Skip to main content
. 2023 Jan 25;23(3):1359. doi: 10.3390/s23031359
Algorithm 1: Adaptive dynamic feature point selection strategy.

Input: Original feature point, Bounding box

Output: Static feature point

 1: if feature points in the boundingbox then

 2:    Use LK optical flow to match a prior dynamic objects between frames

 3:    if a priori dynamic object screen share ≥ 50% then

 4:      Determine if the number of a priori dynamic objects is greater than the threshold

 5:      if number of a prior dynamic objects ≥ 5 then

 6:          Calculate essential matrix of prior dynamic region bwtween frame

 7:          Calculating infinite norms of essential matrix

 8:          Calculate the essential matrix of the expansion layer bwtween frame

 9:          Calculating infinite norms of essential matrix

10:        if ratio of two infinite norm is greater than the threshold value then

11:            Delete dynamic feature points

12:        else

13:          ORB matches

14:        end if

15:      end if

16:    end if

17: end if

18: return Outputs