) using a custom JavaScript 
plugin (based on the comparison of the event.key( ) and event.
code( ) methods, available at https:// github. com/ kirst ensta rk/ 
typing_ RTs_ JS). This was done to ensure that all participants 
had direct keys for all German letters (e.g. “ö” and “ß”) and 
that key positions were identical between participants. (2) 
During the familiarization with the material, pictures and 
picture names were presented one after another at a central 
position on the screen. For each picture, the participants were 
instructed to type the picture name at their own pace in a 
text box displayed underneath the picture. Participants saw 
what they typed and were allowed to correct answers using 
the backspace button. To keep the familiarization compara-
ble to Experiment 1, no feedback on the correctness of the 
typed answer was given. Prior to the familiarization, partici-
pants had been instructed to enable the caps lock key and to 

write all letters in upper case. Regardless of whether they 
adhered to the instructions, the typed characters were always 
displayed in capital letters. Because German nouns start 
with a capital letter, this was done to accustom participants 
to not press the shift key upon the beginning of each typed 
word. (3) During the main experimental task, participants 
were instructed to type the name of each presented picture 
as quickly and accurately as possible. They were informed 
that single spelling mistakes (“typos”) were not a problem. In 
each trial, a fixation cross—identical to Experiment 1—was 
presented for 500 ms after the page was fully loaded. The 
following target picture was displayed for 6 s (as opposed 
to 2 s in Experiment 1) or until the space bar or enter key 
was pressed. Like during familiarization, the typed answers 
appeared in a text box below the target picture, and correc-
tions using the backspace key were allowed. (4) At the end 
of the experiment, to achieve an accurate sample descrip-
tion, participants performed a typing test in which they cop-
ied three texts of ~155 characters each in their usual typing 
speed. Participants’ typing accuracy and speed were calcu-
lated by taking the percentage of five-character words con-
taining no errors or backspaces and by dividing the number 
of correct five-character words by the total time needed for 
all five-character words (see Crump & Logan, 2010; Pinet, 
Dubarry, & Alario, 2016a). The whole experiment lasted 
around 28 min on average (range = 19–55 min).

Although the experimental platform SoSci Survey is 
mainly PHP-based, HTML, CSS and JavaScript code can 
be implemented to customize a survey. Thus, keystrokes, 
keystroke latencies and typed words were collected in the 
main experimental task using a custom script that relied on 
the JavaScript document.addEventListener( ) and keydown( )  
methods, and the general JavaScript object Date(). The 
JavaScript code and an implementation for SoSci Survey 
are available on GitHub (Stark, 2021b).

Table 2  GLMM with binomial distribution predicting error rates by ordinal position

Number of participants = 30; number of categories = 24; total N = 3600; SE = standard error; CI = confidence interval around the estimate; 
LL = lower limit; UL = upper limit; M = mean; SEM = standard error of the mean (Morey, 2008); erroneous trials = number of trials per ordinal 
position that were excluded due to errors (technical or answer-based). P-values are based on a Wald Z-test. Significant p-values of p < .05 are 
shown in bold

Effect Log-odds SE 95% CI z-value p

LL UL

Model: errors ~ ordinal position + (1 | subject) + (ordinal position | category)
Fixed effects

  Intercept −2.74 0.24 −3.20 −2.27 −11.45 < .001
  Ordinal position 0.15 0.06 0.04 0.26 2.64 .008

Percentage of erroneous 
trials

Ordinal position
1 2 3 4 5

  M 6.94 9.58 8.06 9.72 12.36
  SEM 0.85 0.85 0.88 1.11 1.07
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Data Processing

Manual Preprocessing The correctness of collected word 
entries was classified half automatically based on our pre-
registered trial exclusion criteria, using custom scripts in R 
and Excel. Word entries were considered as correct if the 
expected picture name or an accepted synonym (see Appen-
dix Table 8) was entered. As reaction time analyses relied 
on the latency of the first keystroke only, word entries were 
also considered correct when the first character was correct 
and the typed word was recognizable for the coding experi-
menter despite typing errors. For each valid trial, the latency 
of the first keystroke was considered as the beginning of the 
overt response, i.e. the reaction time.

Automated Preprocessing In comparison to the time-con-
suming preprocessing of spoken responses, the preprocess-
ing of typed responses is less effortful because reaction 
times can be determined online. However, manually clas-
sifying the correctness of typed word entries still takes a 
considerable amount of time (Borrie et al., 2019). Auto-
mated assessment of typed responses can be a highly effi-
cient and replicable method (within and between raters) to 
further reduce the effort (Bosker, 2021). To test the appli-
cability of automated assessment in typed picture naming, 
we compared our semi-automatic/manual classification to 
an automated classification procedure using the Jaro dis-
tance. The Jaro distance (Jaro, 1989, 1995) is a heuristic 
metric that compares character strings based on the num-
ber of and distance between matching characters, assuming 
that mismatches and transpositions between close charac-
ters are more likely to represent typing mistakes than mis-
matches between distant characters. It is implemented in 
the stringdist(method = “jw”, p = 0) function of the string-
dist package in R (version 0.9.6.3; van der Loo, 2014). The 
metric is bounded between 0 and 1 (0 representing identi-
cal strings and 1 representing complete dissimilarity) and 
tailored specifically to human-typed, rather short strings 
(Bosker, 2021; van der Loo, 2014).2 For the exact formula 
applied, we may refer to van der Loo (2014).

During the automated preprocessing, we (1) deleted 
space or enter keys at the end of a word string, (2) computed 
backspace-corrected word entries, e.g. by replacing “CHE-
BackspaceAIR” with “CHAIR”, and (3) calculated the Jaro 

distance dJaro between each backspace-corrected word entry 
and the picture name or accepted naming alternatives. The 
list of accepted naming alternatives was generated before and 
during the manual classification of spoken (Experiment 1) 
and typed responses (Experiment 2). A “best match” alterna-
tive naming was favoured over the actual picture name when 
the first character of the typed word entry and the alternative 
were identical and their Jaro distance was lower than the dis-
tance between word entry and picture name. (4) Finally, word 
entries were classified for correctness and different error types. 
A word entry was classified as correct if the first letter was 
typed correctly (i.e. item or “best match” alternative and word 
entry started with the same character, before and after back-
space correction) and the Jaro distance was dJaro < .3. A word 
entry was classified as incorrect if the first typed key was a 
special character, such as shift, space or backspace, or an incor-
rect character, or if the Jaro distance was dJaro ≥ .3. All steps 
described above were implemented in separate R functions 
which can be found on GitHub (Stark, 2021a; https:// github. 
com/ kirst ensta rk/ strin gmatch_ typed_ naming).

Statistical Analyses

Manual vs Automated Preprocessing

We compared the manual/half-automatic and automated 
classification procedures and found that, across participants, 
only 0.60% of all trials were classified differently: Of the 
4800 trials, eight trials manually classified as incorrect were 
classified as correct in the automated procedure (“new cor-
rect trials”), and 21 trials manually classified as correct were 
now considered as incorrect (“new incorrect trials”). The 
classification differences mainly occurred for the following 
reasons: (1) Participants backspace-corrected an accepted 
alternative, changing the first character of the word entry 
(n = 13 new incorrect words; e.g. BURBackspaceBackspace-
BackspaceBackspaceSCHLOSS [BUR(G) vs SCHLOSS; 
engl. castl(e)…fortress]), (2) they misspelled the beginning 
of a word with a phonologically similar phoneme (n = 6 new 
incorrect words; e.g. PFEILE instead of FEILE [engl. similar 
to wrasp instead of rasp]), (3) they typed orthographically 
similar words (n = 2 new correct words; e.g. KESSEL [engl. 
kettle] instead of KELLE [engl. ladle]) or (4) they typed 
only parts of the picture name (n = 5 new correct words; e.g. 
GESCHIRR [engl. dish] instead of GESCHIRRSPÜLER 
[engl. dishwasher]). These unwarranted misclassifications 
can be considered negligible since the correlation between 
manual/semi-automatic and automated classification was 
close to perfect (Pearson’s r = .97). The formula-based auto-
mated classification matched the intuitive manual classifica-
tion almost completely. Therefore, we hereafter report the 

2 To date, there are several distance metrics available, each with spe-
cific characteristics and applications. We chose to base our analysis 
on the Jaro distance because this metric was tailored specifically to 
short string inputs. A comparison between different string matching 
metrics, including the Jaro–Winkler distance, the Levenshtein dis-
tance, the restricted Damerau–Levenshtein distance and the Jaccard 
bi-gram distance, is reported in Appendix 3.
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results based on the automated classification procedure. For 
comparison, we report the RT results based on the manual 
classification in Appendix 4, which are largely identical.

Typing Errors

On average, 10.85% (SD = 4.73%) of word entries per partici-
pant were classified as incorrect. The different error types are 
summarized in Table 3. The final statistical analyses of reaction 
times were thus based on 3178 observations (4800 observations 
excluding the 1200 filler and 521 erroneous trials [99 erroneous 
trials were fillers]), while the exploratory analyses of error rates 
were based on all 3600 observations.

To analyse participants’ errors of typed responses, a 
generalized linear mixed model (GLMM) with a binomial 
distribution was fitted to predict the error rates by ordinal 
position. The model converged after increasing the num-
ber of iterations to 2 ×  105 and restricting the correlation 
parameters to zero. P-values were calculated using the Wald 
Z-statistics.

Reaction Time Analyses

As for Experiment 1, the distribution of the raw reaction 
times was skewed. Therefore, a GLMM with a gamma 
distribution and identity link function was fitted to predict 
reaction times (RTs) by continuous, mean-centred ordinal 
position. P-values were calculated using the Wald Z-statis-
tics. The model converged with the fully specified crossed 
random structure (Barr et al., 2013) including intercepts and 
slopes of the ordinal position for both subjects and catego-
ries. Anonymized data and scripts can be found on the open 
science framework: https:// osf. io/ gmnc8/.

Results

The mean reaction times, i.e. the latencies between picture onset 
and first keystroke (visualized in Fig. 3) show a linear increase 
with ordinal position. The GLMM confirmed this linear trend: 
RTs increased significantly with an average of ~42 ms per addi-
tional member of each category (Table 4). The error rates did 
not differ statistically between ordinal positions (Table 5). See 
Appendix Figs.  8 and 9 for a visualization of the CSI effect and 
of the error rates for each participant and category separately.

Figure  4 shows a comparison of the linear trend and 
error rates found in our web-based experiments with those 
from a collection of several lab-based experiments using the 
same paradigm (see Table 6 for a detailed comparison of the 

Table 3  Automated classification of typed word entries

Identical = participants typed the exact (alternative) picture name; corrected = participants backspace-corrected their word entry to the exact 
(alternative) picture name; dJaro < .3 = the Jaro distance between participants’ backspace-corrected word entries and (alternative) picture name 
was below .3; NA = no keystroke was detected (no answer given or technical error); special key start = participants started by pressing the space, 
backspace, caps lock or enter key; shift start = participants started by pressing the shift key (which would be correct for German nouns if partici-
pants had not been instructed to enable the caps lock key and write everything in upper case); dJaro ≥ .3 = the Jaro distance between participants’ 
backspace-corrected word entries and (alternative) picture names was greater than or equal to .3; first letter error = the first typed characters of 
word or backspace-corrected word were different from the first letter of the (alternative) picture name; combined = the Jaro distance exceeded the 
threshold for correctness (dJaro ≥ .3) and the first typed letter was incorrect (first letter error)

Correct Total Based on picture name Based on alternative naming

Identical Corrected dJaro < .3 Identical Corrected dJaro < .3

4279 (89%) 3519 (82.24%) 301 (7.03%) 133 (3.11%) - 302 (7.06%) 24 (0.56%)

Incorrect Total NA Special key start Shift start dJaro ≥ .3 First letter error Combined
521 (11%) 153 (29.37%) 25 (4.80%) 10 (1.92%) 12 (2.30%) 231 (44.34%) 90 (17.27%)

Fig. 3  Mean typing latencies (RTs) in milliseconds as a function of ordi-
nal position. Note. Mean reaction times (first keystrokes) were calculated 
across semantic categories and participants. Error bars show standard 
errors of the mean. Values were adjusted for within-participant designs 
using the method suggested by Morey (2008) as implemented in the  
summarySEwithin( ) function from the R package Rmisc (Hope, 2013)
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collection of studies). As can be seen, the magnitude of the 
CSI effect (RT increase per ordinal position) in our web-based 
experiments with spoken responses fits well into that range, 
whereas the typed responses yield a numerically larger CSI 
effect. Error rates from both experiments fit well into the 
range reported in the lab-based experiments.

Post Hoc Power Analyses

To inform future online language production experiments, we 
conducted post hoc power analyses for RT effects at different 
sample sizes and category numbers using the powerCurve func-
tion of the simr package in R (Green & MacLeod, 2016). As the 
function did not work for the GLMMs with gamma distribu-
tions used in our main analyses, we log-transformed the RT data 
and used a linear mixed model instead. Otherwise, the models 
were kept identical3 and the experimental effect sizes were 
used (Experiment 1:  Estimatelog(RT) = 0.028, pSatterthwaite < .001; 

Experiment 2:  Estimatelog(RT) = 0.030, pSatterthwaite < .001). For 
each estimation, the number of simulations was n = 1000.

Figure 5 shows the estimated power for increasing cate-
gory and sample sizes of Experiments 1 and 2. The resulting 
total number of trials for each of the analyses is displayed 
in Table 7. The power estimations at different samples sizes 
were almost identical for both experiments, but relatively 
higher at smaller category sizes for typed than for spoken 
responses. Both experiments (30 subjects and 24 catego-
ries × 5 exemplars) yielded significant results in each of the 
1000 simulations. Power, i.e. the percentage of significant 
results assuming that the effect is actually there, started to 
decrease with 10 subjects and 24 categories or 30 subjects 
and eight categories (1200 trials each before trial exclusion), 
and dropped below 80% with six subjects in both response 
modalities or six categories in the spoken naming task.

Discussion

In this study, we set out to replicate the cumulative seman-
tic interference (CSI) effect in a web-based setting, com-
paring two response modalities for feasibility and validity, 

Table 4  Generalized linear mixed model (GLMM) with gamma identity link function predicting typing latencies (RTs) by ordinal position

Number of participants = 30; number of categories = 24; total N = 3178; SE = standard error; CI = confidence interval around the estimate; 
LL = lower limit; UL = upper limit. P-values are based on a Wald Z-test. Significant p-values of p < .05 are shown in bold. The model structure 
was identical to Experiment 1 (see Table 1)

Effect Estimate SE 95% CI t-value p

LL UL

Model: RT ~ ordinal position + (ordinal position | subject) + (ordinal position | category)
Fixed effects

  Intercept 1298.49 11.43 1276.08 1320.90 113.56 < .001
  Ordinal position 41.68 6.83 28.29 55.06 6.10 < .001

Table 5  GLMM with binomial distribution predicting error rates by ordinal position

Number of participants = 30; number of categories = 24; total N = 3600; SE = standard error; CI = confidence interval around the estimate; 
LL = lower limit; UL = upper limit; M = mean; SEM = standard error of the mean (Morey, 2008); erroneous trials = number of trials per ordinal 
position that were excluded due to errors (technical or answer-based). P-values are based on a Wald Z-test. Significant p-values of p < .05 are 
shown in bold

Effect Log-odds SE 95% CI z-value p

LL UL

Model: Errors ~ ordinal position + (ordinal position || subject) + (ordinal position || category)
Fixed effects

  Intercept –2.25 0.16 –2.57 –1.93 –13.89 < .001
  Ordinal position 0.05 0.05 –0.04 0.15 1.06 .291

Percentage of erroneous 
trials

Ordinal position
1 2 3 4 5

  M 10.42 12.08 11.39 11.53 13.19
  SEM 1.34 1.17 1.35 1.26 1.77

3 Only the model for typewritten responses was slightly adjusted. It 
converged only after the number of iterations was increased to 2 × 
105 and the random slope of the ordinal position for the categories 
was dropped.
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namely spoken and typed responses. A stable effect in 
lab-based language production research, the CSI effect is 
elicited for each new member of a previously presented 
category in the continuous naming paradigm with con-
secutive naming of seemingly unrelated pictures. In the 
two experiments presented here, we ran the CSI paradigm 
through participants’ web browsers using the platform 
SoSci Survey. In Experiment 1, the participants’ micro-
phones were accessed, and their spoken responses were 
recorded through a JavaScript implementation. In Experi-
ment 2, the first keystroke of each typed target word was 
used as the response variable, which was assessed by a 
custom JavaScript plugin (Stark, 2021b). In both online 
experiments, we were able to replicate the linear increase 
in reaction times for each additional category member. 
Additional exploratory analyses showed that error rates 
also increased for additional category members in spoken, 
but not in typed responses. Although a direct comparison 
between lab-based and online assessment was not per-
formed, we show that, overall, both speed and accuracy 
matched well with previous lab-based studies. Our results 
thereby add to the growing body of evidence that language 
production research can be conducted in online settings 
(Fairs & Strijkers, 2021; Vogt et al., 2021). Moreover, we 
show that measures of typewritten responses provide a val-
uable tool for online language production research which 
can be automatically analysed, thus reducing workload and 
time investment for data processing.

Comparison between different response modalities 
(spoken/typewritten)

The results of Experiment 1 using overt spoken responses 
revealed a stable CSI effect with a linear trend of ~31 ms. 
Moreover, an analysis of overall errors revealed a signifi-
cant increase in error rates across ordinal positions. The 
effect is quite large, which may be related to the use of 
semantic subcategories with closely related items. Such 
narrow categories have been shown to result in stronger 
CSI effects compared to main categories with distantly 
related items (Rose & Abdel Rahman, 2016). Moreover, 
the randomization in our design was done within blocks of 
categories, rather than across the whole stimulus list, lead-
ing to a slight predominance of short compared to long 
lags between category members, which may additionally 
have increased the effect, although previous research sug-
gests that lag does not strongly affect the linear increase 
of reaction times in the CSI paradigm (e.g. Schnur, 2014).

In Experiment 2, we assessed typing as an alternative 
response modality to measure reaction times in language 
production research. Both handwritten and typewritten 
responses have previously been used in picture-naming 

experiments (Baus et al., 2013; Bonin et al., 2002; Pinet 
et al., 2015; Pinet, Dubarry, & Alario, 2016a; Qu et al., 
2016; Qu & Damian, 2020; Torrance et al., 2018; Zhang 
& Damian, 2010). However, to the best of our knowledge, 
no study using typewritten responses has tested seman-
tic interference effects. Our study is therefore the first to 
provide evidence on this response modality in a reaction 
time-dependent semantic interference task such as the CSI 
paradigm. We find a strong and stable CSI effect also for 
typed responses. This effect of ~42 ms per ordinal position 
is numerically even stronger when compared to Experiment 
1 (spoken responses) and to comparable lab-based CSI 
experiments. Moreover, the effect shows a larger variance, 
and typed responses were overall much slower than spoken 
responses (by ~100 ms). The latter is in line with previous 
reports (e.g. Bonin & Fayol, 2000). Additionally, latency 
also increased with ordinal position. Additionally, latency 
differences in the present study may stem from the different 
stimulus familiarization procedures in Experiments 1 and 2. 
In the spoken naming task, participants saw the pictures in 
groups of eight pictures each and proceeded in a self-paced 
manner, while in the typewritten naming task, participants 
were familiarized with the pictures individually and typed 
each picture name. Research suggests that the overt pro-
duction of the picture names may lead to deeper processing 
of both the visual details and the verbal labels of pictures 
(Hourihan & Churchill, 2020), which in turn can affect nam-
ing latencies. Yet another explanation of the longer nam-
ing latencies could be a technical one. Comparing actual 
keystroke latencies and the latencies recorded online, previ-
ous studies reported online latencies for each keypress to be 
~30–100 ms slower than the actual latencies, depending on 
the hardware, operator system and browser used (Pinet et al., 
2017; Reimers & Stewart, 2015). While it seems unlikely 
that the ~100 ms overall difference of spoken and typewrit-
ten latencies reported here can be explained uniquely by a 
smaller technical delay in the audio recordings, an actual 
comparison of lab-based and online recorded latencies is 
pending. Beyond these technical caveats, the robust demon-
stration of the CSI effect for the typed modality suggests an 
origin at the lexico-semantic processing level independent 
of output modality, as proposed by most theoretical accounts 
of cumulative interference (e.g. Levelt et al., 1999; Roelofs, 
2018). Although not a primary target of the present study, 
similar CSI effects between the two modalities speak for 
an origin at the conceptual or lexical level (Abdel Rahman 
& Melinger, 2009, 2019; Howard et al., 2006; Oppenheim 
et al., 2010). An origin at the articulatory or word form level, 
as has been proposed based on picture-word interference 
tasks (Mahon et al., 2007; Navarrete et al., 2010), would 
predict substantial differences between the two modalities 
tested here.
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While latency effects dominate in neurotypical par-
ticipants, semantic interference has also been reported 
in increased error rates, especially in the PWI or blocked 
cyclic naming paradigm (e.g. Belke et al., 2005; Caramazza 
& Costa, 2000; Damian et al., 2001; Gauvin et al., 2018; 
Starreveld & La Heij, 2017). In the CSI task, the effect of 

semantic interference on error rates is still inconclusive as 
only some studies did find error effects by ordinal posi-
tion (Howard et al., 2006; Schnur, 2014 vs Rose & Abdel 
Rahman, 2016). This may be one reason why we found an 
error-based CSI-effect for the spoken, but not in the typed 
responses. The longer overall latency for typed responses 
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and the different quality of the potential sources of errors 
(e.g. keystroke accuracy due to motoric/typing skills) may 
have obscured the effect for typed responses in the present 
study. The cumulative interference in error rates for the spo-
ken response modality, however, aligns with models assum-
ing a lexico-semantic locus of the effect, where inhibited tar-
get retrieval may result in slower naming latencies as well as 
erroneous naming (Abdel Rahman & Melinger, 2009, 2019; 
Levelt et al., 1999; Oppenheim et al., 2010; Roelofs, 2018; 
Schnur, 2014).

Taken together, these data supplement previous studies 
showing that effects that are already well established in spo-
ken naming can also be found in written naming (Pinet & 
Nozari, 2018; Torrance et al., 2018). This highlights that a 
number of the experimentally described effects are related 
to linguistic processes which support language production 
supra-modally. Our study shows that this holds for the CSI 
effect which most plausibly arises at a level independent of 
the output modality. The finding is encouraging for other 
aspects of language production research. Notwithstanding, 
we may highlight that in instances which require modality-
specific processing, the difference is expected to be relevant. 
This pertains, for instance, to the assessment of articulation-
related processes, or research on written language processing 
per se. Moreover, in elderly participants, typed (as opposed 
to handwritten) responses may not be as fluent, an aspect 

which is also of great importance when including partici-
pants with an acquired brain lesion.

Methodological implications: Lab‑based CSI 
effects can be replicated online

Our findings support the feasibility of collecting overt lan-
guage production samples from participants at their homes 
using JavaScript-based plugins which can be implemented 
in many online platforms. This could be particularly useful 
to collect data from participants across different time points, 
nationalities or social backgrounds, increasing the diversity 
of the sample usually included in psycholinguistic research.

It also opens the perspective to test participants with an 
acquired language disorder (most notably stroke-induced 
aphasia). Long-term follow-up, especially regarding sci-
entifically motivated questions, is often hampered by the 
efforts related to re-inviting and transporting the patient to 
the respective institution. As a caveat, computer competence 
and access to web browsers need to be assessed in such popu-
lations. Moreover, distortions of articulation (spoken modal-
ity) and/or impairments of fine motor skills (typing) need to 
be respected. The fact that we showed qualitatively similar 
effects for both modalities is encouraging, potentially allow-
ing for the use of the respectively less impaired modality.

In most experiments investigating keystroke latencies or 
typewritten responses, participants were screened for their 
typing abilities, restricting the analyses on skilled or expert 
typists (Pinet et al., 2015; Pinet, Dubarry, & Alario, 2016a; 
Scaltritti et al., 2017; but see also e.g. Baus et al., 2013). Our 
results show that refraining from such restrictions still allows 
for the robust demonstration of a semantic interference effect. 
By including the “normal” range of typing abilities, we were 
able to collect our participants from the same population as in 
Experiment 1. Furthermore, the fact that the CSI effect can be 
found across a relatively wide range of typing abilities sug-
gests its high reliability even in online settings. However, it 
should be noted that people subscribed to online experimen-
tal platforms such as Prolific are probably more experienced 
typists, an issue which will be of relevance in elderly popula-
tions and in people with an acquired language or cognitive 
and/or motor deficit. We will address this issue in a follow-up 
study including participants with mild to moderate aphasia.

Technical implications: Reducing 
preprocessing efforts

In a previous language production experiment using SoSci 
Survey and the JavaScript plugin described here (Vogt et al., 
2021), the file lengths of the sound recordings were reported 
to vary between or even within participants, the reason for 

Fig. 4  a Mean naming latencies (RTs) in milliseconds (normalized 
to the first ordinal position) and b mean error rates as a function of 
ordinal position across several experiments using the CSI paradigm. 
Note. The lab-based studies summarized here are the following: Costa 
et al., 2009 (only RTs); Howard et al., 2006; Hughes & Schnur, 2017 
(only RTs); Mulatti et al., 2014 (only RTs); Rose & Abdel Rahman, 
2016; Schnur, 2014. A detailed comparison of online and lab-based 
studies can be found in Table 6. Mean reaction times and error rates 
for each ordinal position were extracted from tables or plots reported 
in the respective papers or from raw data. Where available, error 
bars represent 95% within-subject confidence intervals (CI) around 
the mean. Unfortunately, the method applied for CI calculation was 
not always available, but most studies applied the methods suggested 
by Loftus and Masson (1994), Masson and Loftus (2003) or Morey 
(2008), whose CI sizes should be directly comparable (according to 
Morey, 2008). To increase the visibility of the plot, error bars were 
jittered around the ordinal positions. a To report the overall CSI 
effect, the mean of the first ordinal position was subtracted from the 
respective means of the other ordinal positions. As can be seen, the 
effect from spoken responses in the current online study (Experiment 
1) is comparable to effects from lab-based CSI experiments, whereas 
typed responses (Experiment 2) resulted in a stronger cumulative 
semantic interference effect at a higher variance. b As can be seen 
from panel B, the means and variances of error rates from spoken and 
typed responses in the current study are within the range of errors in 
previous lab-based experiments. Taken together, both speed and accu-
racy of spoken responses in the current online study (Experiment 1) 
are comparable to lab-based CSI effects, whereas the typed responses 
(Experiment 2), with a comparable accuracy, result in a numerically 
stronger but more variable cumulative semantic interference effect 
(speed)

◂
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this variation being still unknown (for a discussion on pos-
sible reasons see below). This was the case also in the cur-
rent sample. We therefore additionally assessed the interac-
tion of ordinal position and file length (z-transformed) in a 
statistical model. The interaction term was not significant 
(estimate = 4.37, SE = 3.8, t = 1.147, p = .251), meaning that 
variation in file lengths did not influence the effect.

Importantly, our results are encouraging regarding an 
aspect of preprocessing of the data. Since both options 
(spoken vs typed responses) yielded similar effects, the 
cumbersome preprocessing of spoken responses may 

be eased by the use of typewritten responses in some 
research scenarios. Despite automated vocal onset detec-
tion through algorithms such as that provided by Chron-
set (Roux et al., 2017), all data has to be double-checked 
by the (native speaker) experimenter for accuracy of the 
response and the VOT, resulting in potentially hours or 
days worth of workload. This may be especially challeng-
ing if the data quality is poorer in online when compared 
to the lab-based acquisition (Fairs & Strijkers, 2021; 
Vogt et al., 2021), increasing the need to carefully check 
the data.

Fig. 5  Results of the post hoc power analysis for the fixed effect of 
ordinal position at varying sample sizes (a) and category numbers (b) 
in Experiments 1 and 2. Note. Plots show the estimated power, i.e. the 
percentage of significant effects assuming that the effect is there, at 
a different sample sizes (and 24 categories) and b different numbers 
of categories (and a sample size of 30 participants). The line graphs 
show the estimated power for spoken (turquoise/light grey) and typed 
naming (dark blue/dark grey) with vertical lines representing the 95% 
confidence interval around the mean. The dotted horizontal line rep-

resents a power of 80%. The jittered dots represent the p-values for 
each of the 1000 simulations, and the dashed horizontal line repre-
sents a p-value of .05, the cut-off for a simulation to be considered 
significant. X-axis breaks were chosen such the combinations of sub-
jects and categories resulted in similar numbers of trials in estima-
tions displayed in plots a and b, respectively (see Table 7). Twenty-
four categories and 30 participants—the break on the far right in both 
plots—is the actual post hoc power of the experiments

Table 7  Numbers of trials (before trial exclusion) at different sample sizes and numbers of categories

Varying number of subjects Varying number of categories

n (Subjects) n (Categories) Total N trials n (Subjects) n (Categories) Total N trials

30 24 3200 30 24 3200
24 24 2880 30 19 2850
20 24 2400 30 16 2400
16 24 1920 30 13 1950
10 24 1200 30 8 1200
8 24 960 30 6 900
6 24 720 30 4 750
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Within the typewritten response modality, we were able 
to drastically reduce data-processing efforts. With a cus-
tom R script (Stark, 2021a) and an R package with func-
tions for comparing string inputs (van der Loo, 2014), we 
tested automated classification of the typed responses. As 
this method produced near-identical classification when 
compared to manual processing, and an identical statistical 
effect, it is an effective way to reduce workload in language 
production experiments. Beyond doubt, spoken production 
is the most relevant target. However, to make large cohort 
assessments possible, the typewritten response modality may 
complement a number of exciting research questions to be 
addressed in the field.

Recommendations for running language 
production experiments online

Based on the two experiments reported here, we may high-
light some recommendations for future experiments. For 
both the spoken and typewritten modality, we observed large 
effects at high power. While the power remains high even 
for a relatively small number of trials, our post hoc power 
analysis for the spoken response modality suggests that the 
number of trials per participant, i.e. the number of categories 
in the CSI task, affects the power more strongly than the 
number of participants, confirming previous reports (Vogt 
et al., 2021). Thus, a reasonable number of trials per par-
ticipant should be implemented. Paradigms with many trials 
and within-participant manipulations such as the CSI para-
digm reported here seem to elicit robust effects, potentially 
counteracting the negative effects of a less controlled setting 
at the participants’ homes compared to a lab environment, 
technical disturbances or potential non-compliance. This 
may allow for testing more diverse populations to increase 
ecological validity.

For the technical implementation of both audio record-
ings and typewritten latencies, we recommend lean JavaS-
cript-based implementations. JavaScript-based plugins such 
as the ones used and presented here are a good alternative 
that give researchers full control over the script. Recently, 
some platforms for online experiments have started to imple-
ment audio recordings already into their predefined tools and 
functions (e.g. Gorilla Experiment Builder, Anwyl-Irvine, 
Massonnié, et al., 2020b or FindingFive, FindingFive Team, 
2019). The assessment of keystroke latencies is an inbuilt 
feature of most JavaScript-based platforms. We have not yet 
tested these inbuilt features, but assume that they should lead 
to very similar results as the custom scripts. Predefined tools 
and functions may thus be a good alternative for researchers 
who prefer easy-to-handle implementations, including drag-
and-drop programming, rather than customizing code. Inde-
pendently of the implementation used, it is important to note 

that from the current study, we cannot draw assumptions on 
the actual degree of systematic bias or technical noise intro-
duced by different hardware/software set-ups. With our fully 
randomized within-subject design, we were able to replicate 
hypothesized effects at high power despite potential noise; 
however, this cannot be transferred to pseudo-randomized 
and/or between-subject designs.

In the spoken naming task, like other authors (Vogt et al., 
2021), we observed some variation in audio recording file 
lengths. This variation did not affect the effect reported here. 
Still, we do not yet know the source of the variation, and it 
may have occurred at the beginning or at the end of the record-
ing. Therefore, researchers should pay particular attention to 
this potential source of noise. Crucially, only a variation at the 
beginning of the recordings should affect the assessment of 
reaction times. A simple method to improve the synchroniza-
tion of the audio recording (timer for typewritten answers) and 
stimulus presentation is to present the stimulus and to start 
the recording (or timer) only after the page is fully loaded. 
This can be achieved by using the window.onload event in 
JavaScript. Although it may lead to some jittering of the inter-
stimulus interval (depending on the internet connection), like 
this, the stimulus can be preloaded in every trial, leading to a 
high synchronization of reaction time measurements (audio 
or typed) and stimulus presentation. We therefore recommend 
all researchers to make use of such a method.

For typewritten answers, we compared manual and auto-
matic processing procedures and found they classified nearly 
all typewritten answers identically as correct or incorrect. 
We therefore highly recommend such automatic classifica-
tion procedures. However, researchers should decide a priori 
which classification procedure to use and which cut-off cri-
terion to apply. Different procedures exist that are special-
ized for different typewritten answers, such as longer texts 
and or single words. We recommend Bosker (2021) and 
van der Loo (2014) as overview articles. We found that the 
Jaro distance (Jaro, 1989, 1995), a method specialized for 
short answers, led to good results with a cut-off criterion of 
d = .3. The even more widely known Levenshtein distance 
(Levenshtein, 1966; all operations equally weighted; cut-off 
criterion d = .3) and the optimal string alignment procedure 
(restricted Damerau Levenshtein distance; all operations 
equally weighted; cut-off criterion d = .3) as implemented in 
the stringdist package also led to very good, though slightly 
more conservative, results (see Appendix 3). Furthermore, 
researchers must provide the algorithms with accepted nam-
ing alternatives (e.g. “sofa” instead of “couch”). In the best 
case, these lists can be compiled based on previous experi-
ments. If no such prior data exists, researchers should care-
fully check their data after the classification. Beyond such 
caveats, using automated classification procedures not only 
reduces the time needed for data preprocessing from hours to 
seconds (Borrie et al., 2019), it also increases the inter-rater 
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reliability. For a follow-up experiment, we even implemented 
these simple methods into the experiment itself, in order 
to provide feedback on the typing accuracy already during 
the experiment. Before running an experiment with type-
written responses, researchers must decide whether partici-
pants’ typed answers should be displayed on the screen and 
whether participants are allowed to correct their typewritten 
answers by using the backspace key. Displaying participants' 
answers on the screen can both affect naming latencies (Per-
ret & Laganaro, 2013; Snyder et al., 2015) and error types 
(Pinet & Nozari, 2020, 2021). However, in online settings, 
we assume that giving no feedback at all may reduce adher-
ence to the task. Anecdotal evidence suggests that allowing 
corrections in typewritten answers is more similar to natural 
typing behaviour, but it may result in different overall typing 
duration. If, like in our case, researchers are most interested 
in typing onset times, they may decide to allow corrections 
in typewritten answers. If, by contrast, researchers are inter-
ested in inter-keystroke intervals and overall typing duration, 
they may decide not to allow corrections.

Last but not least, we recommend restricting the use of 
different keyboard types. Often, one keyboard type has direct 
key bindings for all letters of a language, while others do not. 
This can affect the number of keys that need to be pressed to 
type a specific word and the motor preparation stages if the 
same letter is to be pressed with different hands on different 
keyboards (Pinet, Dubarry, & Alario, 2016a). Together with 
our script to assess typing latencies, we provide one example 

how the keyboard type can be assessed. Next to restricting 
the keyboard type, at least for languages including accents 
or capitalization at the beginning of a word, we recommend 
instructing participants to use the caps lock key and to write 
all letters in upper case.

Conclusion

Running experiments online opens new perspectives for 
assessing more diverse populations across different lin-
guistic, social or generational backgrounds. Our study adds 
evidence to the feasibility of implementing reaction-time-
sensitive language production experiments in web-based 
settings. This allows for running cross-linguistic, cross-sec-
tional or longitudinal studies which may have limited practi-
cability in in-person, lab-based settings. Moreover, we show 
that typewritten responses are a valid, practical alternative 
to collecting overt spoken responses through participants’ 
microphones. Automatic processing can further reduce the 
workload of processing the typewritten answers. By high-
lighting important technical and conceptual considerations, 
we hope to have provided recommendations for an easy 
access to studying both typewritten and spoken language 
production online.

Appendix 1: List of Stimuli

Table 8  Experimental stimuli (English translations in brackets) and acceptable synonyms ordered alphabetically by semantic subcategories

Items Acceptable alternatives Items Acceptable alternatives
Birds Farming tools
Ente (duck) Axt (axe) Beil
Eule (owl) Uhu Besen (broom) Strohbesen
Schwan (swan) Säge (saw) Handsäge
Strauss (ostrich) Pfau, Strauch Schaufel (shovel) Spaten, Schippe
Taube (pidgeon) Sense (scythe) Sichel
Body parts Flowers
Arm (arm) Löwenzahn (dandelion)
Bein (leg) Orchidee (orchid)
Fuss (foot) Rose (rose)
Hand (hand) Sonnenblume (sunflower)
Ohr (earring) Tulpe (tulip)
Buildings Fruits
Burg (fortress) Schloss Apfel (apple)
Hochhaus (skyscraper) Wolkenkratzer Banane (banana)
Kirche (church) Birne (pear)
Schloss (castle) Palast, Burg Kirsche (cherry)
Tempel (temple) Pantheon, Ruine, Akropolis Trauben (grapes) Weintrauben
Carpenter's tools Hoofed animals
Bohrmaschine (drill) Bohrer, Akkuschrauber Kamel (camel)
Feile (rasp) Reibe, Spachtel, Hobel Kuh (cow)
Hammer (hammer) Pferd (horse)
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Table 8  (continued)
Schraubenzieher (screwdriver) Schraubenschlüssel, Schraubendreher Reh (dear)
Zange (pliers) Schaf (sheep) Lamm
Cooking equipment Insects
Gabel (fork) Ameise (ant)
Kelle (ladle) Suppenkelle, Rührkelle Biene (bee) Bienchen
Löffel (spoon) Fliege (house fly) Mücke
Messer (knife) Marienkäfer (ladybird) Käfer
Schneebesen (whisk) Quirl, Rührbesen, Mixer Spinne (spider)
Drinking vessels Instruments
Becher (plastic cup) Knobelbecher, Pappbecher Geige (violin) Violine
Flasche (bottle) Glasflasche, Wasserflasche Gitarre (guitar)
Glas (glass) Becher Harfe (harp)
Kanne (teapot) Teekanne, Teekessel, Kaffeekanne Klavier (piano) Piano
Tasse (tea cup) Teetasse, Becher Schlagzeug (drum kit)
Jackets Seating furniture
Arztkittel (lab coat) Chemiekittel, Kittel, Laborkittel Bank (bank)
Daunenweste (down vest) Weste Couch (couch) Sofa, Ledercouch
Kapuzenpulli (sweater) Pulli, Pullover, Hoodie, Kapuzenpullover Hocker (stool) Schemel
Pelzmantel (fur coat) Mantel, Pelz, Fellmantel Sessel (armchair)
Sakko (sport coat) Anzug, Jackett Stuhl (chair)
Fish Storage
Aal (eel) Kleiderschrank (wardrobe) Schrank
Delfin (dolfin) Regal (cupboard)
Goldfisch (goldfish) Fisch Safe (safe) Tresor
Hai (shark) Haifisch Schachtel (box) Kiste, Box, Kasten, Schachtel, Karton, 

Schuhbox
Rochen (ray) Mantarochen, Manta Schublade (drawer) Schubkaste
Jewelry Street vehicles
Armband (bracelet) Armband, Armkette, Armreif Auto (car) SUV, Mercedes
Brosche (brooch) Schmuck, Amulett, Diadem, Juwelen, 

Schmuck, Haarspange
Bus (bus)

Kette (necklace) Collier, Halskette, Perlenkette, Halsband Kutsche (carriage)
Ohrring (earring) Ohranhänger Lkw (truck) Lastkraftwagen, Laster, Lastwagen, Transporter

Ring (ring) Goldring, Ehering Motorrad (motorcycle)
Kitchen furniture Sweets
Geschirrspüler (dishwasher) Geschirrspülmaschine, Spülmaschine, Geschir-

rwaschmaschine, Spüler
Bonbon (candy)

Herd (stove) Kochfeld, Herdplatte, Ofen, Ofenplatte Eis (ice cream) Schokoladeneis, Eiscreme
Kaffeemaschine (coffee machine) Kaffeekocher Kekse (biscuit) Keks, Schokoladenkeks, Cookies
Kühlschrank (fridge) Gefrierschrank Kuchen (cake) Torte
Mikrowelle (microwave) Schokolade (chocolate)
Office tools Vegetables
Bleistift (pencil) Stift Brokkoli (broccoli)
Klammer (paper-clip) Büroklammer, Clip, Briefklammer Gurke (cucumber) Salatgurke
Lineal (ruler) Zollstock Karotte (carrot) Möhre
Radiergummi (rubber) Radierer Kartoffel (potato)
Schere (scissors) Paprika (bell pepper) Grüne Paprika
Predatory animals Water vehicles
Bär (bear) Braunbär Gondel (gondola) Gondola, Gondelier, Boot
Leopard (leopard) Gepard, Jaguar, Puma Kanu (canoe) Boot
Löwe (lion) Segelschiff (sailing boat) Modellschiff, Segelboot, Schiff, Boot
Panther (panther) Puma, Jaguar, Gepard U-Boot (submarine) Unterseeboot, Militärschiff, Boot
Tiger (tiger) Yacht (yacht) Schiff, Boot
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Appendix 2: Experiments 1 and 2–
RTs and Error Rates by Participants 
and Categories

Fig. 6  Normalized mean naming latencies (RTs) in milliseconds as 
a function of ordinal position for each (a) participant and (b) cate-
gory in Experiment 1. Note. Mean normalized reaction times in mil-
liseconds per ordinal position. Subplots show the reaction times for 
each participant (category) separately, ordered by the size of their 
CSI effect, i.e., the average increase per ordinal position as estimated 
by the GLMM (see results section) shown in grey boxes above each 
graph. Mean reaction times were calculated across semantic cat-

egories (participants). The RTs were normalized for each participant 
(category) by subtracting the mean of the first ordinal position from 
the respective means of the other ordinal positions. The grey dotted 
line shows the mean RT per ordinal position across participants and 
categories. Error bars show standard errors of the mean. Values were 
adjusted for within-participant designs using the method suggested by 
Morey (2008) as implemented in the summarySEwithin( ) function 
from the R package Rmisc (Hope, 2013)
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Fig. 7  Normalized error rate in percent as a function of ordinal posi-
tion for each (a) participant and (b) category in Experiment 1. Note. 
Mean normalized error rates per ordinal position. Subplots show 
error rates for each participant (category) separately. Mean error rates 
were calculated across semantic categories (participants). The error 
rates were normalized for each participant (category) by subtracting 
the mean of the first ordinal position from the respective means of 

the other ordinal positions. The grey dotted line shows the mean error 
rate per ordinal position across participants and categories. Error bars 
show standard errors of the mean. Values were adjusted for within-
participant designs using the method suggested by Morey (2008) as 
implemented in the summarySEwithin( ) function from the R package 
Rmisc (Hope, 2013)
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Fig. 8  Normalized mean typing latencies (RTs) in milliseconds as a 
function of ordinal position for each (a) participant and (b) category 
in Experiment 2. Note. Mean normalized reaction times in millisec-
onds per ordinal position. Subplots show the reaction times for each 
participant (category) separately, ordered by the size of their CSI 
effect, i.e., the average increase per ordinal position as estimated by 
the GLMM (see results section) shown in grey boxes above each 
graph. Mean reaction times were calculated across semantic cat-

egories (participants). The RTs were normalized for each participant 
(category) by subtracting the mean of the first ordinal position from 
the respective means of the other ordinal positions. The grey dotted 
line shows the mean RT per ordinal position across participants and 
categories. Error bars show standard errors of the mean. Values were 
adjusted for within-participant designs using the method suggested by 
Morey (2008) as implemented in the summarySEwithin( ) function 
from the R package Rmisc (Hope, 2013)
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Fig. 9  Normalized error rate in percent as a function of ordinal posi-
tion for each (a) participant and (b) category in Experiment 2. Note. 
Mean normalized error rates per ordinal position. Subplots show 
error rates for each participant (category) separately. Mean error rates 
were calculated across semantic categories (participants). The error 
rates were normalized for each participant (category) by subtracting 
the mean of the first ordinal position from the respective means of 

the other ordinal positions. The grey dotted line shows the mean error 
rate per ordinal position across participants and categories. Error bars 
show standard errors of the mean. Values were adjusted for within-
participant designs using the method suggested by Morey (2008) as 
implemented in the summarySEwithin( ) function from the R package 
Rmisc (Hope, 2013)
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Appendix 3: Experiment 2–Comparison 
of Further Automated String Matching 
Procedures

To date, there are a wide range of string matching metrics 
available, each with specific characteristics and applications. 
In our main analyses, we chose to use the Jaro distance (cut-
off: dJaro ≥ .3; Jaro, 1989, 1995) because this metric was 
tailored specifically to short string inputs. Here, we compare 
the manual and automated classifications with further string 
matching metrics, the Jaro-Winkler distance (p = 0.1; cut-off: 
d ≥ .3), the Levenshtein distance (equal weights of 1 each; 
cut-off: d ≥ 3), the optimal string alignment (also called 
restricted Damerau-Levenshtein distance; equal weights of 
1 each; cut-off: d ≥ 4), and the Jaccard bi-gram distance 
(q = 2; cut-off: d ≥ 0.8). For all metrics, we used our custom 
preprocessing functions (see description in the methods sec-
tion of this manuscript; https:// github. com/ kirst ensta rk/ strin 
gmatch_ typed_ naming), and the technical implementations 
from the stringdist package (version 0.9.6.3; van der Loo, 
2014). For the exact formula applied, we may refer to van 
der Loo (2014).

As shown in Appendix Table 9, all metrics yielded very 
similar classifications that were close to perfectly correlated 
with our intuitive, manual classification. The numerically 
highest correlation was found between the manual clas-
sification and the Levenshtein distance and the optimal 
string alignment metric. Those were also somewhat more 
conservative, because, in comparison to the other metrics, 
they classified slightly less words as correct that intuitively 
were classified as incorrect and more words as incorrect that 
intuitively were classified as correct.

Appendix 4: Experiment 2–Analyses 
of Manually Classified Typewritten Answers

Here, we report the results of the preregistered RT data anal-
ysis of the manually/half-automatically classified data from 
Experiment 2. For a description of the procedures, we may 
refer to the methods section of this manuscript.

The mean reaction times, i.e., the latencies between pic-
ture onset and first keystroke show a linear increase with 
ordinal position (Appendix Table 10). The GLMM con-
firmed this linear trend: As with the automatically pre-pro-
cessed data, RTs increased significantly with an average of 
~ 42 ms per additional member of each category (Appendix 
Table 11).

Table 9  Comparison of different automated string matching metrics

r (manual) = Pearson’s r correlation of the manual classification and the respective string matching metric; “New correct” words = Number 
of typed words manually classified as incorrect, but as correct with the respective metric, leading to lower trial exclusion; “New incorrect” 
words = Number of typed words manually classified as correct, but as incorrect with the respective metric, leading to higher trial exclusion; 
Partial name = when participants typed only parts of the picture name (e.g. GESCHIRR [engl. dish] instead of GESCHIRRSPÜLER [engl. 
dishwasher]); Orthograph. similarity = when participants typed orthographically similar words (e.g. KESSEL [engl. kettle] instead of KELLE 
[engl. ladle]); Loosely related = when participants typed words that were semantically related to the target word, but no accepted alternative (e.g. 
SCHEMEL [engl. taboret] instead of STUHL [engl. chair]);  1st letter backspace = when participants backspace-corrected an accepted alterna-
tive, changing the first character of the word entry (e.g. BURBackspaceBackspaceBackspaceBackspaceSCHLOSS [engl. castl(e)…fortress]); 
Phonolog. similarity  (1st letter) = when participants misspelled the beginning of a word with a phonologically similar phoneme (e.g. PFEILE 
instead of FEILE [engl. similar to wrasp instead of rasp]), Distance-based = when the computed distance was higher than the respective cut-off; 
Other = classification differences that were difficult to classify

Metric r (manual) “New correct” words “New incorrect” words

Partial name Orthograph. 
similarity

Loosely 
related

1st letter 
backspace

Phonolog. simi-
larity  (1st letter)

Distance-
based

Other

Jaro .969 5 2 1 13 6 1 1
Jaro-Winkler .962 5 2 6 14 6 1 -
Levenshtein .971 - - 1 14 6 6 -
Optimal string alignment .971 - 1 1 14 6 5 -
Bi-gram (Jaccard) .963 4 2 1 15 6 4 2

Table 10  Typing latencies in milliseconds (RTs) and erroneous trials 
for each ordinal position

M = mean; SEM = standard error of the mean; Erroneous tri-
als = Number of trials per ordinal position that were excluded due to 
errors (technical or answer-based). SEMs were adjusted for within-
participant designs using the method suggested by Morey (2008) as 
implemented in the summarySEwithin( ) function from the R package 
Rmisc (Hope, 2013)

Typing latencies 
(RTs)

Ordinal position

1 2 3 4 5

M 1151.61 1224.81 1247.35 1285.51 1317.46
SEM 17.43 21.77 20.67 23.53 22.44
Erroneous trials 73 84 79 83 94
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