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Abstract: Face masks can effectively prevent the spread of viruses. It is necessary to determine the
wearing condition of masks in various locations, such as traffic stations, hospitals, and other places
with a risk of infection. Therefore, achieving fast and accurate identification in different application
scenarios is an urgent problem to be solved. Contactless mask recognition can avoid the waste of
human resources and the risk of exposure. We propose a novel method for face mask recognition,
which is demonstrated using the spatial and frequency features from the 3D information. A ToF
camera with a simple system and robust data are used to capture the depth images. The facial contour
of the depth image is extracted accurately by the designed method, which can reduce the dimension
of the depth data to improve the recognition speed. Additionally, the classification process is further
divided into two parts. The wearing condition of the mask is first identified by features extracted
from the facial contour. The types of masks are then classified by new features extracted from the
spatial and frequency curves. With appropriate thresholds and a voting method, the total recall
accuracy of the proposed algorithm can achieve 96.21%. Especially, the recall accuracy for images
without mask can reach 99.21%.

Keywords: 3D data processing; depth camera; face mask identification

1. Introduction

Face masks are a well-established preventive tool to limit the spread of viruses through
droplets and aerosols in the population [1]. With the COVID-19 global pandemic, many
countries and regions stipulate that people must wear masks in public places, especially
indoor areas and vehicles. In most cases, some staff are assigned to enforce the rule.
Nevertheless, the manual monitoring method not only wastes manpower but also can
easily cause infection. Contactless mask recognition can avoid the waste of human resources
and the risk of exposure, which has been highly valued by many researchers [2–4].

It is important to quickly and accurately identify masks in daily life, especially in
areas with a large flow of people. Some researchers have developed integrated systems for
rapid screening. Hussain et al. [5] designed an intelligent disinfection screening door that
can simultaneously measure the pedestrian’s temperature, identify if a mask is worn, and
perform the disinfection. The 2D data captured by the camera was first input to the mask
recognition module. Then, the neural network was used for classification. In addition to the
comprehensive screening system, which can monitor the temperature and detect the mask,
there is also a lot of work focused on improving the accuracy of mask recognition. Most
mask recognition methods are based on object recognition technology, which automatically
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identifies whether a person is wearing a mask by combining the camera’s input with a
computer algorithm. Conventional solutions of object recognition are mainly based on two-
dimensional (2D) images, including detecting regions of interest, extracting features, and
performing classification [6]. At present, numerous emerging machine learning methods
are being used more and more in object recognition. In [7–12], ResNet, Yolo, MobileNet,
and other machine learning models are used to recognize face masks. The identification
accuracy can exceed 90%. However, the performance of these methods begins to decline
significantly in some situations, such as occlusion or variable illumination conditions [13].
In addition, Cao et al. [14] considered night situations and proposed the MaskHunter
model, but the accuracy dropped to 71.6%. Even when the additional training module
was designed to improve accuracy, the results were not satisfactory. Hence, breaking
the trade-offs between accuracy and the adaptability of mask identification is a difficult
problem to solve.

In recent years, with the enrichment of information acquisition methods and the devel-
opment of sensing technology, many three-dimensional (3D) sensors have emerged [15,16],
which can not only obtain the shape information of the object but also determine the dis-
tance between the object and the camera. Among them, the depth camera, based on the
principle of active ranging, has many advantages, such as being insensitive to illumination
and unaffected by the contrast of the target. As the popular depth sensors that are commer-
cially available [17–19], the structured light cameras and the time-of-flight (ToF) cameras
have different advantages and application scenarios [20]. In most cases, the ToF camera has
low complexity and advantages in practical application [21]. Therefore, the ToF camera
is more commonly used as a data acquisition device. Since the depth cameras work well
in low light and even in dark conditions, object recognition based on obtained 3D images
has been used in many scenes, such as human detection, industrial assembly, gesture
recognition, and others [22–28]. Luna et al. [29] presented a new method for detecting
people only using depth images, and the data was captured by a depth camera in a frontal
position. This method ran in real-time using a low-cost CPU platform with high accuracy.
Various tasks based on the depth information require different features to be extracted. The
introduction of 3D information also increases the computational cost of machine learning
models. Moreover, the universal parameters of feature extraction based on 3D information
need to be further investigated.

In this paper, we propose and demonstrate a method based on a ToF depth camera
to determine whether a person is wearing a mask. The results are divided into three
classifications: wearing no mask, wearing a surgical mask, and wearing an N95 mask. The
three situations can be easily discriminated by the optimized spatial and frequency features
on the facial depth contour. The experimental results show that these characteristics not
only can distinguish whether people wear masks but also can determine the types of masks.
Unlike the 2D image from the RGB camera, which is easily affected by the environmental
illumination, our developed mask identification system based on the ToF camera runs
robustly under variable external conditions, especially in the dark environment. Compared
with the other 3D imaging sensors, the ToF camera also has the advantage of fast imaging.
Through the sampling and dimension reduction of the depth image to obtain the facial
contour curve, our method could potentially achieve quick and accurate identification,
which is suitable for scenes with illumination variation and rapid identification, such as
entrances and exits of the building. In addition, our method can also provide statistical
data for epidemiological analysis by monitoring the mask types.

2. Method

Figure 1 illustrates the process of the proposed mask recognition method. In the
data acquisition module, the ToF camera is used to collect the facial depth images. The
facial contour is then extracted from the depth image as a recognition feature in the next
step. The recognition module can be sequentially divided into two sub-modules: one
first needs to identify whether a person is wearing a mask. If the output result is yes,
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the mask type is further differentiated. Otherwise, the module can export the result that
there is no mask. The above classification process mainly relies on the feature descriptor,
including the spatial and frequency features. The spatial features are extracted from the
facial contour, and the frequency features are obtained from the frequency characteristics
by using the Fourier transform. There are two popular mask types verified by this method:
surgical masks and N95 masks. Surgical masks are the most widely used in daily life, and
N95 masks have better prevention abilities and a higher usage rate in hospitals and other
risk environments [30]. Thus, the proposed method has great research significance for
identifying these two mask types.
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Figure 1. Flow chart of mask recognition based on depth camera.

2.1. Facial Contour Extraction

In order to process the facial data efficiently and save on computational costs, the
vertical facial contours are extracted from the 3D facial depth images to achieve rapid
recognition. In sequence, spatial features and frequency features are determined from the
extracted facial contour. Thus, the precision of the facial contour extraction directly affects
the accuracy of the classification. In our method, a contour extraction approach is utilized
to obtain appropriate facial contours. In addition to the facial information, there is a lot of
redundant information on the obtained depth images. Those useless backgrounds need to
be first removed by the clipping method. The designed rhombus template is then applied
to reduce the interference of the hair and other noise. The facial contour is ultimately
extracted from the rhombic region. The extracted facial contour is smoothed to obtain a
contour curve with spatial interpretation.

The above-mentioned process and visualization results of contour extraction are
shown in Figure 2. To avoid the influence of background information in the depth image,
the human facial depth image is first segmented by the distance filter. With the distance
information between the object and the camera being recorded in the depth image, the
human face can be easily distinguished from other backgrounds by conditional filtering. By
setting the segmented ranges of distance, one can highlight the foreground human face by
performing a one-time filtering operation. The camera we used can capture complete and
clear faces within the range from 0.1 m to 0.5 m. Therefore, the background with a distance
greater than 0.5 m is filtered. The background and face can be completely separated by
distance filtering. The images containing only the face can be obtained by setting the
background pixel value to infinite and cutting out the pixels with the infinite value. Since
the main difference between the images with and without masks is in the bottom part of
the face, we directly cut out the top face in the image and only focus on the bottom face
with obvious features. As shown in the first column of Figure 2, the whole input image is
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fully occupied by the face, both horizontally and vertically. Thus, the bottom face can be
obtained by clipping from the middle of the image.
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mask and (b) facial contour extraction of the image with a surgical mask.

In the extraction process of human facial contour, a rhombus template is designed to
filter the redundant hair noise. Through the above steps, we can obtain the bottom face
in Figure 2, and the construction of the rhombus is based on the bottom face image. The
midpoint of each side in the bottom face image is first picked out. These four points are
then taken as the vertices of the rhombus. As shown in the second column of Figure 2, the
overlapping part of the rectangular image and rhombus is the target area, and the rest of
the rectangular image is removed. The gray part in the figure represents all the filtered
parts of the original image, and the contour curve is extracted from the unfiltered color
part. According to the geometric characteristics of the human face and depth distance,
the facial contour can be obtained by finding the points with the minimum distance in
each horizontal line of the rhombus area. The face contour is used to replace the original
data, and the feature descriptor is further extracted, which greatly reduces the amount of
calculation.

Due to the limited resolution of the depth camera, the extracted facial contour needs
to be smoothed so that it can be closer to the original appearance. The extracted facial
contour is smoothed with a Gaussian-weighted moving average filter, and the length of
the smoothing window is 50. The example of contour smoothness is demonstrated in the
third column of Figure 2. The ordinate of the curve is the relative distance between the face
and the camera, and the abscissa is the pixel position. The first row (a) displays the contour
extraction process of the images without a mask. As can be seen from the curve of a3, there
are three obvious minimum points, A, B, and C, representing the tip of the nose, the top
lip, and the bottom lip, respectively. The second row (b) illustrates the contour extraction
process of the image with a surgical mask. For contour curves with a mask, point A only
represents the global minimum point of the curve, which is caused by the mask shape
instead of the nose. Other extreme points of the curve are caused by the mask wrinkles,
which have no special significance and are therefore not annotated. All the contour curves
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need to be normalized, including unifying the length and setting the relative distance of
the minimum point to zero.

2.2. Feature Extraction and Classification of Whether to Wear Mask

After obtaining the facial contour curve, the first classification step is deciding whether
to wear a mask. The process is shown in Figure 3, and this step identifies wearing or not
wearing a mask. If the classification result is with a mask, it is necessary to further identify
the mask type. The features used in this classification will be introduced in the following
content. Three features are designed from the contour curve to facilitate the classification.
The main features are the number of local minimum points on the contour curve, the
standard deviation between the farthest points among the local minimum points, and the
quadratic coefficient of the expression Y1 = a1x2 + b1x + c1, which is used to partially fit the
contour curve.
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Figure 4 depicts the above features of the contour curve without a mask. The local
minimum points of the contour curve are labeled in Figure 4a, where point A is the tip of
the nose, point B represents the top lip, and point C is the bottom lip. The local minimum
points are calculated according to Equation (1):{

f
(
xj
)
< f

(
xj−1

)
f
(
xj
)
< f

(
xj+1

) , (1)

where f(xj) is the depth value corresponding to point xj, x is the random point of the
contour curve, and the range of j is from 2 to the length of contour curve. When xj satisfies
Equation (1), it is recorded as the local minimum point of the curve. The number of the
local minimum point is represented by N.

The standard deviation of the two farthest minimum points is denoted by SSD (spatial
standard deviation). Point A and point C are the farthest minimum points shown in
Figure 4b. SSD is calculated as follows:

SSD =

√√√√∑ns
j=1

(
xj − x

)2

ns − 1
, (2)

where ns is the number of points between point A and point C, x is the average of these points.
Especially, when the contour curve has only one minimum point, the value of SSD is 0.

Figure 4c explains the partial fitting process. Taking the global minimum of point A of
the curve as the center, and the segment curve with the length of 2L is then obtained by
taking L length from both sides of the curve. The quadratic function Y1 = a1x2 + b1x + c1 is
used to fit this segment curve. According to the properties of the quadratic function, the
quadratic coefficient a1 determines the opening size of the parabola. The value of |a1| is
larger and the opening size of the parabola is smaller.
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Figure 4. Three features of the image without a mask: (a) number of minimum points of the contour
curve; (b) standard deviation between the farthest minimum points of the contour curve; and
(c) quadratic coefficient of the partial fitting curve.

After calculating the above features, the type of contour curve can be determined according
to the different feature values. Generally, the feature value of the curve without a mask are
greater than the feature value of the curve with a mask. Therefore, the threshold values
can be set to separate them. For the images without masks, N > N’, SSD > SSD’, a1 > a1’,
where N’, SSD’, and a1’ are the thresholds. The voting method is used as classifier to
determine whether a mask is worn or not. When more than two of the three features meet
the threshold, it is determined that the mask is not worn.

2.3. Feature Extraction and Classification of Mask Types

After identifying that a mask is worn, a further judgement of the mask type is executed.
The judgement process is similar to identifying whether to wear a mask or not, which is
shown in Figure 5. In our experiment, the mask types are the surgical mask and the N95
mask, respectively. The judgement process is similar to identifying whether to wear a mask.
To obtain suitable features to recognize the mask types, three new features are designed
from the spatial and frequency levels, including the opening angle of the contour curve,
the quadratic coefficient of the expression Y1 = a1x2 + b1x + c1 (which is used to partially
fit the contour curve), and the area of the frequency curve. The corresponding frequency
curve is obtained by the Fourier transform.
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Figure 5. Identification process for mask types.

Figure 6 depicts the feature visualization of the contour curve with the N95 mask
being worn. For contour curves with a mask, point A only represents the global minimum
point of the curve, which is caused by the shape of the mask instead of the nose. The global
minimum point (xM, yM), the left-end point (xL, yL), and the right-end point (xR, yR) of the
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contour curve are first located, as shown in Figure 6a. The opening angle, denoted by α,
is computed from these three points. Taking the global minimum point as the vertex, the
angle between two straight lines is calculated as follows:

α = arctan(|
yM−yL
xM−xL

− yR−yM
xR−xM

1 +
(

yM−yL
xM−xL

)
·
(

yR−yM
xR−xM

) |) (3)
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The process of partial fitting explained in Figure 6b is consistent with Section 2.2. The
quadratic function Y1 = a1x2 + b1x + c1 is used to fit the segment curve. According to
the properties of the quadratic function, the quadratic coefficient a1 can also distinguish
between the mask types.

After fitting the contour curves with the quadratic function Y2 = a2x2 + b2x + c2, its
frequency curve is obtained by the Fourier transform in Figure 6c. The Fourier transform
of the discrete contour curve follows Equation (4):F(K) =

n
∑

j=1
x(j)W(j−1)(k−1)

n

Wn = e
−2πi

n

, (4)

where F(K) is the frequency curve from the Fourier transform, n is the number of the point
on the contour curve, and Wn is a n-th root of unity. The area of the frequency curve is
denoted by FS and it is calculated as follows:

FS =
1
2

n

∑
j=1

(
f
(
xj
)
+ f

(
xj+1

))
(5)

Due to the different geometric shapes, two mask types have distinct feature val-
ues and the appropriate thresholds can separate the mask types. For surgical masks,
α < α’, a1 < a1’, FS < FS’, where α’, a1’, and FS’ are the thresholds. The voting method is also
used to determine the mask types. When two or more of the above thresholds are met, the
mask type is determined to be the surgical mask. Otherwise, the type is the N95 mask.
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Figure 7 depicts the feature visualization of the contour curve with the surgical mask
being worn. Compared to Figure 6, the partial fitting curve is quite different, and a clearer
comparison will be analyzed in the next section.
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3. Results

To evaluate the proposed recognition algorithm, a ToF depth camera was used to
capture the depth data. The PicoFlexx camera from pmdtechnologies was used for data
collection. The PicoFlexx camera is equipped with an IRS1145C Infineon® REAL3™ 3D
image sensor based on the principle of ToF. The camera uses an 850-nm Vertical-Cavity
Surface-Emitting Laser (VCSEL) as the light source, and the detection range is from 0.1 m to
4 m. We used this camera to collect the front-face image under the indoor environment. For
the acquired images, the corresponding resolution is 945 × 722 pixels, which is expanded
from the 244 × 172 resolution of the IRS1145C sensor by the Software Development Kit
(SDK) Royale 3.20.0.62 as a color-coded depth map. These depth images can be divided
into three categories: not wearing a mask, wearing a surgical mask, and wearing an N95
mask. The bottom half of the face is obtained by distance filtering and clipping. The 3D
view of three situations is shown in Figure 8. The pixel value of the data is normalized to
the range from 0 to 1 by the SDK of the ToF camera, where 0 represents the closest distance
to the camera and 1 represents the farthest distance detected by the camera. In Figure 8, we
flip the meaning of the values for better visualization.

From the 3D view of the bottom face, the face without a mask has more obvious
undulations with multiple peaks, and the nose part is conspicuous. The 3D contour of
the surgical mask is much smoother in general, but there are more small fluctuations. The
shape of the 3D contour for the N95 mask has only one obvious peak.

With the depth image of the bottom face, the facial contour curve is extracted and
normalized. In our research, the length of all the contour curves is unified at 300, and the
relative distance of the global minimum point is set to zero. Figure 9 shows the 3 types
of facial contour curves, and 10 contour curves of each type are selected for overlapping
display. When all the contours are normalized, contour curves of the same type show good
repeatability and similar geometric features, but different kinds of contour curves have
different geometric features. In particular, the mask covers the shape of the human face, so
the contour curve with a mask is gentler, while the contour curve without a mask fluctuates
more obviously. We can clearly see the characteristics of the bottom face in Figure 9,
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including the nose, the top lip, and the bottom lip, while they cannot be distinguished from
the contour curve with a mask. The contour curves of different mask types are also different.
In general, the contour curve of a surgical mask is relatively gentle. However, there are
many wrinkle-caused fluctuations in the curve. The N95 mask is made of thicker material,
and its depth contour curve is closer to a trapezoidal shape. Depending on the different
shapes of the contour curves, the features can be extracted for classification and recognition.
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After obtaining the contour curve, the features N, SSD, and a1 are calculated to
determine whether to wear a mask. A total of 15 images of each type are selected to
calculate the three features, which are shown in Figure 10. The black curve represents the
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feature values of the contour curve without a mask, while the red and blue curves represent
the feature values of the contour curve with a surgical mask and an N95 mask, respectively.
The minimum number of points is displayed in Figure 10a. One can see that due to the
shape of the nose and lips, the number of the minimum points of the contour curve without
a mask is always more than three. With the regular shape, the N value of the contour curve
with an N95 mask is typically one. However, due to the influence of the folds, the N value
of the contour curve with a surgical mask shows great fluctuation, ranging from 1 to 3.
Although most N values of the contour curve without mask are greater than those of the
contour curves with a mask, there are still overlapping parts. Therefore, a single feature
cannot classify the mask wearing condition accurately. The value of N is also not suitable
for distinguishing the mask types.
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Figure 10. Feature values to identify whether to wear mask captured from 15 images: (a) the N value,
(b) the SSD value, and (c) the a1 value of three types of curves.

Figure 10b shows the standard deviation between the two farthest minimum points.
The SSD values of the contour curve without a mask are far greater than those of the
contour curve with a mask because of the shape of the human face. The folds of the surgical
mask lead to the oscillation of the contour curve with the mask, causing a smaller but
unpredictable fluctuation in SSD value. The contour curve with the N95 mask usually has
only 1 minimum point, and its SSD is set to 0. However, because the SSD curves of two
types of masks also overlap, the SSD value cannot distinguish the mask types well.

Figure 10c demonstrates the quadratic coefficient a1 of the partial fitting curve. As one
can see, the a1 value of the contour curve without a mask are far greater than those of the
contour curve with a mask. For the quadratic function, the value of |a1| is larger and the
opening of the parabola is smaller. The global minimum point is the vertex of the quadratic
function. For the contour curve without a mask, the fitting curve represents the nose. For
the contour curve with a mask, the fitting curve describes a part of the mask. Therefore,
the a1 value of the contour curve without a mask is greater than that with a mask, which is
consistent with the theory. The a1 values of different mask types also have differentiation,
which will be further explained.
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In summary, the above three features can distinguish whether or not to wear a mask
by setting the thresholds appropriately. The effect of a single feature is limited, while the
combination of the three features can achieve better results. The decision conditions are
N > N’, SSD > SSD’, a1 > a1’, where N’, SSD’, and a1’ are the thresholds. In our work, N’ is
2, SSD’ is 0.05, and a1’ is 5. To improve the robustness, the voting method is used for the
classification. When more than two evaluation conditions are satisfied, it is considered as
without a mask. Otherwise, it is determined to be wearing a mask.

In the identification process of two mask types, the surgical mask and the N95 mask,
three features are extracted from the spatial and frequency curves. Figure 8 shows the
features to distinguish the mask types from 15 images. The red and blue curves represent the
feature values of the contour curve with the surgical mask and the N95 mask, respectively.
The opening angle values of these images are illustrated in Figure 11a. It clearly shows
that the opening angle of the contour curve with the N95 mask is greater than that with
the surgical mask. However, the opening angle values of two types still have overlapping
parts and other features are required to be leveraged together.
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The quadratic coefficient a1 of the partial fitting curve is shown in Figure 11b. Although
the opening angle of the contour curve with an N95 mask is larger than that with a surgical
mask, the quadratic coefficient of the partial fitting curve of an N95 mask is smaller, because
the chosen part of the N95 mask is sharper together with a more stable shape.

The frequency curve is obtained by the Fourier transform after the quadratic fitting of
the contour curve. The area of the frequency curve of the N95 mask is larger than that of
the surgical mask in Figure 11c.

The above three features can distinguish whether or not to wear a mask by setting
the thresholds appropriately. Due to different wearing habits and soft mask materials,
the feature values have fluctuations, and the effect of a single feature is limited. The
combination of these three features can achieve better results, and the voting method is
also used to classify the mask types. The decision conditions are α < α’, a1 < a1’, FS < FS’,
where α’, a1’, and FS’ are thresholds. In our work, α’ is 70, a1’ is 2.5, and FS’ is 85. When
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two or more threshold conditions are satisfied, it is determined that the person is wearing a
surgical mask. Otherwise, it is judged as an N95 mask.

The algorithm is evaluated from many aspects based on our data. The results can be
classified into three categories: TP (true positive) means that the results are the same as the
real conditions; FP (false positive) means samples in the detected category are inconsistent
with the real category; and FN (false negative) means that the object is detected as the
opposite category. Precision is used to measure the proportion of the real cases (TP) among
all the positive cases (TP + FP) detected by the algorithm, as shown in Equation (6).

Precision =
TP

TP + FP
(6)

Recall is the proportion of detected real cases in all positive cases, which represents
the ability of the algorithm to detect the real cases, calculated as follows:

Recall =
TP

TP + FN
(7)

Due to the trade-off between the precision and recall, the F1 score combines them into
a single indicator, defined by the harmonic average, as shown in Equation (8).

F1 = 2× P× R
P + R

=
TP

TP + FN+FP
2

, (8)

where P and R represent precision and recall, respectively. If the F1 score is higher, the test
of the algorithm will be more effective.

A total of 369 depth images were captured, including evenly distributed categories:
without masks, with surgical masks, and with N95 masks, to test the algorithm. These
images were taken by 3 women aged from 23 to 25 over a 1-week timeframe. In order to
enrich the sample diversity, the images were taken for people with and without glasses. In
addition, it also includes different hairstyles, such as long, straight hair and a ponytail. In
the proposed algorithm, there are two classifications: one is whether or not to wear mask
and the other is the mask types. The precision, recall, and F1 score are calculated for the
two cases, respectively. For the classification of whether or not to wear mask, the results
are listed in Table 1.

Table 1. Detection results of whether or not to wear mask.

Category Precision Recall F1 Score

Without a mask 0.906 0.992 0.947
With a mask 0.996 0.946 0.970

Although the recall of those without a mask is larger than the recall of those with a
mask, the precision and F1 score of with a mask are larger than that of without a mask. As
displayed in Table 1, most images without a mask can be detected correctly. Because of the
soft material, surgical masks are more likely to produce wrinkles or reflect the undulation
of the face. Therefore, most of the images incorrectly identified as without a mask are
actually images with surgical masks.

To evaluate the confusion between the surgical mask and the N95 mask, the classifi-
cation results on the mask types are shown in Table 2. Since the step is performed after
detecting whether or not to wear a mask, the classification of mask types relies on the
image detected as with a mask. These two kinds of masks have similar contour curves and
feature values, which leads to the drop in accuracy. In addition, the precision and recall of
the two types are in a restrictive relation, respectively, and have close F1 scores.
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Table 2. Detection results of whether or not to wear mask.

Category Precision Recall F1 Score

With a surgical mask 0.847 0.909 0.877
With an N95 mask 0.910 0.842 0.875

The system runs on a regular laptop (Intel Core AMD Ryzen 7 6800H CPU running
at 3.2 GHz, and 16 GB of RAM) and MATLAB is used for image processing. The average
processing time of the algorithm is 32 ms, which corresponds to 31.55 FPS.

Table 3 presents a comparison of this proposal with the other works. The accuracy
of our work is expressed by the average precision. At present, there is less related work
to recognize the face mask based on the depth image; most works are based on the RGB
images. However, compared with the method based on the RGB image, the depth image
captured from the low-cost ToF camera can be less affected by the environment light.
Therefore, our accuracy has certain advantages compared with those works. The work [14]
considered the RGB data under dark condition; they introduced additional resources
to train the network, and the improved accuracy rate in the dark condition was 77.9%.
Compared with this work, our proposed method is unaffected by light and the average
accuracy can reach 96.9%. In addition, we have also classified the mask types, which are
not involved in some works. It can be seen from Jiang et al. [12] that the introduction of
more classification situations will affect the accuracy of the method. In the case of sufficient
lighting and good image quality, our ToF-camera-based method has close accuracy with the
other works of mask recognition based on the RGB images. Most RGB-camera-based works
with high identification accuracy are based on mature deep-learning methods. However,
compared with most network-based works, our method is more interpretable and with
lower computational costs.

Table 3. Comparison of this proposal with other works.

Work Method Data Distinguished
Type Accuracy Efficiency

Ours Feature-based Depth With/Without 96.9%
31.55 FPSMask Type 87.85%

Cao et al. [14] YOLOv4-large RGB
With/Without 94%

18 FPSNight Time 77.9%

Nagrath et al. [10] SSDMNV2 RGB With/Without 92.64% 15.71 FPS

Jiang et al. [12] SE-YOLOv3 RGB
With/Without/

Correct
Wearing

73.7% 15.63 FPS

Walia et al. [7] YOLOv5 RGB With/Without 98% 32 FPS

Su et al. [11] Transfer Learning
and Effcient-Yolov3

RGB
With/Without 96.03%

15 FPSMask Type 97.84%

Yu et al. [8] YOLO-v4 RGB With/Without 98.3% 54.57 FPS

4. Conclusions and Discussion

We propose a method to identify whether a person is wearing mask, which can further
classify the mask types, such as the surgical mask and the N95 mask. A ToF camera with
a simple system and robust data is used to capture the depth image, especially in dark
conditions. The designed method can extract facial contours accurately by using the depth
information. Facial contour extraction is essentially the sampling and dimensionality reduc-
tion of the depth data, which can reduce the amount of data and improve the recognition
speed of the algorithm. Additionally, the spatial and frequency features of the facial con-
tour are further extracted. With the appropriate thresholds and the voting method, it can
achieve a 99.21% recall accuracy for images without a mask, and a 94.6% recall accuracy for
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images with a mask. Through reducing the dimension of the data, our method can reach
satisfactory accuracy while quickly identifying.

However, there is certain confusion between the two mask types, and the soft material
of the mask is the main reason. Therefore, single-depth information is insufficient. In the
future, we hope to combine the depth distance with other information to build a better
model. Furthermore, people have different habits of wearing masks. The classification
category also needs to be further developed, such as the classification of incorrectly worn
masks, the recognizable mask types, and the application scenarios. In practical applications,
there will be more complex challenges, such as people’s movement and a complex crowd
environment. When an angle formed between the face and the ToF camera, some depth
information will be lost for the occluded part of the face. When the angle between the
person and the camera is less than 90◦, the facial contour curve can be detected by raw-data
rotation, which is also our next research focus. Additionally, the work on larger rotation
angles and different directions is also under further study. In addition, the data of multiple
people and in motion are also being further considered.
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