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Abstract: Human airway sweet (T1R2 + T1R3), umami (T1R1 + T1R3), and bitter taste receptors
(T2Rs) are critical components of the innate immune system, acting as sensors to monitor pathogenic
growth. T2Rs detect bacterial products or bitter compounds to drive nitric oxide (NO) production in
both healthy and diseased epithelial cell models. The NO enhances ciliary beating and also directly
kills pathogens. Both sweet and umami receptors have been characterized to repress bitter taste
receptor signaling in healthy and disease models. We hypothesized that the sweet/umami T1R3
antagonist lactisole may be used to alleviate bitter taste receptor repression in airway basal epithelial
cells and enhance NO production. Here, we show that lactisole activates cAMP generation, though
this occurs through a pathway independent of T1R3. This cAMP most likely signals through EPAC to
increase ER Ca2+ efflux. Stimulation with denatonium benzoate, a bitter taste receptor agonist which
activates largely nuclear and mitochondrial Ca2+ responses, resulted in a dramatically increased
cytosolic Ca2+ response in cells treated with lactisole. This cytosolic Ca2+ signaling activated NO
production in the presence of lactisole. Thus, lactisole may be useful coupled with bitter compounds
as a therapeutic nasal rinse or spray to enhance beneficial antibacterial NO production in patients
suffering from chronic inflammatory diseases such as chronic rhinosinusitis.

Keywords: T1R1; T1R3; umami; lactisole; apoptosis; nitric oxide; airway

1. Introduction

In humans, the taste perception of either sweet or savory/umami chemicals occurs
through type 1 taste receptors (T1Rs). The perception of sweet taste signals the presence of
beneficial energy-rich sugars, and this pathway is thought to be signaled by the interaction
of sweet tasting molecules with a G protein-coupled receptor (GPCR) heterodimer of T1R2
and T1R3 [1,2] localized to taste buds on the tongue. Alternatively, the sensation of umami
signals the presence of beneficial amino acids, and umami signaling is initiated via a pro-
posed heterodimer of T1R1 and T1R3 [3]. Both pathways share the common component
of T1R3 and signal through intracellular Ca2+ elevations. T1R3 has also been proposed
to signal independently of T1R1 or T1R2, either as a homodimer or with another GPCR
partner [4–9]. T1Rs serve as nutrient detectors on the tongue and also throughout the body,
including in glucose sensing in pancreatic β-cells [5–9] and adipocytes [4]. Pharmacologi-
cally regulating nutrient detection of T1Rs have been proposed as a potential therapeutic
strategy for diabetes [5–9]. While multiple artificial sweeteners have been developed that
can activate T1R2 and/or T1R3 [1,2], experimental tools to inhibit T1R3 nutrient detection
are more limited.

Experiments where T1R nutrient sensing is inhibited often employ lactisole, a molecule
isolated from coffee beans [10]. Lactisole has been shown to inhibit T1R3 through inter-
actions with a binding pocket within T1R3′s transmembrane domain [11]. Once bound,
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lactisole inhibits the downstream Ca2+ pathways activated by the detection of sweet [12]
or umami molecules [13]. Consequently, in human taste signaling pathways, lactisole
inhibits the detection of both sweet and savory molecules. In addition to biochemical and
psychophysical research studies, lactisole is also used in the food industry in high-sugar-
content foods such as fruit jams or jellies to reduce sweetness and allow other flavors to
be perceived [10–13]. However, while the molecular interactions of lactisole with T1R3
have been examined in detail [11], to our knowledge, off-target effects of lactisole have not
been investigated.

Apart from their function in taste signaling pathways, T1Rs are also expressed in the
human upper airway, where they function with bitter type 2 taste receptors (T2Rs) to detect
pathogenic growth. T2Rs are localized to the cilia of multi-ciliated epithelial cells where they
detect “bitter” bacterial byproducts, such as quorum sensing molecules. Once activated,
T2Rs signal through intracellular Ca2+ to stimulate nitric oxide (NO) production [14–16]
and an increase in ciliary beat frequency [15–17], increasing the mucociliary clearance
of pathogens out of the airway. T2Rs are also found on airway solitary chemosensory
cells (SCCs) [18,19] along with the sweet taste receptor components T1R2 and T1R3 [19].
There, T1R2 and T1R3 detect apical levels of glucose and function to repress T2R signaling
pathways [19]. However, once pathogen growth begins to deplete apical glucose levels,
the repression that T1R2 and T1R3 elicit on T2R signaling is relieved, allowing T2Rs to
signal via intracellular Ca2+ within the SCC to trigger a release of Ca2+, acetylcholine, and
other signaling molecules through gap junctions into surrounding multi-ciliated epithelial
cells [19]. These signaling molecules then cause antimicrobial peptide release into the
apical lumen, killing pathogens [19]. While mucus provides a physical barrier to ensnare
pathogens, the downstream signaling pathways of T1Rs and T2Rs initiate an innate immune
response to both kill and accelerate the removal of pathogens from the airway.

Viruses such as influenza [20] or SARS-CoV-2 [21] and chronic inflammatory diseases
such as chronic rhinosinusitis [22] or severe asthma [23] cause a remodeling of the airway
epithelium leading to ciliary dysfunction or a complete loss of multi-ciliated epithelial
cells, instead being replaced by basal epithelial cells lacking motile cilia. While these cells
lack the innate defenses provided by motile cilia, we recently found that they maintain
expression of T2Rs and retain the ability to initiate NO production [24]. We have also
previously shown that T1Rs are expressed in cultured basal airway epithelial cells and
function to detect amino acids through cAMP signaling pathways and, when stimulated by
amino acids, function to repress T2R Ca2+ signaling pathways through reducing total ER
Ca2+ levels [25]. Thus, we hypothesized that in airway epithelial cells, by inhibiting T1R3
with lactisole, we would increase T2R-stimulated NO production.

Here, we show that lactisole increases intracellular cAMP levels independent of T1R1
or T1R3 expression. Additionally, lactisole both increases ER Ca2+ content and denatonium-
induced cytosolic Ca2+ elevations, ultimately signaling an increase in NO production.
We propose here that these off-target effects of lactisole may be therapeutically useful for
boosting airway NO production. However, our data also suggest that studies using lactisole
to experimentally or therapeutically inhibit T1R sugar or amino acid detection must take
into account the potential effects of T1R-independent cAMP signaling and/or changes in
ER Ca2+ signaling that may also occur.

2. Materials and Methods

A list of all reagents used in the current study are shown in Supplementary Table S1.

2.1. Live Cell Imaging

To assess intracellular Ca2+, cells were incubated with 5 µM of Fluo-8 AM for 1 h in
Hank’s Balanced Salt buffered with 20 mM HEPES free acid. Fura-2 AM (5 µM) was utilized
for assessment of baseline intracellular Ca2+ levels. Images of cells loaded with Fura-2 were
captured using Fura-2 filters (79002-ET Chroma, Rockingham, VT, USA). To assess NO
production, cells were loaded with 10 µM DAF-FM diacetate for 45 min. For intracellular
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or nuclear cAMP, nuclear, mitochondrial, or non-nuclear Ca2+ measurements, cells were
transfected with the appropriate biosensors 48 h prior to experiments. Images taken with
either FITC or TRITC utilized 49002-ET or 49004-ET Chroma respectively. All images
were taken on an Olympus IX-83 microscope (20 × 0.75 NA objective) with excitation
and emission filter wheels from Sutter Instruments (Novato, CA, USA), an Orca Flash 4.0
sCMOS camera (Hamamatsu, Tokyo) and used MetaFluor (Molecular Devices, Sunnyvale
CA, USA) software. Light sources included a xenon lamp for Fura-2 and a X-Cite 120 boost
LED source (Excelitas, Waltham, MA, USA) for all other imaging.

2.2. Culture of Primary Human Cells

Residual human surgical material was used a source for isolating primary sinonasal
cells. Samples were obtained conforming to the University of Pennsylvania guidelines
for use along with the Declaration of Helsinki and the U.S. Department of Health and
Human Services code of federal regulation (Title 45 CFR 46.116). Institutional review board
approval (#800614) was obtained, and informed consent was collected from each patient.
Patients were adults, >18 years old, and underwent surgery to address a sinonasal disease
or for other causes.

Unless otherwise noted, the primary nasal epithelial cells were isolated from the resid-
ual surgical material via enzymatic digestion as previous described [14]. In short, the tissue
was incubated for 1 h at 37 ◦C in digestion medium containing 1.4 mg/mL protease and
0.1 mg/mL DNase. Proteases were inactivated by the addition of medium supplemented
with FBS (10%). To remove non-epithelial cells, the resulting cells were incubated in a flask
for 2 h at 37 ◦C with 5% CO2 in PneumaCult-Ex Plus medium (Cat. 05040, Stemcell Tech-
nologies, Vancouver, Canada) supplemented with penicillin (100 U/mL) and streptomycin
(100 ug/mL). After 2 h had passed, the media were then transferred to a cell culture dish
and the resulting cultures were expanded utilizing PneumaCult-Ex Plus medium. To obtain
fully differentiated cultures, cells were seeded in air–liquid interface (ALI) cultures and
exposed to air for at least 21 days prior to use in experiments.

Primary bronchial epithelial cells were purchased through Lonza (CC-2540S) and
propagated and differentiated using the same methods as described for primary nasal
epithelial cells.

2.3. Knockdown of T1Rs

Subconfluent cultures of Beas-2B cells (propagated in F-12K Media with 10% FBS,
1% penicillin/streptomycin) were transfected via lipofectamine 3000 for 48 h with either
10 nM of TAS1R1.6 or TAS1R3.2 or control non-targeting RNAi duplex (Integrated DNA
Technologies, Coralville, IA, USA). Validation of knockdown was achieved via qPCR analysis.

2.4. Quantitative PCR (qPCR)

RNA was collected by resuspending cultures in TRIzol (ThermoFisher Scientific,
Waltham, MA USA). Suspensions were used immediately or stored at 70 ◦C for later use.
The Direct-zol RNA kit (Zymo Research, Irvine, CA, USA) was used to purify the preserved
RNA. cDNA libraries were created using RT-PCR using the High-Capacity cDNA Reverse
Transcription Kit (ThermoFisher Scientific). Resulting cDNA libraries were then subjected
to qPCR using Taqman qPCR probes and analyzed via the QuantStudio 5 Real-Time PCR
System (ThermoFisher Scientific). Microscoft Excel and GraphPad PRISM v8 were used to
both analyze and plot the resulting data.

2.5. Genotyping T2R38 PAV/AVI

Unless otherwise noted, genotyping methods followed as previously described [26].
Samples were vortexed briefly then centrifuged in a tabletop centrifuge and max speed
for 5 min. Aqueous phase was transferred to a new tube and 3M Sodium Acetate pH
5.2 was added at 1/10th the volume followed by two volumes of isopropanol. Samples
were centrifuged in a tabletop centrifuge at max speed for 40 min at 4 ◦C. Supernatant
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was decanted and resulting pellet was washed twice with 1 mL 70% ethanol then air dried
at room temperature before resuspension in 100 µL of Tris-EDTA buffer. Resulting DNA
was subjected to PCR via TaqBlue in reactions utilizing 200 µM dNTPs, 250 µM Forward
(TTG GGA TAA TGG CAG CTT GTC CCT C), 250 µM Reverse (GCA CAG TGT CCG GGA
ATC), 0.05 U/µL TaqBlue, and 1–20 ng/µL DNA template. Resulting PCR products were
digested using 10× CutSmart Buffer and 0.5 µL FNu4HI at 37 ◦C for 1 h then separated on
a 2.2% agarose gel containing ethidium bromide. Cleaved DNA bands were imaged via the
ChemiDoc MP Imaging System (BioRad Laboratories, Hercules, CA, USA).

2.6. Data Analysis and Statistics

For graphs with just two comparisons, t-tests were utilized. Graphs or plots with
>2 comparisons utilized the ANOVA test, whereas the Tukey–Kramer post-test was used for
comparing multiple samples to each other, the Bonferroni post-test was used for selective
pair comparisons, Sidak’s post-test for paired comparisons, or Dunnett’s post-test for
multiple comparisons relative to one control. In all comparisons, (*) p < 0.05, (**) p < 0.01,
(***) p < 0.001, (****) p < 0.0001, “n.s.” (no statistical significance). All data presented are the
mean ± SEM of at least 3 experiments.

3. Results
3.1. Lactisole Increases Intracellular cAMP

Both sweet and umami taste signaling pathways are thought to share a common com-
ponent, the GPCR T1R3. In humans, lactisole inhibits the perceived taste of both sweet [12]
and umami [13] compounds at concentrations of >1 mM. Lactisole binds to the trans-
membrane domains of T1R3 where it interrupts T1R3-mediated Ca2+ signaling [11,27,28].
Previously, we have shown that the sweet taste receptor represses T2R signaling pathways
in primary differentiated airway cultures [19] and the umami receptor regulates T2R sig-
naling pathways in basal airway epithelial cells [25]. Therefore, we hypothesized that the
addition of lactisole may alter T2R-signaled NO production through T1R3 inhibition.

We previously showed that both T1R1 and T1R3 respond to amino acids and in-
duce cAMP elevations in airway basal epithelial cells [25]. While attempting to inhibit
T1R activity with lactisole, we found that lactisole activated cAMP generation in a dose-
dependent manner from 5 to 40 mM in Beas-2Bs expressing cAMP biosensor Flamindo2
(Figure 1a). In Beas-2Bs loaded with Ca2+ detection dye Fluo-8 AM, lactisole alone had
no effect on intracellular Ca2+ (Figure 1b). Likewise, lactisole also did not alter baseline
intracellular Ca2+ levels as measured via ratiometric Ca2+ detection dye Fura-2 (Figure 1c).
Lactisole treatment activated both nuclear and non-nuclear cAMP pathways (Figure 1d)
and persisted for ≥1 h after treatment (Figure 1e). Interestingly, in pancreatic β cells, while
lactisole inhibited sucralose-induced Ca2+ release, it did not diminish cAMP elevations
signaled by sweet compounds [29]. Therefore, we hypothesized that this alteration of
cAMP signaling might be a poorly understood function of lactisole, either via T1R3 or in a
T1R3-independent manner.

To determine if lactisole was signaling cAMP elevations through T1R3, we utilized
a T1R3 knockdown model in Beas-2Bs. Using RNAi duplexes to reduce T1R3 and T1R1
expression by ~70% [25], we observed similar levels of lactisole-mediated intracellular
cAMP elevations in knockdown cells relative to cells expressing non-targeting RNAi
(Figure 1f,g). Thus, lactisole activated cAMP independent of T1R3 and T1R1. Together,
these data suggest that cAMP elevation may be an off-target effect of lactisole. However,
given the elevation of cAMP with lactisole, we further investigated the downstream effect
of signaling pathways activated by lactisole.
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Figure 1. Lactisole stimulates intracellular cAMP elevations. (a) Beas-2Bs expressing cAMP biosensor
Flamnido2 show a dose-dependent increase in cAMP in response to 5–40 mM of lactisole. (b) The
20 mM lactisole does not increase intracellular Ca2+ in Beas-2Bs (c) Beas-2Bs treated with 40 mM
lactisole for 1 h show no difference in baseline intracellular Ca2+ as measured by Fura-2 fluorescence.
(d) The 10 mM lactisole increases both intracellular and nuclear cAMP in Beas-2Bs. (e) cAMP
elevations lasting for an hour from lactisole treatment. (f) There were no significant differences
in lactisole-induced cAMP elevations in either T1R3 knockdown or non-targeted control cultures.
(g) Knocking down T1R1 also had no significant impact on lactisole-mediated cAMP elevations. Traces
are representative results from ≥3 experiments. Bar graphs show mean ± SEM from ≥3 experiments.
Significance determined by t-test, “n.s.” represents no significance.

3.2. Lactisole Increases ER Ca2+ Content, ER Ca2+ Efflux, and GPCR-Modulated Ca2+ Signaling

Even though lactisole did not stimulate Ca2+ release, it could still modify Ca2+ signal-
ing in other ways, such as through a modification of ER Ca2+ store content. Because most
GPCR Ca2+ release originates with activation of phospholipase C and production of IP3,
changes in ER Ca2+ stores can alter GPCR Ca2+ release dynamics by modifying the driving
force for IP3 receptor-mediated Ca2+ efflux from the ER. To quantify ER Ca2+ content, we
loaded Beas-2Bs with Fluo-8 AM and inhibited the SERCA pumps using thapsigargin
(10 µg/mL) in 0-Ca2+ HBSS with 2 mM EGTA. By inhibiting ER Ca2+ uptake, the total ER
Ca2+ stores slowly leaked and caused Fluo-8 to fluoresce before continuing to disperse
out of the cell and chelating to extracellular EGTA, preventing re-uptake. Beas-2B cells
treated with 20 mM lactisole for 1 h revealed a 275% increase in ER Ca2+ release as observed
through comparisons of peak Ca2+ elevations and a 200% increase in ER Ca2+ stores as
calculated by the area under the curve (Figure 2a). While calculating the area under the
curve for each trace allows for an observation of total ER Ca2+ content, calculating the initial
linear slope of Ca2+ release allows for an estimation of the rate of Ca2+ efflux (leak) from
the ER. As seen in Figure 2b, pretreatment of Beas-2Bs with lactisole (20 mM, 1 h) caused a
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300% increase in the magnitude of the initial linear slope in Fluo-8 fluorescence. Together,
these results demonstrate that lactisole functioned to both increase ER Ca2+ content and
the rate of Ca2+ efflux from the ER. With such a dramatic increase in ER Ca2+ stores, we
wanted to investigate if the ER itself increased in size.
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Figure 2. Lactisole increases ER Ca2+ content and size. (a) The 20 mM lactisole 1 h pretreatment
increases peak Ca2+ release by 275% and ER Ca2+ content by 200%. (b) Analyzing the initial linear
slope from trace in experiment (a), as highlighted by red circle and enlarged in graph on the right,
revealed that lactisole treatment (20 mM, 1 h) caused a 300% steeper slope relative to untreated cells.
(c) Beas-2B cells treated with 20 mM lactisole for 1 h revealed a decrease in ER tracker fluorescence.
(d) Beas-2Bs expressing ER Ca2+ sensor D1ER show that denatonium treatment reduced ER Ca2+

stores 250% with 20 mM lactisole pretreatment (1 h). (e) Lactisole increases denatonium-induced Ca2+

release regardless of extracellular Ca2+ (f) Both 10 and 20 mM lactisole pretreatment (1 h) increases
histamine-induced Ca2+ release by 50%. Traces are representative of ≥3 experiments. Bar graphs
containing two comparisons were analyzed via t-test; bar graphs containing >2 comparisons were
analyzed via ANOVA using Bonferroni’s post-test for multiple comparisons * p < 0.05, ** p < 0.01,
*** p < 0.001.

To determine if the ER physically increased in size in response to 20 mM lactisole
treatment, Beas-2B cells were loaded with 2 µM of ER-Tracker Green, a live-cell stain that
binds to the sulfonylurea receptors of ATP-sensitive K+ channels prominent on the ER, to
visualize the ER’s morphology. Here, we show that in live cells loaded with ER-Tracker,
there is a 25% reduction in fluorescence signal in cells pretreated with 20 mM lactisole for
1 h relative to untreated cells (Figure 2c). In just one hour, it is unlikely that the cells would
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be able to produce more ATP-sensitive K+ channels to stain. It is most likely that in that
time frame the expansion of the ER caused more distance between these channels, and
therefore a decrease in overall fluorescence intensity. Together with our measurements of
ER Ca2+ content, these data suggest that lactisole treatment increased both the Ca2+ content
and size of the ER.

Next, we utilized the ER-localized Ca2+ biosensor D1ER [30] to examine if the increase
in ER Ca2+ stores led to an increase in ER Ca2+ efflux via GPCR-signaled pathways. We
observed that in Beas-2B cells expressing D1ER, denatonium treatment caused a greater
decrease in ER Ca2+ levels in cells treated with lactisole compared to those which were
untreated (Figure 2d). This change in ER Ca2+ release was approximately a 250% increase
relative to the untreated control. To definitively answer whether extracellular Ca2+ had any
influence on this lactisole-mediated increase in denatonium-induced Ca2+ release, Beas-2Bs
were preincubated with 20 mM lactisole for 1 h then stimulated with 15 mM denatonium in
the presence or absence of extracellular calcium. We observed that there was no difference
in denatonium-induced peak Ca2+ release whether extracellular Ca2+ was present or absent
(Figure 2e). Cumulatively, these data suggest that the increase in denatonium-induced Ca2+

release from lactisole pretreatment originated solely from the ER.
We also tested if a similar effect on Ca2+ signaling was observable using other bitter

compounds, each which activate a variety of T2Rs (Supplementary Table S2). Compared
to other bitter compounds, 20 mM lactisole pretreatment (1 h) had the highest impact
on denatonium-induced Ca2+ signaling with a 250% uplift, while 500 µM flufenamic
acid, 1 mM quinine, or 3 mM thujone increased Ca2+ elevations by 30% (Supplementary
Figure S1a–d). Interestingly, 5 mM diphenhydramine uniquely displayed a 175% and 200%
increase with 10 or 20 mM lactisole pretreatment respectively (Supplementary Figure S1e).
We have previously reported that denatonium Ca2+ signaling pathways were inhibited by a
1 h pretreatment with 1 µM of Gq inhibitor YM-254890 [24]. Here, we show that denatonium
is the only bitter compound of the ones tested here that was sensitive to YM-254890
(Supplementary Figure S1f). These data suggest that the dramatic increase in denatonium-
induced Ca2+ response may be likely due to its associated T2R(s) signaling via a Gq.
Moreover, we only observed a denatonium-induced Ca2+ release in airway cells line RPMI-
2650 (Supplementary Figure S2a) and primary basal NHBE cells (Supplementary Figure
S2b) with lactisole pretreatment. Interestingly, differentiated NHBE cells did not signal
via Ca2+ in response to denatonium regardless of lactisole pretreatment (Supplementary
Figure S2c). Differentiated NHBE cells do signal through Ca2+ in response to thujone
(3 mM), however this signaling was unaffected by lactisole pretreatment (Supplementary
Figure S2d). Together these observations in NHBE cells suggest that differentiated cultures
may lack the protein(s) found in basal cells that lactisole is signaling. Together, these data
demonstrate that this effect is unique to basal airway epithelial cells.

We also tested the ability of Beas-2Bs to detect phenylthiocarbamide (PTC), a bitter
compound associated with T2R38 [31]. In humans, T2R38 and its variations have been well
characterized. The PAV (P49, A262, and V296) variation is fully functional and capable of
strongly tasting PTC [32]. However, when these amino acids are mutated to AVI respec-
tively, this causes an inability to taste PTC [32]. In fully differentiated airway cultures, PTC
activates intracellular Ca2+ pathways in cultures expressing the PAV-version of T2R38 [14].
We genotyped Beas-2Bs as having heterozygous PAV/AVI TAS2R38 expression (Supple-
mentary Figure S3a). While Beas-2Bs displayed a low level of intracellular Ca2+ elevation
when treated with 5 mM PTC, lactisole pretreatment (1 h, 20 mM) increased PTC-induced
Ca2+ release by 300% (Supplementary Figure S3b). Utilizing Beas-2Bs expressing either
nuclear or non-nuclear variations of R-GECO, we observed that these Ca2+ elevations were
in nuclear and non-nuclear compartments (Supplementary Figure S3c). Thus, lactisole was
able to bolster this Ca2+ signaling pathway in Beas-2Bs, which is partially hindered by
heterozygous PAV/AVI TAS2R38 expression.

We also found that lactisole effect on Ca2+ signaling pathways was not unique to T2R
agonists. Histamine-induced Ca2+ release was also increased with lactisole pretreatment
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(Figure 2f), further supporting our hypothesis that lactisole itself does not directly modify
T2R function but acts to amplify Ca2+ signaling pathways through increasing ER Ca2+

content. We then wanted to explore if lactisole mediated these changes in ER Ca2+ storage
through cAMP elevations.

3.3. EPAC Increases ER Ca2+ Efflux

Elevations in cAMP can activate downstream signaling proteins such as Protein
Kinase A (PKA) or Exchange Protein Directly Activated by cAMP (EPAC). Both have been
shown to affect Ca2+ signaling. Using Beas-2Bs expressing ratiometric PKA biosensor
AKAR4 [33,34], we did not observe changes in intracellular cAMP with 20 mM lactisole
(Figure 3a). Additionally, 20 mM of lactisole did not alter nuclear PKA activity in Beas-
2B cells expressing nuclear localized AKAR4-nls [34] (Figure 3b). Even after an hour
preincubation with 20 mM lactisole, there were no observed changes in baseline intracellular
PKA activity (Figure 3c). Therefore, if changes are occurring in intracellular PKA, they are
beyond the detection limits of this biosensor. We have previously shown that treatment with
bitter compounds reduced resting cAMP levels [24]. Beas-2Bs pretreated with 10 µM of PKA
inhibitor H89 for one hour demonstrated reduced denatonium-induced Ca2+ elevations
(Figure 3d). Interestingly, treatment with H89 also completely blocked lactisole’s ability to
increase intracellular Ca2+ elevations (Figure 3d). These data reveal that baseline cAMP
levels and PKA activity plays a very potent role in Ca2+ signaling pathways. However,
given our findings with PKA sensor AKAR4, PKA pathways are most likely not impacted
by lactisole treatment.
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Figure 3. Lactisole cAMP elevations may not activate PKA. (a) The 20 mM lactisole did not alter PKA
activity in Beas-2Bs expressing PKA biosensor AKAR4. (b) The 20 mM lactisole did not alter nuclear
PKA activity in Beas-2Bs expressing nuclear PKA biosensor AKAR4nls. (c) lactisole (20 mM) did
not alter baseline PKA activity even after a 1 h pre-treatment. (d) that PKA inhibitor H89 (10 µM,
1 h pretreatment) greatly impairs denatonium-induced Ca2+ release even with 20 mM lactisole pre-
treatment (1 h). Bar graphs containing 2 comparisons were analyzed via t-test; bar graphs containing
>2 comparisons were analyzed via ANOVA using Bonferroni’s post-test for multiple comparisons
* p < 0.05, **** p < 0.0001, “n.s.” represents no significance.

Though PKA activity was not likely elevated by lactisole, we wanted to test if EPAC
activity was affected. Using the ratiometric cAMP Epac-S-H74 [35] biosensor we found a
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mild but persistent increase in cAMP (Figure 4a). While this biosensor does not directly
measure EPAC activity, much like the flamindo2 biosensor [36], it utilizes the cAMP binding
site of EPAC to measure cAMP levels. An association between EPAC activity with ER
Ca2+ efflux and influx pathways via modulation of SERCA and RYR Receptors to create a
Ca2+-induced Ca2+ release pathway [37–40]. Due to the lack of PKA activation by lactisole,
we further explored the hypothesis that lactisole-signaled cAMP may be signaling through
EPAC to alter ER Ca2+ content.

To better understand ER Ca2+ dynamics in airway epithelial cells, we first utilized
qPCR to determine the expression levels of inositol 1,4,5-triphosphate (IP3) receptors,
ryanodine receptors, and sarcoendoplasmic reticulum calcium ATPase (SERCA) pump
expression. Here, we show that in Beas-2Bs, primary basal, and primary differentiated
airway epithelial cells express all forms of IP3 receptors (ITPR1-3) and SERCA pumps
(ATP2A1-3) however they lack expression of ryanodine receptor 2 (RYR2) (Supplementary
Figure S4a–c). Additionally, ryanodine receptor agonist caffeine (10 mM) did not elevate
intracellular Ca2+ levels in Beas-2B cells (Supplementary Figure S4d), supporting our
observations of low levels of ryanodine receptor transcript. Together, these data suggest
that, apart from lacking RYR2 expression, Beas-2Bs contain many of the ER-related proteins
responsible for Ca2+ influx and efflux that are affected by EPAC activity.
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Figure 4. EPAC regulates ER Ca2+ content and efflux. (a) The 20 mM lactisole treatment caused a
sustained increase in cAMP as detected by Epac-S-H74 biosensor. (b) EPAC agonist 2′-O-Me-cAMP
(1 µM, 1 h pretreatment) increased peak ER Ca2+ release by 25%, increased the magnitude of the
initial linear slope by 50% but had no effect on total ER Ca2+ content while antagonist ESI-09 (1 µM,
1 h pretreatment) decreased peak ER Ca2+ release by 25%, decreased the magnitude of initial linear
slope by 35%, and reduced total ER Ca2+ content by 30%. (c) EPAC agonist 2′-O-Me-cAMP (1 µM, 1 h
pretreatment) increased denatonium-induced Ca2+ elevations by 1.8-fold, reduced the time it took to
reach maximal Ca2+ elevations by 30 s, and increased the Ca2+ released per cell by 67%. In a similar
experiment as (d) Beas-2Bs preincubated with 2′-O-Me-cAMP (1 µM, 1 h) were stimulated with 15
mM denatonium in 0-Ca2+ HBSS, revealing no significant changes in peak Ca2+ elevations per cell or
time to peak Ca2+ elevation. (e) The 20 mM lactisole (1 h pretreatment) increases denatonium-induced
Ca2+ release by ~200% but is blocked by EPAC inhibitor ESI-09 (1 µM for 1 h pretreatment). Traces are
representative of ≥3 experiments. Bar graphs containing 2 comparisons were analyzed via t-test; bar
graphs containing >2 comparisons were analyzed via ANOVA using Dunnett’s post-test for multiple
comparisons * p < 0.05, ** p < 0.01, *** p < 0.001, “n.s.” represents no significance.

Using thapsigargin to measure ER Ca2+ content as described above in Section 3.2,
we found that with a 1 h treatment of 1 µM of EPAC agonist 8-pCPT-2′-O-Me-cAMP-AM
(abbreviated 2′-O-Me-cAMP) there was a significant increase in Ca2+ efflux from the ER
as observed through increases in the peak Ca2+ elevations and the relative magnitude of
the intial linear slope in Fluo8 fluorescence relative to untreated cells, however there was
no impact on total ER Ca2+ content (Figure 4b). Alternatively, 1 µM of EPAC antagonist
ESI-09 decreased ER Ca2+ efflux and stores (Figure 4b). These data demonstrate that EPAC
activity is a regulator of ER Ca2+ content in airway epithelial cells. However, activation of
EPAC above baseline levels only increase ER Ca2+ efflux, not total ER Ca2+ storage.

Consistent with an increase in ER Ca2+ content, pretreatment of Beas-2Bs with 1 µM
of EPAC agonist, 2′-O-Me-cAMP, revealed a 1.8-fold increase in denatonium-induced Ca2+

release and shortened the time of peak Ca2+ release by ~30% (Figure 4c). The increase in
peak Ca2+ release per culture could be due to cells elevating Ca2+ in unison relative to
untreated cultures that respond more sporadically [25]. To gain a better understanding
of the total Ca2+ release for each individual cell, the peak Ca2+ release per cell was also
analyzed independent of time. Treatment with 2′-O-Me-cAMP (1 µM for 1 h) increased
the peak Ca2+ release per cell by 65% (Figure 4c). These results were surprising as 1 µM
of 2′-O-Me-cAMP did not increase ER Ca2+ stores. To determine if this increase in Ca2+

elevation was originating from extracellular Ca2+, we repeated the experiment seen in
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(Figure 4c) but in 0-Ca2+ HBSS with 2 mM EGTA. As seen in Figure 4d, in cultures lacking
extracellular Ca2+, 1 µM 2′-O-Me-cAMP does not significantly alter peak Ca2+ release
per cell or reduce the time to peak Ca2+ release. These results suggest that stimulation
of EPAC above baseline may also activate pathways used in extracellular Ca2+ influx.
Alternatively, EPAC antagonist ESI-09 (1 µM for 1 h) blocked lactisole’s ability to increase
denatonium-stimulated Ca2+ elevations (Figure 4e). Overall, these data reveal that EPAC
activity plays an important role in regulating ER Ca2+ content and efflux. EPAC may also
alter subsequent Ca2+ signaling pathways in airway epithelial cells through the uptake of
extracellular Ca2+. Furthermore, we hypothesize that lactisole may be regulating ER Ca2+

levels through a pathway that is not solely reliant upon EPAC activity.

3.4. Lactisole Increases Denatonium-Induced Cytosolic Ca2+ to Activate NO Production

We have shown above that EPAC activation can increase intracellular Ca2+ release
from T2R agonist denatonium by increasing not only the Ca2+ released per cell but by
also reducing the time that Beas-2Bs reached peak Ca2+ release. To determine if lactisole
had a similar effect, we pretreated Beas-2Bs with 10 mM of lactisole for 1 h then observed
denatonium stimulated Ca2+ release via Fluo-8. Pretreatment of Beas-2Bs with lactisole
amplified the levels of Ca2+ release by denatonium (Figure 5a). We also noted that the
addition of lactisole doubled the number of cells responding to the denatonium treatment,
doubled the Ca2+ release per responsive cell, and reduced the time it took to reach peak
Ca2+ release by 1.5 min (Figure 5a). Both lactisole and 2′O-Me-cAMP appeared to increase
the rate of ER Ca2+ efflux. Therefore, EPAC activity may play a role, at least in part, in
lactisole’s ability to increase the rate of Ca2+ efflux from the ER, however there are likely
other pathways involved.

While lactisole functioned to increase Ca2+ release via GPCR signaling pathways, we
tested if sweet compounds would also have an effect. In differentiated airway epithe-
lial cells, apical glucose concentrations were shown to repress the bitterant-induced T2R
Ca2+ signaling pathway in solitary chemosensory cells [19]. Here, we show that in basal
epithelial cells, denatonium Ca2+ signaling remained unaltered in HBSS lacking glucose
or in high (25 mM) glucose conditions (Figure 5b). Sucralose is an artificial sweetener
about 320–1000 times sweeter than sucrose and had no effect on denatonium-induced Ca2+

release regardless of 10 mM lactisole pretreatment (Figure 5c). These data suggest that
while T1R2 transcript is detectable in airway epithelial cells [25], if the protein is expressed,
its function is independent of what we observe with lactisole treatment here. Having
determined that lactisole was not operating through a T1R in regard to its impact on Ca2+

signaling, we then further explored the role that lactisole has on denatonium’s downstream
Ca2+ signaling pathways.

Previously, we observed denatonium signaled nuclear Ca2+ elevations in a dose-
dependent manner in Beas-2B cells ranging from 5–25 mM, with maximal Ca2+ elevations
beginning at 15 mM [24]. Here, utilizing Fluo-8, we show that intracellular Ca2+ release
follows a similar dose-dependency as seen with nuclear Ca2+; 5 mM denatonium minimally
elevated intracellular Ca2+ while concentrations above 15 mM reached maximal Ca2+ re-
lease (Figure 5d). The addition of 10 mM lactisole did not shift this dose-dependency curve
either right or left, but instead elevated the Ca2+ release at all levels of denatonium capable
of signaling detectable levels of Ca2+. Concentrations of 10, 15, or 20 mM denatonium had
significantly higher Ca2+ elevations with the addition of 10 mM lactisole (Figure 4d). Using
15 mM denatonium to represent maximal Ca2+ elevation, lactisole was then titrated from
0–40 mM and revealed to reach maximal effect on denatonium induced Ca2+ release at
a concentration of 20 mM (Figure 4e). Given these findings, we hypothesized that lacti-
sole does not directly alter T2Rs (e.g., through post translation modifications) to increase
Ca2+ efflux.
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Figure 5. Lactisole increases denatonium induced Ca2+ release. (a) Lactisole (10 mM, 1 h pretreatment)
greatly increased denatonium induced Ca2+ release, doubled the percentage of cells that responded
to treatment with denatonium, doubled the peak Ca2+ release per cell, and reduced the time to
peak Ca2+ release by 1.5 min. (b) Denatonium-induced Ca2+ release was unaffected by glucose
concentrations. (c) Denatonium-induced Ca2+ release is unaffected by sweet taste receptor agonist
sucralose. (d) Lactisole increases Ca2+ release from various concentrations of denatonium. (e) The
20 mM of lactisole has an optimal effect on denatonium induced Ca2+ signaling pathways. Bar graphs
of only 2 comparisons were analyzed by Student’s t-test, bar graphs containing >2 data points were
analyzed via ANOVA using (c) Tukey’s post-test for multiple comparisons, (d) Sidak’s post-test
for paired comparisons, or (e) Dunnett’s post-test for comparison with control lacking lactisole:
** p < 0.01, *** p < 0.001, **** p < 0.0001, “n.s.” represents no significance.

As visualized in Figure 6a, denatonium treatment (15 mM) activates both nuclear
and mitochondrial Ca2+ elevations in basal airway epithelial cells, which we’ve previously
shown to initiate mitochondrial membrane depolarization and caspase activity causing
apoptosis [24]. To determine if the increased Ca2+ release observed with lactisole pretreat-
ment increased the rate of the apoptosis, Beas-2Bs were treated with an intermediate dosage
of 10 mM denatonium with or without a 1 h pretreatment with 20 mM lactisole. Using
either CellEvent to quantify caspase activity (Figure 6b) or propidium iodide to measure
cell death (Figure 6c), we did not observe any changes in apoptosis or cell death with
lactisole pretreatment.

Consistent with these findings, using mitochondrial Ca2+ biosensor 4mtD3cpv [41], we
also did not observe an increase baseline mitochondrial Ca2+ levels (Figure 6d) with lactisole
pretreatment (20 mM, 1 h) or changes in denatonium-induced Ca2+ release due to lactisole
pretreatment in Beas-2B cells (Figure 6e). Additionally, using nuclear Ca2+ biosensor nls-R-
GECO [42], we did not observe any changes in nuclear Ca2+ signaling, however we did
observe a 3-fold increase in non-nuclear Ca2+ release via a non-nuclear localized nes-R-
GECO biosensor (Figure 6f). We have previously shown that denatonium mildly activates
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cytosolic Ca2+ [24]. Here, we show that lactisole amplified denatonium’s cytosolic Ca2+

signaling while leaving the nuclear and mitochondrial Ca2+ signaling pathways unaffected.
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Figure 6. Lactisole increases denatonium-induced cytosolic Ca2+ elevations and NO production.
(a) Fluorescence images showing time course of denatonium-induced Ca2+ elevations in starting
nuclei then persisting in the mitochondria in airway epithelial cells; original image summarizing
our findings from [24]. (b) The 20 mM lactisole pretreatment (1 h) does not alter caspase 3/7
activity initiated by denatonium signaling pathways. (c) The 20 mM lactisole pretreatment (1 h) does
not alter cell death initiated by denatonium signaling pathways as detected by propidium iodide
staining. (d) No changes in baseline mitochondrial Ca2+ levels with 20 mM lactisole pretreatment
(1 h) were observed in Beas-2B cells. (e) There were no significant changes in denatonium-induced
mitochondrial Ca2+ elevations with 20 mM lactisole pretreatment (1 h) in Beas-2B cells. (f) The 20 mM
lactisole pretreatment (1 h) increased denatonium-induced non-nuclear Ca2+ elevations and had no
effect nuclear Ca2+ elevations. (g) Primary basal airway epithelial cells in the presence of 1x MEM AA
and with 20 mM lactisole pretreatment (1 h) initiate NO production in response to 15 mM denatonium.
Traces are representative of ≥3 experiments. Bar graphs containing two comparisons were analyzed
via t-test; bar graphs containing >2 comparisons were analyzed via ANOVA using Bonferroni’s
post-test for multiple comparisons * p < 0.05, ** p < 0.01, *** p < 0.001 **** p < 0.0001, “n.s.” represents
no significance.

Previously, we observed that bitter compounds increase NO production in basal
airway epithelial cells [24]. NO production is typically signaled via intracellular Ca2+

signaling pathways [43]. To determine if lactisole’s ability to increase cytosolic Ca2+ release
altered NO production, we treated primary basal airway epithelial cells with NO detection
dye DAF-FM with or without the presence of lactisole (20 mM, 45 min pretreatment).
Primary basal epithelial cells produced NO when in the presence of lactisole (Figure 6g).
Together, these data reveal that in airway epithelial cells, lactisole specifically increases
denatonium-induced cytosolic Ca2+ signaling pathways necessary for NO production.
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The above experiments have utilized acute treatments of lactisole. We also decided
to evaluate the long-term effects of lactisole treatment. Over a 24 h treatment in Beas-2Bs,
lactisole maintained an increased ER Ca2+ content (Supplementary Figure S5a). However,
we also observed a slower rate of metabolism as measured by the XTT assay (Supplementary
Figure S5b) and a slower growth rate measured by crystal violet staining (Supplementary
Figure S5c). Additional studies will be necessary to explore the mechanism behind this
reduction of growth; however, these results also suggest that lactisole’s elevation of ER
Ca2+ is not transient.

Overall, we have shown that lactisole elevates cAMP levels independent of umami
receptor components T1R1 or T1R3. We also demonstrated that with lactisole pretreatment,
denatonium increased cytosolic Ca2+ signaling and downstream NO production. Coupled
with our previous findings that amino acids reduce denatonium-induced apoptosis [25],
together these results suggest that the combination of lactisole and denatonium may
provide a therapeutic approach to activating NO production without unwanted cell death.

4. Discussion

Lactisole, an inhibitor of both umami and sweet signaling pathways, has previously
been reported to bind to T1R3 and inhibit T1R3-mediated Ca2+ elevations in response to
sugars or amino acids [11,27,29]. Umami and sweet tastes are mediated by heteromeric
T1R1/T1R3 and T1R2/T1R3, respectively. These two taste modalities are perceived as
“pleasant” because they signal the presence of beneficial amino acids or sugars, respec-
tively [13]. However, T1R receptors serve as nutrient sensors all over the body, including
in adipocytes [4], pancreatic β cells [5–9,29], and airway epithelial cells [19]. These extrao-
ral T1Rs detect glucose or other sugars as well as amino acids to regulate physiological
responses. Consequentially, their pharmacological manipulation has been proposed as a
therapeutic modality for diseases such as diabetes [5–9] and chronic rhinosinusitis [19].
This study reveals novel insights into off-target effects of the most commonly used T1R
inhibitor, lactisole. These effects must be taken into account if/when lactisole is used to
modify T1R signaling.

We have previously shown that in our basal airway epithelial model, at a physiological
pH, umami agonists do not activate Ca2+, but instead signal a cAMP elevation. To our
surprise, lactisole itself increased cAMP. Through our knockdown models, we showed that
lactisole activates cAMP in a dose dependent manner through a mechanism independent
of T1R1 or T1R3. Though the mechanism of this off-target activity will have to be explored
in future work, here we show that through regulating ER Ca2+ levels and cytosolic Ca2+

release pathways, lactisole may provide a useful function to therapies utilizing bitter
compounds to signal NO production. Our results also suggest that using lactisole in
experiments should be approached with caution, as care must be taken to elucidate if the
effects observed are truly due to T1R3 inhibition or due to off-target cAMP elevation. To
our knowledge, off-target effects of lactisole have not been taken into account in previous
papers using this compound as a T1R3 inhibitor. We believe this is the first demonstration
of T1R-independent effects of lactisole, which have largely remained unstudied.

Here, we showed that lactisole treatment increased ER Ca2+ content. Additionally,
increased Ca2+ elevations were observed using other T2R ligands as well as histamine. Lac-
tisole increased Ca2+ signaling from many bitter compounds including diphenhydramine,
flufenamic acid, thujone, quinine, and PTC. It is important to note that Beas-2Bs express
both PTC-sensitive and non-sensitive variations of T2R38 at unknown quantities. Lactisole
may “enhance function” of a cell line that can partially detect PTC. Future experiments
will be necessary to determine the specific signaling pathways causing this increase in
ER Ca2+. From our observations utilizing ER Tracker, we hypothesize that lactisole may
increase ER size. However, it is important to note that in the 1 h incubation with lactisole,
the sulfonylurea receptor, which is targeted by ER Tracker, may be downregulated. While
our work offers a brief insight into the possible effect of lactisole on ER structure, future,
more detailed work investigating ER size, stress, and total ion content would be needed to
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fully understand the impact that lactisole is has on the ER. Overall, through modulation of
ER Ca2+, lactisole increased the elevations of Ca2+ signaling via every stimulus we tested.

ER Ca2+ content is established by balancing the influx and efflux of Ca2+ to and from
the ER. This is accomplished through regulating SERCA pump activity to increase ER
Ca2+ uptake, channels or receptors that leak/release Ca2+ from the ER, and chaperones
that bind Ca2+ [44,45]. EPAC has been reported to increase Ca2+ mobilization through the
activity of SERCA [37] and type 2 ryanodine receptor [38] to trigger a calcium-induced
calcium release pathway [39,40]. In this pathway, the release of Ca2+ drives further Ca2+

release. However, as shown here, airway epithelial cells do not express type 2 ryanodine
receptor transcript and do not elevate intracellular Ca2+ in response to 10 mM caffeine, a
ryanodine receptor agonist [46]. Therefore, these receptors are most likely not contributing
to any Ca2+ release pathways. Here, we have shown that EPAC agonist 2′-O-Me-cAMP
increased ER Ca2+ efflux, causing a greater release of Ca2+ when cells were treated with 15
mM denatonium. Additionally, we have shown that 2′-O-Me-cAMP may also have a role
in signaling extracellular Ca2+ uptake into the cell. Thus, in basal airway epithelial cells,
we hypothesize that lactisole’s cAMP generation may be, at least in part, contributing to
EPAC activation as both lactisole and 2′-O-Me-cAMP increase ER Ca2+ efflux.

Lactisole has an additional effect of increasing ER Ca2+ stores that 2′-O-Me-cAMP
does not have, which suggests that SERCA activity may also be increased to offset the
increase in ER Ca2+ efflux. Lactisole also increased the number of cells responsive to
Ca2+ signaling stimuli which we did not observe with 2′-O-Me-cAMP. We have previously
shown that treatment with 100 µM isoproterenol or 20 µM forskolin did not increase ER
Ca2+ content in Beas-2Bs but did increase the number of cells responsive to stimuli [25].
Therefore, the increase in ER Ca2+ content may be due to a pathway that is independent of
cAMP, PKA, or EPAC, while the increase in the number of responsive cells may either be
due to a low level of PKA activation that is undetected by our biosensor or an undefined
cAMP-signaled pathway.

Interestingly, lactisole treatment caused an increased cytosolic Ca2+ release in response
to T2R agonist denatonium. We have previously shown that denatonium signals minimally
through cytosolic Ca2+ [24]. Here, we observed that lactisole pretreatment greatly elevates
denatonium’s intracellular Ca2+ signaling pathways. This Ca2+ elevation was specific to the
cytosolic compartment as neither nuclear Ca2+ nor mitochondrial Ca2+ increased the above
non-lactisole-treated cells. Hence, it is unlikely that this Ca2+ is a “bleed-through” from
nuclear or mitochondrial signaling pathways but may utilize a cytosolic-specific pathway
for Ca2+ efflux from the ER. It is also possible that downstream signaling components
activated by lactisole may be causing post-translational modifications to cytosolic-specific
IP3Rs. It may also be likely that there are simply more ER-to-cytosol Ca2+ efflux proteins
and thus there is an overall greater flow of Ca2+ to the cytosol than any other compartment.
In either case, our findings with lactisole suggest that because there is a greater reservoir of
ER Ca2+, any treatment that stimulates ER Ca2+ release causes a greater burst of Ca2+ from
the ER.

This pathway could be an important therapeutic target as this cytosolic Ca2+ elevation
increased NO production in our model. Thus, bitter compounds such as denatonium may
provide for important therapies through both utilizing lactisole to increase NO production
and amino acids to reduce apoptosis. Given that lactisole increased ER Ca2+ over a pro-
longed period, these types of therapeutics may excel in treatments such as nasal lavage,
where epithelial cells would be briefly exposed to a high concentration of lactisole and
denatonium, while the remaining post-rinse residue may drive NO production.

In addition to the potential therapeutic aspects presented here, it is important to
emphasize that nutrient sensing by T1Rs has been proposed to have multiple roles in
human disease. One example is glucose sensing by T1R2/3 or T1R3 homodimers in
pancreatic β cells, which may be important in diabetes [5–9,29]. Another example is the
T1R2/3-mediated detection of glucose by solitary chemosensory cells in the nose [19]. The
results above have important implications for attempts to manipulate sugar or amino
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acid detection by T1Rs with lactisole or derivatives. Off-target effects of lactisole on
cAMP or subsequent changes in ER Ca2+ storing content and release may all have effects
on other nutrient-sensing pathways that may confound the results obtained. This may
require the use of T1R knockdown and/or knockout models rather than relying solely on
pharmacological inhibition.

5. Conclusions

T1Rs are important nutrient sensors in many different cell types throughout the body.
They detect amino acids (T1R1/3) and/or sugars (T1R2/3 or T1R3 homodimers) to regulate
cell physiology that affects diverse processes such as taste and insulin secretion. Many
studies have described the function of lactisole as an inhibitor of T1R3 and have used
lactisole as a tool to pinpoint role of T1Rs. Here we showed a novel, uncharacterized
function for lactisole that seemingly impacts all downstream Ca2+ signaling pathways
through the regulation of ER Ca2+ storage. This off-target pathway is independent of T1Rs.
Thus, lactisole may have the potential to augment the impact of any therapeutic that signals
via downstream Ca2+ signaling pathways and may alter nutrient-sensing pathways even
beyond the inhibition of T1Rs.

We also showed that these off-target effects of lactisole might be therapeutically lever-
aged in airway epithelial cells. Intracellular Ca2+ modulates NO production [43]. NO is an
important antimicrobial agent, and targeted therapies to initiate the host innate immune
response in diseased patients have become highly sought after. We have found that in basal
airway epithelial cells, which hyper-proliferate in disease states, bitter compounds signal
both NO production and apoptosis [24]. We previously showed that with the addition
of amino acids, denatonium-signaled apoptosis is nearly eliminated [25]. Moreover, the
addition of lactisole amplified cytosolic Ca2+-signaled NO production in HBSS contain-
ing amino acids. Therefore, both amino acids and lactisole may be useful to employ in
conjunction with bitter compounds to drive NO production to help combat infections.
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SERCA expression in airway epithelial cells; Figure S5: The long-term effects of lactisole treatment.
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