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Abstract

Studies using remote cognitive testing must make a critical decision: whether to allow participants 

to use their own devices or to provide participants with a study-specific device. Bring-your-own-

device (BYOD) studies have several advantages including increased accessibility, potential for 

larger sample sizes, and reduced participant burden. However, BYOD studies offer little control 

over device performance characteristics that could potentially influence results. In particular, 

response times measured by each device not only include the participant’s true response time, but 

also latencies of the device itself. The present study investigated two prominent sources of device 

latencies that pose significant risks to data quality: device display output latency and touchscreen 

input latency. We comprehensively tested 26 popular smartphones ranging in price from <$100 to 

$1000+ running either Android or iOS to determine if hardware and operating system differences 

led to appreciable device latency variability. To accomplish this, a custom-built device called 

the Latency and Timing Assessment Robot (LaTARbot) measured device display output and 

Corresponding Author: Jason Hassenstab, PhD, Associate Professor, Neurology and Psychological & Brain Sciences, Washington 
University in St. Louis, 4488 Forest Park Avenue, Suite 320, Saint Louis, MO 63108, +1 314 747 4032, hassenstabj@wustl.edu. 

Open Practices Statement
All code for data collection and processing are available on GitHub (https://github.com/CTRLab-WashU/latar_firmware; https://
github.com/CTRLab-WashU/latar_hardware; https://github.com/CTRLab-WashU/latar_android; https://github.com/CTRLab-WashU/
latar_ios; https://github.com/jnicosia/latarprocessing) and OSF (https://osf.io/ncjta/).

HHS Public Access
Author manuscript
Behav Res Methods. Author manuscript; available in PMC 2024 March 01.

Published in final edited form as:
Behav Res Methods. 2023 September ; 55(6): 2800–2812. doi:10.3758/s13428-022-01925-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/CTRLab-WashU/latar_firmware
https://github.com/CTRLab-WashU/latar_hardware
https://github.com/CTRLab-WashU/latar_hardware
https://github.com/CTRLab-WashU/latar_android
https://github.com/CTRLab-WashU/latar_ios
https://github.com/CTRLab-WashU/latar_ios
https://github.com/jnicosia/latarprocessing
https://osf.io/ncjta/


capacitive touchscreen input latencies. We found considerable variability across smartphones in 

display and touch latencies which, if unaccounted for, could be misattributed as individual or 

group differences in response times. Specifically, total device (sum of display and touch) latencies 

ranged from 35 to 140 ms. We offer recommendations to researchers to increase the precision of 

data collection and analysis in the context of remote BYOD studies.
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Smartphones; remote assessment; BYOD; ambulatory assessment

Introduction

Over the past 30 years, there has been an exponential increase in the number of studies 

which have used remote technology for data collection – including, but not limited to, 

digital cognitive assessments, experience sampling, daily diaries, and ecological momentary 

assessments (Hamaker & Wichers, 2017). These types of studies offer a glimpse into 

participants’ daily cognitive, physiological, and environmental experiences (Fahrenberg, 

2006; Sliwinski, 2008; Sliwinski et al., 2018). There are many advantages to digital 

cognitive assessments as compared to traditional in-laboratory or in-clinic assessments. 

These advantages include reduced recall bias (Mehl & Conner, 2014), higher ecological 

validity (Trull & Ebner-Priemer, 2014), and increased accessibility and sample sizes due 

to minimized recruitment and retention barriers (Germine et al., 2012; Kraut et al., 2004). 

Beyond facilitating larger and more representative samples, mobile studies of cognition are 

also more accessible for individuals who might otherwise be unable to participate due to 

financial or mobility reasons, making it easier for more people to engage with scientific 

research (de Liaño et al., 2012; Passell et al., 2021).

A critical decision when planning a remote digital study is whether to allow participants 

to use their own devices or to provide them with a study-specific device such that all 

participants’ data is collected on identical hardware and operating systems. Remote bring-

your-own-device (BYOD) studies can have several benefits. First, studies which allow 

participants to use their personal devices have been shown to elicit more diverse samples 

than studies which rely on conventional psychological research recruitment techniques (such 

as subject pool databases predominantly comprised of Western, educated, industrialized, 

rich and democratic participants; Gosling & Mason, 2015; Henrich et al., 2010). Second, 

BYOD studies generally increase accessibility by reducing barriers to participation such 

as having to come into the clinic or adopting an unfamiliar device or operating system. 

Relatedly, for participants who already own a smartphone, BYOD studies avoid the hassles 

of managing an additional device. This is particularly relevant for clinical populations 

with cognitive impairment where learning to use a new device or attempting to manage 

a secondary personal device (e.g., transporting and charging two smartphones) can be 

particularly challenging. Finally, BYOD is more economical for researchers, which can 

translate to larger sample sizes due to reduced upfront costs.
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The benefits of conducting clinical research using a BYOD model also come with some 

tradeoffs. For example, while traditional laboratory-based studies afford researchers control 

over the testing environment and administration, the same cannot be said for remote 

assessments using personal devices (De Bruijne & Wijnant, 2013; Nosek et al., 2002; Reips, 

2000). Researchers have little control over the technology participants use and the setting 

in which participants complete the session (although this is often touted as a benefit for 

more generalizable findings in the ecological momentary assessment, or EMA, literature; 

see Woods et al., 2015, for example). Perhaps most importantly, differences in participant 

device hardware and software have the potential to introduce unanticipated variance into the 

data which may impact results if not understood and controlled for (Germine et al., 2019; 

Passell et al., 2021; Woods et al., 2015). One critical source of this variance that may affect 

cognitive data collected in digital studies is differences in device latencies. In the context 

of smartphone cognitive assessments, device latency can be defined as the portion of the 

participant’s measured response time that is not due to the participant. More specifically, 

the device latency is any duration from both (1) when software triggers an event/stimulus to 

when the event physically occurs (e.g., screen display or stimulus; referred to in this paper as 

display latency) and (2) when the user performs an action (e.g., taps the screen; referred to in 

this paper as touch latency) until the software registers the input (Foxlin, 2002; Pavlovych & 

Gutwin, 2012). Because these latencies are device-specific, their effects may carry over into 

multiple aspects of an experimental task including stimulus display, inter-trial intervals, and 

response time recordings.

Although most devices on the market today have relatively unnoticeable “lag,” variability in 

device latency has the potential to influence cognitive assessments which rely on the precise 

display of visual stimuli and recording of participants’ response times. Because the average 

simple response time can range from 200 to 300 ms (Jain et al., 2015; Wilkinson & Allison 

1989; Woods et al., 2015) and device latencies can range from 50 to 200 ms (for touchscreen 

devices), device latencies could introduce systematic error and exaggerate/suppress group 

differences in task performance (Henze et al., 2016; Pavlovych & Gutwin, 2012). Without 

further information on device characteristics, it may be difficult to control for device latency 

variation and take advantage of the benefits of digital cognitive assessments.

Evidence from Passell et al. (2021) indicated that cognitive test scores may vary with 

personal digital device. However, it is unclear whether these differences were due to 

cognitive and demographic factors that vary with personal device choice (e.g., tablet users 

tend to be older than users of other devices; Passell et al., 2021) or if these differences 

were due to variability in the devices themselves. Because response time data is essential 

for so many cognitive tasks, it is critical that we understand what is being measured and the 

extent to which variation in participants’ personal devices may systematically bias results. If 

the variability introduced by BYOD models can be appropriately measured and mitigated, 

it can lead to greater research precision. Therefore, in the present study, we investigated 

device latencies (specifically, display and touch) across a series of popular smartphones and 

operating systems and provide researchers with a set of recommendations regarding digital 

assessments of cognition. Specifically, we used a custom-built robot to stimulate touchscreen 

input and measure display latencies to characterize the performance of 26 popular phones. 
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Finally, we provide suggestions for researchers looking to optimize their digital cognitive 

assessment paradigms (see Table 1).

Methods

Apparatus.

The apparatus setup consisted of three distinct hardware components (see Figure 1 & Figure 

2A): (1) a computer acting as the server and operator interface, (2) the custom-built Latency 

and Timing Assessment Robot (LaTARbot) capable of simulating user touch and reading 

screen brightness, and (3) the smartphone under test. The objective of the setup was to 

measure the latency between the touchscreen and the application running on the Operating 

System (OS) in both directions (i.e., time from a touch event until input was registered 

or time from an application draw command until the display was updated). Each sample 

consisted of a pair of timestamps – a stimulus timestamp from the source device and a 

response timestamp from the destination device. Depending on the latency being measured 

(display or touch), the smartphone and LaTARbot would switch roles between being the 

source or destination device. The server laptop collected the samples and stored them for 

later analysis. A single test consists of a set of samples and its accompanying metadata for 

each run on each device. The metadata includes the phone information, clock sync results, 

test type (display or touch), number of samples, and interval between samples. Clock sync 

and sampling interval are described in more detail at the end of this section.

The server provided a user interface to configure the test and collect the sample data. 

The computer used for the server was a Lenovo ThinkPad with an Intel Core i5-6300U 

CPU, 8 GB RAM, and built-in Wi-Fi running Ubuntu 20.04.3 LTS. The server software 

consisted of two parts: (1) a server process in the background and (2) a graphical user 

interface (GUI) in the foreground. Both applications were developed in C++ and the 

GUI used Qt for the user interface. The background server process hosted an ad-hoc 

Wi-Fi network for communication with the smartphone. The robot built to interact with 

the smartphone (LaTARbot) simulated user touch input and measured display output. 

LaTARbot communicated with the server via a wired USB connection and the smartphone 

communicated with the server via a wireless connection to the server’s ad-hoc Wi-Fi 

network (see Figure 2).

For display latency testing, the smartphone application toggled the display between all-black 

and all-white for the LaTARbot to observe. The LaTARbot used a photodiode to sense 

changes in the brightness of the smartphone touchscreen (see Figure 2A)1. The LaTARbot 

logged the timestamp at which each step change in brightness was detected. The smartphone 

logged two timestamps for each display transition. As shown in Figure 3, the first timestamp 

was when the application called the drawing function to change the screen color (display 

“callback time”) and the second timestamp was when the drawing function returned control 

to the application (display “action time”).

1All response times reported in this paper also contain latency from LaTARbot itself. However, these are likely negligible in 
the overall context of measuring smartphone latency. For additional details, see hardware and firmware design repositories (https://
github.com/CTRLab-WashU/latar_hardware; https://github.com/CTRLab-WashU/latar_firmware).
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For touch latency testing, the LaTARbot had a capacitive probe on the surface of an exposed, 

printed circuit board on the bottom of the robot which was held against the smartphone 

touchscreen. By electrically charging the capacitive probe, the LaTARbot emulated “human 

touch” with zero moving parts and precise timing accuracy (i.e., solid state capacitive 

touch). Taps were triggered according to the test configuration sent from the server, and 

the timestamp at which the LaTARbot initiated the charging of the probe was recorded 

as the time of the tap. Similar to display latency, the smartphone application logged two 

timestamps during touch latency trials. First, the capacitive touch “action time” was the time 

at which the OS first registered the touch input (but the application had not yet received 

the data). Second, the capacitive touch “callback time” was when the application’s callback 

function was called and the application registered the touch.

We examine both display and touch latencies such that the sum of the two is necessary 

to understand the total device latency contributed to response times. Specifically, without 

further optimization, response times are currently recorded as the time from when a stimulus 

is displayed on the screen (which includes the device’s display latency) to when the 

participant taps the screen (which includes the device’s tap latency), as shown in Figure 

3. Therefore, although display and tap latencies are presented separately for a more fine-

grained analysis, discussion focuses on the total latency contributed by the device (i.e., the 

sum of each device’s display and tap latency) to provide readers with a wholistic picture 

of the contribution of device latencies on response time data. Additionally, both action and 

callback times (again, for both display and touch latencies) are explored to address the 

hypotheses that manufacturers, OS types, and devices may influence callback latencies more 

so than action latencies since, as mentioned above, callback times are subject to additional 

OS delays whereas the action times are not.

Because the timestamps are collected on separate devices, there were differences in both 

(1) the network latency between the server and each device (i.e., server-to-LaTARbot and 

server-to-smartphone) and (2) the onboard clock time of all three devices. To account for 

these latencies and clock differences, a clock sync procedure was run at the start of each test 

to identify an offset that should be applied to every timestamp from each device. Clock sync 

is described in further detail in the Procedure section that follows.

Procedure.

First, the LaTARbot application was installed on each smartphone and all other applications 

were closed out. Then, the phone was connected to the server’s ad-hoc Wi-Fi network. 

Using the server GUI, the testing procedure was configured to run 100 display and 100 

capacitive tap samples at 199 ms intervals each. We used a prime number interval between 

samples (199 ms; for both tap and display samples) to minimize the effect of aliasing (see 

‘aliasing’ from signal processing theory for more information) and more accurately reflect 

the true behavior of the device. The automated test was run after a clock sync procedure was 

used to get all three components running on the same clock.

During the clock sync, offset values were calculated for the mobile device and LaTARbot, 

which were then applied to the collected data to bring the timestamps from both devices into 

the same frame of reference. The offset values were calculated based on an implementation 
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of the Network Time Protocol clock synchronization algorithm (Mills et al., 2010). Thirty 

cycles of the synchronization algorithm were run between the server and the LaTARbot and 

255 synchronization cycles were run between the server and the smartphone. More cycles 

were needed for the smartphone due to the higher variability in latency over Wi-Fi versus 

over a hard-wired USB connection. Assuming symmetric latency from server-to-device and 

device-to-server, this procedure synchronized the clocks between the server and phone to 

within 0.6 milliseconds (ms), and between the server and LaTARbot to within 0.6 ms. This 

gives us a worst-case error margin of 1.2 ms on each sample. The output of the clock sync 

(i.e., the average offset) was used to adjust the timestamps from the phone and LaTARbot. 

Phrased differently, because multiple devices were necessary to collect the data of interest, 

each running their own clock, knowing the offset between each device’s clock was critical 

to correctly synchronize timestamps from all 3 devices and extract the relevant latencies 

of interest. The output of the Network Time Protocol sync was an offset for each device’s 

clock relative to the server (laptop) clock. For example, if the LaTARbot clock indicated it 

was 12:01:20.20 while the smartphone clock reads the same instance in time as 12:01:23.70, 

a 3.5 second offset would be applied to “synchronize” the data point timestamps. While 

critical for the present study given the dependent variables of interest (namely, device 

latencies), other BYOD studies need not worry about this issue such that this procedure 

would not be relevant or plausible for any study involving human participants interacting 

with a device.

Data Processing & Analysis.

All code for data collection and processing are available on GitHub 

(https://github.com/CTRLab-WashU/latar_firmware; https://github.com/CTRLab-WashU/

latar_hardware; https://github.com/CTRLab-WashU/latar_android; https://github.com/

CTRLab-WashU/latar_ios; https://github.com/jnicosia/latarprocessing) and OSF (https://

osf.io/ncjta/). Data were pre-processed using a Python script which corrected the 

timestamps, aligned corresponding stimuli and responses, and converted the JSON files 

to CSVs to be read into R for analysis. The script corrected the timestamps from each device 

(smartphone and LaTARbot) for the offset time between the mobile device’s time and the 

server’s time. To get the offset time, we found the average and standard deviation from 

each clock sync trip and got the average after discarding values exceeding +/− 2 standard 

deviations due to the complexities of network communications.

All data analysis was performed in R (R Core Team, 2012). We examined the influence 

of various device characteristics on their display and capacitive touch latencies. Because 

many of the phone characteristic variables (i.e., Geekbench 5 Performance Score2, Touch/

Display Refresh Rate, phone age, phone price, etc.) were highly correlated with one another, 

we used simple correlations, t-tests, and fixed-effect ANCOVAs (rather than multiple 

regression models) to investigate which variables had the greatest influence on the device 

latency metrics and whether device latencies differed between Android and iOS. Dependent 

2Geekbench 5 measures the performance of a device by performing tests that are representative of real-world tasks and applications. 
Higher scores are better, with double the score indicating double the performance. See https://www.geekbench.com/doc/geekbench5-
cpu-workloads.pdf for more information.
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variables of interest included action and callback latencies for both display and capacitive 

touch (see Figure 3 for definitions of each).

To maintain data quality, we excluded response latencies that may have resulted from 

technical problems. Specifically, latencies outside +/− 1.5 SDs from the device’s mean 

latency for that specific condition were removed. This procedure removed 1.42% of the 

capacitive action latencies, 1.23% of the capacitive callback latencies, 1.97% of the display 

action latencies, and 1.97% of the display callback latencies. Removal of these outliers 

produced data consistent with the devices’ purported refresh rate (this is discussed further in 

the results section).

Results

First, we present evidence supporting the validity of the LaTARbot apparatus and setup. 

Second, we examine the device display and capacitive touch latencies for both action and 

callback times addressing the hypotheses that manufacturers, OS types, and devices may 

influence callback latencies more so than action latencies because the callback times are 

subject to additional delays (due to complexities of non-real-time operating systems which 

are outside the scope of this paper) whereas the action times are not. More broadly, however, 

we sought to investigate the influence of the phone characteristic variables on these device 

latencies to provide researchers with useful data and recommendations to optimize their 

digital cognitive assessment protocols. Thus, we examined the relationships between device 

characteristics (i.e., Geekbench 5 Performance Score, Touch/Display Refresh Rate, phone 

age, and phone price) and device latency metrics. Finally, we examined whether device 

characteristics and latency differed by OS.

Devices.

Devices to be included were based on responses from a previous technology survey 

conducted by our laboratory (Nicosia et al., 2021). We included as many of the most popular 

phones in the US, ranging in price, as possible based on the survey results and purchasing 

availability. See Table 2 for the characteristics of each device included.

Mean Device Latencies.

Figure 4 shows the display (A) and capacitive touch action (B) latencies for the iPhone 11 

as an example of the raw, sample-level data that was collected for each phone. As shown, 

the actual difference between the maximum and minimum touch latencies elicited from the 

LaTARbot setup closely approximated what would be expected based on the device’s refresh 

rates – providing some validation data for the LaTARbot setup. For example, the iPhone 

11 has a touch sampling rate of 120 Hz. Therefore, one period is equal to 1 / 120 Hz or 

0.008333 seconds (8,333 microseconds; μs) per cycle. In addition to providing a preliminary 

validity check of the system and data, Figures 4A and B also include a solid grey line 

indicating the mean device latency to demonstrate how the average latencies were derived 

for the other analyses described in the paper.

Figure 5 shows the mean display (A) and capacitive (B) latencies for each device tested in 

the present study. As shown, devices differed significantly in both their display action, M = 
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59,620 μs (equivalent to 59.62 ms), CI = [55,459, 63,781], F(25, 1,265) = 68.39, p < 0.001, 

η2 = 0.57, and capacitive touch action latencies, M = 14,586 μs (equivalent to 14.59 ms), 

CI = [12,064, 12,108], F(25, 2,537) = 380.10, p < 0.001, η2 = 0.79. Altogether, when we 

look at the total amount of time contributed by the device (i.e., display and touch latencies 

combined), this could range anywhere from 35 to 140 ms (minimum and maximum of 

combined display and touch latencies) in device latency3 and, more practically, could range 

from 60 to 90 ms (first and third quartiles of combined display and touch latencies). Thus, in 

the context of experimental reaction time paradigms, which generally elicit response times 

around 200 to 300 ms, it is likely that within- and between-person differences in device 

latencies could significantly influence response time estimates (see Table 1). The context in 

which both device display and tap latencies play into measured response times is illustrated 

in Figure 3 and further described in the discussion section.

In addition to the action latencies, the callback latencies are also presented in Figure 5 in 

the lighter colored bars. As mentioned above, because callback latencies (but not action 

latencies) are subject to additional delays in the OS (for both display and touch), we sought 

to test for differences in the influence of latency type (i.e., action vs. callback) on the 

observed latencies across devices. As shown, devices differed significantly in both their 

display callback, M = 60,383 μs (equivalent to 60.38 ms), CI = [56,021, 64,745], F(25, 

1,265) = 74.68, p < 0.001, η2 = 0.60, and capacitive touch callback latencies, M = 17,870 

μs (equivalent to 17.87 ms), CI = [15,410, 20,330], F(25, 2,542) = 286.80, p < 0.001, η2 

= 0.74. Importantly, for capacitive touch, latency type (action vs. callback) interacted with 

phone model, F(25, 5,079) = 40.87, p < 0.001, η2 = 0.05, indicating that some devices 

had larger differences in action and callback latencies than others (this interaction did not 

approach significance for the display latencies, p = 0.99). Consistent with our hypothesis, 

it is important to ensure that the application used to collect data records the action times 

(for both display and touch) rather than callback times to minimize OS- and device-related 

latency differences.

Device Characteristic and Latency Correlations.

In order to investigate how device characteristics may influence latencies, we examined 

the relationships amongst several device characteristic variables and our latency metrics. 

The device characteristics we explored here included each device’s (1) Geekbench 5 

Performance Score, which serves as a measure of CPU performance with higher scores 

indicating better performance, (2) “age” or years since its initial release date, and (3) 

cost (MSRP where published, otherwise price on Amazon in September 2021) in US 

Dollars (USD). We examined the correlations amongst these device characteristic variables 

and several latency measures (i.e., display action latency, display callback latency, display 

callback-action latency difference, capacitive touch action latency, capacitive touch callback 

latency, and capacitive touch callback-action latency difference). As shown in Figures 

6A and B, device characteristics had a greater influence on display latencies (and the 

3To arrive at the reported 35 ms minimum, the minimum display and minimum touch latencies were summed for each phone and 
the minimum across all phones was calculated and reported. To arrive at the reported 140 ms maximum, the maximum display 
and maximum touch latencies were summed for each phone and the maximum across all phones was calculated and reported. This 
represents the widest range one might anticipate based on the data collected here.
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difference between display callback and action latencies) than on the capacitive touch 

latencies. Specifically, there were significant negative correlations between the Geekbench 

5 Performance Score and the phone cost and display latency indicating that the more 

expensive phones with better performing CPUs had smaller display latencies, rs = −0.47 and 

−0.44, respectively, ps <0.05. Additionally, the Geekbench 5 Performance Score and phone 

cost were negatively correlated with the callback-minus-display latency difference score, rs 

= −0.65 and −0.43, respectively, ps < 0.01, suggesting that more expensive phones with 

better performing CPUs had smaller differences between their callback and action latency 

times. Interestingly, however, these correlations were not present for the capacitive touch 

latency measures (see Figure 6B).

OS Differences.

Next, we sought to investigate the influence of OS on our latency metrics. Table 3 displays 

OS differences in device characteristics and latencies. As shown, Android and iOS devices 

differed significantly on all the display latency measures, ps < 0.001, ds > 2.23, and phone 

cost, p = 0.002, d = 1.58, although OS did not influence capacitive touch latencies. Indeed, 

both the cost and display latency differences across OS types were anticipated such that 

iPhones (which run iOS) were consistently more expensive than Android devices and also 

have different implementations when it comes to calling user interface draw functions. 

Additionally, there was a significant difference in OS type in the (display) callback-minus-

display latency difference score, p < 0.001, d = 2.56, which reflects the nature of how 

different OS types handle recording action and callback latencies and, again, highlights 

the importance for researchers to use action rather than callback times for touch input and 

callback rather than display times for display to acquire the most precise response time.

Discussion

In the present manuscript, we investigated display and touch latencies across a 

series of popular smartphones and operating systems with the goals of (1) better 

understanding device-driven sources of variability that could affect smartphone-based 

cognitive assessments and (2) providing researchers with a set of recommendations to 

increase the accuracy of their data. Ultimately, we found that there is considerable variability 

across smartphone devices in display and capacitive touch latencies which, if unaccounted 

for, could be misattributed to individual differences in response times. Second, there 

were significant relationships between device latencies and CPU performance and cost, 

suggesting (as expected) that higher performing and more expensive phones have smaller 

latencies. Finally, there were several differences in display latencies across OS types. 

Our results suggest that, despite the advantages offered by smartphone-based cognitive 

assessments in cognitive research, investigators employing the BYOD model should collect 

additional measures about participants’ phones and consider adjusting response times by 

including device characteristic covariates in higher-level analyses. Additionally, there are at 

least three experimental design strategies that can be implemented to reduce the influence 

of device latencies (some recommendations shown in Table 1). The first and most restrictive 

option is to provide all study participants with a single device type running the same OS and 

OS version. The second option is to restrict recruitment to participants with a specific set 
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of devices and OS. However, it should be noted that restricting recruitment to participants 

with specific devices and/or OSs may render the study vulnerable to potential recruitment 

biases. Third, researchers may consider (1) designing and using tasks that don’t rely on 

high-precision response time measurements, (2) employing tasks that include a “baseline” 

condition (see Pronk et al., 2020), or (3) avoiding response time metrics altogether and 

instead focus on throughput measures like accuracy.

Our results extend upon Passell et al. (2021) in several important ways. First, the present 

study directly examined device-related latencies and corroborates the notion that differences 

in mobile cognitive test performance could represent both the effects of the devices 

themselves as well as differences introduced by users. Because we used an automated 

device and removed the human component (and variance) from the equation, our results 

directly show the magnitude and variability of the devices’ latencies. Second, in addition to 

examining touch latencies, we also presented display latencies. Display latencies are critical 

for any experiment involving response time analyses given that delays in presentation of 

stimuli on the screen are lumped into the recorded response time, hence adding more noise 

to the data. As shown in Figure 3, any measured response time consists of device display 

latency, the true human response time, and device input latency. Of these three components, 

the display end of the timeline appears to have the most room to improve upon with respect 

to honing response time precision.

Recommendations for Researchers.

There are several main takeaways from the present study for researchers looking to optimize 

their digital assessments and increase the precision of their data. First, although both in-lab 

and mobile experiments contain substantial error imparted from the collection-device, when 

it comes to assessing participants’ “true response time” (see Figure 3), there are several ways 

to increase data collection precision. Rather than calculating response times as the time from 

when the application draws the image on the screen to the touch callback time, the time from 

display action time to touch action time should be used. Better yet, investigators may want 

to work with developers to acquire t2 or t3 from Figure 3 to further close the gap (by 10s of 

ms) between the recorded response time and the “true” response time.

Perhaps a more practical suggestion for researchers conducting digital cognitive assessments 

is to simply understand the proportion of each recorded response time which may be due 

to device-driven latencies. Specifically, because it’s possible that latencies contributed by 

different phones could add up to around 100 ms of variation in response times, based on 

the present data, then any main effects or interactions with an absolute difference less than 

150 ms should be carefully considered. If this magnitude of an effect is expected, then 

investigators may want to supply participants with a single, specified device type and OS 

rather than employing a BYOD design (see Table 1). Regardless, it is critical that researchers 

allowing participants to use their own devices collect device characteristic data (e.g., make/

model, OS version, etc.) and include this information as covariates when RTs are primary 

outcome variables.

Echoing some of the suggestions put forth by Passell et al. (2021), if it is possible to 

use outcome measures other than response times (such as accuracy, Euclidian distance, 
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etc.), this would help to avoid many of the device-related sources of variation. When 

response times are necessary, z-score transforming each individual’s data based on their 

own overall mean response latency and standard deviation is recommended (Faust et al., 

1999; Nicosia et al., 2021). This z-score transformation places all participants on the same 

scale so that one can then use standard ANOVAs and regressions on the z-transformed 

response times to determine if individual and group differences in any manipulation are 

due to general slowing, device-related effects, and/or group- or age-specific deficits. Some 

potential benefits of this approach include the ability to investigate higher-order effects after 

removing the influences of processing speed and device-related effects. Additionally, Pronk 

et al. (2019) recommend “employing within-participant designs where possible to avoid 

having to make comparisons between participants with different devices, operating systems, 

and browsers.”

Limitations.

The findings of this study should be considered in light of a number of broader 

considerations and limitations which may be addressed in future studies. First, although 

we know that the latencies introduced by the LaTARbot are relatively small compared to 

the latencies we see in the devices, the exact values presented here should not be taken 

as a constant offset to simply subtract from ones’ response times. Second, the results in 

this paper are specifically for iOS applications using UIkit and Android applications using 

Android Views and thus does not fully apply to experiments which may have been run in 

a web browser or applications that use lower-level graphics (such as OpenGL) or game 

development engines (like Unity). Third, our display task was extremely basic (i.e., simply 

switching between an all-black and an all-white background) and the current results do not 

illustrate potential effects of dropped frames which may occur in more graphics intensive 

programs. Fourth, the application had a relatively constant and minimal CPU load and 

thus cannot generalize findings to programs which may be more demanding. Fifth, the 

devices tested here did not have any additional user applications installed or running in the 

background (e.g., sharing location, streaming music, etc.) whereas this may be an additional 

factor in BYOD studies. Finally, we did not test every device available on the market 

today, though we aimed to test as many presently popular devices as possible. With such a 

quickly evolving technology market, these results are most pertinent to researchers aiming 

to conduct smartphone studies using similar versions of operating systems and hardware 

configurations.

Conclusions.

Ultimately, our findings suggest that there is considerable latency included in device-

recorded response times and that there is a substantial amount of variability across devices 

that should be accounted for. Although digital cognitive assessments are advantageous 

compared to in-lab assessments for many reasons (including reduced recall bias, 

higher ecological validity, increased accessibility, reduced recruitment barriers, increased 

engagement, etc.), it is critical that investigators seriously weigh their options when it comes 

to the methodological details of their study. If main effects or interactions could possibly 

be due to response time differences less than 150 ms, then a pre-selected device should 
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be considered and provided to participants. All investigators conducting digital assessments 

should collect device information and include (at the very least) phone make and model 

as a covariate in statistical models to account for some of the variance introduced by device-

driven latencies. By carefully considering whether device variability could impact their 

results and taking steps to mitigate these effects, researchers can take advantage of bring-

your-own-device digital assessments to increase research participation and engagement.
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Figure 1. 
Latency and Timing Assessment Robot (LaTARbot)
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Figure 2. 
System Block Diagram
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Figure 3. Measured Response Time Event Timeline
Note. Timeline of events included in device-recorded response times.
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Figure 4. Example Sample-Level Data
Note. Example sample-level (display and action tap latency) data from the iPhone 11. The 

sawtooth patterns appear as a result of the action, drawing or tapping, happening at various 

timepoints within each frame or sampling period, respectively.
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Figure 5. Device Latencies
Note. Box plots of device display and capacitive touch latencies. Lighter shaded bars 

indicate callback latencies while darker shaded bars indicate action latencies.
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Figure 6. Device Characteristics and Latency Correlations
Note. Correlations amongst device characteristics and display and touch latencies. Pearson’s 

r for the variable below and to the left are presented in the top diagonal with * indicating 

p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001. Scatterplots for the variable 

above and to the right are presented in the bottom diagonal.
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