Table 3.
Material | Sample Preparation | Analytical Conditions | Ref. |
---|---|---|---|
Tea samples, including fermented (black and red), semi-fermented (oolong), and non-fermented (green) teas of different geographical origins | Grinding of samples; triple maceration with 20 mL of 80% (v/v) methanol (MeOH) for 3 h and then twice with 20 mL of 80% (v/v) MeOH containing 0.15% HCl for 3 h; filtration of the obtained extracts | HPLC-DAD; C18 column (250 × 4.6 mm I.D, 5-μm); mobile phase: water-acetic acid, 97:3 v/v (A), MeOH (B); gradient elution program: 100% solvent A for 1 min, followed by a linear increase in solvent B to 63% in 27 min; flow rate: 1 mL L/min; detection: λ = 200–400 nm | [88] |
Schinus terebinthifolius Raddi bark | Maceration in 40% ethanol (EtOH) over 5 days; extracts hydrolysis by refluxing for 1.5 h with 5% sulfuric acid, followed by LLE with 30 mL of ethyl acetate (EtAc) and concentration in a rotavapor | HPLC-DAD; C18 column (250 × 4.6 mm, 5 μm); mobile phase: ACN:H2O and MeOH:H2O at pH 2.7(adjusted with formic acid (HCOOH)); gradient elution I: organic phase changes from 5 to 80% for 20 min; gradient elution II: organic phase changes from 15 to 80% for 20 min; flow rate: 1 mL/min; detection: λ = 200–400 nm | [89] |
Stem bark of Q. parviflora and Q. grandiflora | Maceration with a hydroalcoholic solution; complete evaporation of the solvents under reduced pressure at 40 °C | HPLC-UV; C18 column (250 × 4.6 mm., 5 μm); mobile phase: water (+0.05% trifluoroacetic acid [TFA]) as solvent A and MeOH (+0.05% TFA) as solvent B; gradient elution profile: 0–12 min (15–40% B); 12–14 min (40–74%) B; 14 -16 min (74–15%) B, 16–18 min (15% B); flow 0.8 mL/min; λ = 280 nm | [90] |
Fresh fruit of Benincasa hispida (Bh) | Homogenization of pulps; low heating maceration with water at 60 °C for 30 min followed by drying for 2 days at 55–60 °C | HPLC-UV; LiChrospher 100 RP-18 (125 × 4 mm, 5-μm); mobile phase: 0.01 M potassium dihydrogen phosphate-ACN (85:15, v/v) at pH 3.2; flow 0.75 mL L/min.; detection: λ = 280 nm | [91] |
Stem bark of Schinopsis brasiliensis Engl., Anacardiaceae | Hydroalcoholic maceration of dry powder material with water:EtOH mixture (30:70, v/v) for 72 h; drying of the obtained extract at 140 °C | HPLC-UV; Phenomenex Gemini NX C18 column (5-μm, 250 × 4.6 mm); mobile phase: 0.05% orthophosphoric acid (A): MeOH (B); gradient program: 90–10% B (10 min), 70–30% B (3 min), 40–60% B (5 min), 60–40% B (3 min), 80–20% B (3 min) and 90–10% B (6 min); flow 1 mL L/min; λ = 271 nm | [92] |
Rhodiola kirilowii (Regel.) Maximroot Rhodiola rosea L. root |
Extraction under reflux for 45 min with 70% MeOH with acetylsalicylic acid; evaporation of organic phase and dissolution in the mobile phase | UPLC-ESI MS/MS; C18 column (1.7 μm, 2.1 × 50 mm); mobile phase: MeOH (A), water (B); flow 0.35 mL L/min; isocratic elution: 95% of phase A; column temperature: 24 °C; ion source temperature: 100 °C; desolvation temperature: 300 °C; gas flow rate: desolvation gas: 700 L/h; cone gas: 10 L/h. | [28] |
Herba Gei | Extraction under reflux with 30% EtOH in a water bath for 90 min; filtration of the obtained extract | HPLC-UV; C18 column (250 × 4.6 mm, 5 μm); column temperature: 30 °C; mobile phase: MeOH (B) -0.1% aqueous phosphoric acid (A); isocratic elution: (10% B, 90% A); flow rate 1 mL/min; λ = 273 nm | [93] |
Syzygium polyanthum leaf | Maceration with water and MeOH; filtration; evaporation and dissolution of 10 mg of the aqueous and methanolic extracts in 1 mL of MeOH | HPLC-UV; C18 column (250 × 4.6 mm, 5 μm); mobile phase: 0.1% aqueous HCOOH (A) and ACN (B); gradient elution profile: 0–12 min with 15–25% B, 12–22 min with 25% B, 22–25 min with 25–15% B, and 25–30 min with 15% B; flow 1 mL/min; λ = 280 nm | [94] |
Fruits mixture (Triphala): Amla (Phyllanthus emblica Linn.), Baheda (Terminalia belerica Roxb., Fam. Combretaceae), and Harde (Terminalia chebula Retz., Fam. Combretaceae) | Triple maceration with MeOH; combination of the obtained extracts; concentration at reduced temperature (50 °C) on rotavapor; filtration through a nylon filter | HPLC-UV; C18 column (250 × 4.6 mm, 5 μm); mobile phase: ACN (A) and o-phosphoric acid in water (0.3%) (B); gradient elution profile: 0–5 min with 90–88% B, 5–6 min with 88–86% B, 6–9.5 min with 86–80% B, 9.5–10.5 min with 80–79% B, 10.5–12 min with 79–78% B, 12–22 min with 78–76% B, and 22–30 min with 76–90% B; flow 0.8 mL/min; λ = 254 nm | [95] |
European red oak (Quercus robur), North American white oak (Quercus alba), blocks |
Grinding of the sample into fine dust; collecting of oak wood dust on the polycarbonate membrane filters; filter maceration with the MeOH/water mixture (80/20 v/v) for 60 min; evaporation of MeOH; LLE with EtAc–EtOH (95/5 v/v) and then evaporation and reconstitution in 0.07% HCOOH (100 μL, pH 2.7); filtration through a nylon filter | HPLC-UV; C18 column (150 × 4.6 mm, 5 μm); mobile phase: pH 2.7 HCOOH (A) and 0.07% HCOOH in MeOH (B); gradient elution: 100% (A) for 20 min, 100% to 20% in 5 min, 20% for 10 min, 20% to 100% in 5 min, and 100% for 20 min; flow 0.7 mL/min; λ = 270 nm | [96] |
Human plasma and urine | Acid hydrolysis; maceration with EtAc; evaporation of organic phase; dissolution in the mobile phase | HPLC-UV; Chrospher 100 RP-18 column (5 μm; 120 × 4 mm); method 1: mobile phase (4.4 × 10−3 M phosphoric acid in water); flow 1 mL L/min; λ = 220 nm and 270 nm; method 2: mobile phase water–ACN (97.5:2.5, v/v) modified with 0.025% phosphoric acid; flow 1 mL L/min; λ = 220 nm and 270 nm | [97] |
Ficus auriculata Lour. leaves (Roxburgh Fig) | UASE with the aqueous solvent at 37 kHz; centrifugation of the extract at 10000 rpm for 10 min; filtration using Whatman filter paper | HPLC-IR-UV-Vis; Shimpack C18 column (250 × 4.6 mm, 5 μm); mobile phase consisted of pure ACN (A) and 0.1% ortho-phosphoric acid in water (B) with a stable composition of 20% A and 80% B; flow 0.8 mL L/min | [98] |
Triphala waste | Grinding of the dried sample into small particles; fermentation with Aspergillus niger; drying and milling of the fermented sample into powder; UASE with water (10–60 min, 40 kHz at 30 °C) | HPLC-UV; C18 column (250 × 4.6 mm, 5 μm); mobile phase: ACN (A) and acetic acid in water (0.1%) (B); gradient elution; flow 1 mL/min; λ = 280 nm | [99] |
Fruit wines and grape wines of Papazkarasi-type cultivar | Removing the alcohol using a rotatory evaporator; lyophilization of residues; dissolution in water | HPLC-UV; C18 column (150 × 4.6 mm, 3.5 μm); mobile phase: 10 mM phosphoric acid as solvent A and MeOH as solvent B; gradient elution profile: 0–15 min (0–60% B), 15–20 min (60–80% B), 20–22 min (80–100% B), 22–27 min (100–0% B), and 27–32 min (0% B); flow 1 mL/min; λ = 214 nm | [100] |
Camellia sinensis leaves | Maceration with hot water and then polyamide membrane separation; filtration with filter paper | HPLC-UV; C-18 column; mobile phase, consisting of 7% (v/v) solvent A (100% ACN) and 93% of solvent B (20 mM KH2PO4); flow 1 mL/min. | [101] |
Aqueous solutions | Reactive extraction with tri-n-caprylylamine in hexanol (0.234 mol/L) at 25 °C; filtration through a syringe PVD filter | HPLC-DAD; Eclipse XDB-C18 column (250 × 4.6 mm, 5 µm); at 35 °C; mobile phase: ACN (10%) and 0.2 mole of the aqueous solution of acetic acid (90%); flow 1 mL/min; λ = 273 nm | [102] |
Acacia arabica bark | Grinding; MASE and reflux extraction with 20% MeOH at T = 88 °C for 1–7 h; maceration in 20% MeOH for 12–30 h; centrifugation of the obtained extract | HPLC-UV; C18 column (150 × 4.6 mm, 5 μm); mobile phase: 0.025% o-phosphoric acid in water (A) and MeOH (B); gradient elution profile: 0–5 min, 20% B; 5.1–15 min, increasing gradually from 50% to 80% B; 15.1–18 min, 20% B; flow 1 mL/min; λ = 272 nm | [103] |
Mixture of Vidanga (Embelia ribes Burm.), Amalaki (Emblica officinalis Geartn), Haritaki (Terminalia chebula Retz.), Nishotha or Trivrt- Root (Operculina turpethum Linn.), and Guda (Jeggary) | Maceration with MeOH; evaporation; reconstitution in MeOH | HPTLC with silica gel 60 F254 plates (10 × 10 cm, 0.2 mm thickness); mobile phase: toluene/EtAc/MeOH/HCOOH (5: 4: 0.5: 0.5, v/v); migration distance: 80 mm; λ = 254 nm | [104] |
Amrtottara kvatha mixture containing fresh stem of Tinospora cordifolia (Willd.) Miers (Guduchi), dried fruit rind of Terminalia chebula Retz (Haritaki), and dried rhizome of Zingiber offficinale Roscoe (Shunti) | Maceration with boiling water; evaporation at 80 °C for 2 h; reconstitution of the residue in MeOH | HPTLC with silica gel 60 F254 plates (20 × 20 cm) with the aluminum sheet support; the mobile phase: toluene/EtAc/HCOOH (5/7/1, v/v/v); migration distance: 70 mm; λ = 254 nm and λ = 366 nm | [105] |
Polyherbal tablets (Amalant and Sookshma Triphala Tablet) containing Embelica Officinalis | Extraction under reflux with 50 mL of MeOH; filtration of the obtained extract | HPTLC with silica gel 60 F254 plates (20 × 10 cm with 0.2 mm thickness); mobile phase: toluene/EtAc/HCOOH (6/3/1, v/v/v); distance: 60 mm; λ = 254 nm | [106] |
Flower buds of Syzygium aromaticum (L.) Merr. & Perry (clove) | Extraction under reflux with MeOH; concentration of the obtained extract to a known volume | HPTLC with the silica gel 60 F254 plates (20 × 10 cm, 0.2 mm thickness); the mobile phase: toluene/EtAc/HCOOH (10.8 mL) (3:2:0.4, v/v); distance: 80 mm; λ = 280 nm | [107] |
Selected polyherbal supplements | Maceration in MeOH enhanced by shaking for 4 hrs using a magnetic stirrer; filtration of the obtained extract | HPTLC with the aluminum backed TLC plate coated with the 0.2 mm layer of silica gel (10 × 10cm); mobile phase: toluene/EtAc/HCOOH (5:5:1, v/v/v); λ = 254 nm | [108] |
Emblica officinalis fruit | Double maceration with MeOH for 24 h at 25 °C; filtration and concentration of the obtained extract | HPTLC with silica gel 60 F254 (4 × 10 cm); mobile phase: toluene/EtAc/HCOOH at the ratio (7/5/1, v/v/v); λ = 273 nm | [109] |
Polyherbal formulation, psoriasis tablets with Azadirachta indica Linn., Curcuma longa Linn., Rubia cordifolia Linn., Tinospora cordifolia Willd., Acacia catechu Wild and others herbs | Distillation with MeOH; filtration; concentration of the obtained extract to a dry residue; reconstitution in MeOH | HPTLC with silica gel 60 F254 TLC plate (0.2 mm thickness); mobile phase: toluene/EtAc/formic acid (4.5: 3:0.2, v/v/v); λ = 366 nm | [110] |
Eucalyptus leaves | Grinding of dried leaves; MASE with different solvents: n-hexane, DCM, EtAc, acetone, MeOH, MeOH/water (60:40, v/v); concentration and dissolution of the dry residue in MeOH. | HPTLC with silica gel 60 F254 plates (20 × 20 cm) with aluminum sheet support; mobile phase: EtAc/CHCl3/formic acid (50:50:3, v/v/v); migration distance: 30 mm; λ = 288 nm | [111] |
Ceratonia siliqua wood | Maceration with MeOH/water mixture; evaporation; LLE of the aqueous phase with petroleum ether (2 × 25 mL), then with Et2O (2 × 25 mL), and finally with a mixture of Et2O:MeOH (9:1; 2 × 25 mL); hydrolysis with HCl (6 M) in MeOH (1:1, v/v) at 100 °C for 8 h; evaporation; reconstitution in water and evaporation again (four or five times); LLE with a mixture of Et2O:MeOH (9:1; 2 × 25 mL) and water (2 × 25 mL); derivatization with trimethylchlorosilane (TMCS) and bis-(trimethylsilyl)-trifluoracetamide (BSTFA) (1:3) | GC/MS; DB-1 fused silica capillary column (30 m × 0.25 mm I.D., 0.25 µm film thickness); carrier gas: helium; flow 1.5 mL/min; temperature of the injector: 280 °C; volume of sample: 1µL; split ratio: 1:10; temperature of the interface: 300 °C; column temperature program: oven equilibration time 1 min; initial temperature 90 °C for 2 min, then raised to 290 °C at a rate of 20°C/min and then 5 min at 290 °C, and then to 310 °C at a rate of 4 °C/min and kept for 10 min; ionization energy: 70 eV | [112] |
Red wine samples | MSPD of wine samples (1.5 mL) acidified to pH 1.0 with 0.1 mL of 1 M solution of HCl and salted with 0.4 g of NaCl using 1.5 g of silica gel (70–230 mesh) as a dispersant and 5 mL of EtAc as the eluting solvent; evaporation of the extract; derivatization with 100 µL of BSTFA and pyridine (1 mL); the procedure gave mean recoveries between 87 and 109% with RSD < 9% | GC/MS in the selective ion monitoring (SIM) mode; the DB-5MS fused silica capillary column (30 m × 0.25 mm, 0.25 µm film thickness); carrier gas: helium; flow 2.5 mL/min; column head pressure 26.04 psi; temperature of the injector 320 °C; volume of sample 1 µL; split ratio 1:50; temperature of the interface 280 °C; column temperature program: oven equilibration time 1 min, initial temperature 120 °C for 3 min, then raised to 292 °C at a rate of 5 °C/min and then to 320 °C at a rate of 30 °C/min with a final isotherm of 2 min; ionization energy: 70 eV | [113] |
Balsamic vinegar from Modena | Dilution of the sample with water (1:1); SPE 1) with 1 g diatomaceous earth cartridges using 6 mL of EtAc or n-butanol or isopentyl alcohol or 4-methylpentan-2-one; SPE 2) in the polyamidic SPE cartridge conditioned with 2 mL of MeOH and 2 mL of water and eluted with 3 mL of EtAc; evaporation; derivatization of 1 mL of sample reconstituted in 1 mL of DCM to ensure removal of water (azeotropic removal of water) with 300 µL of 1:1 BSTFA/pyridine at 70°C for 30 min. | GC/MS with the SIM mode; RTX-5MS fused silica capillary column (30 m × 0.25 mm, 0.25 µm film thickness); carrier gas: helium; flow 39 mL/min; temperature of the injector 260 °C; volume of sample 1µL; splitless mode; temperature of the interface 280 °C; column temperature program: oven equilibration time 1 min; initial temperature 90 °C for 1 min, then raised to 240 °C at the rate of 20 °C/min and then 240°C for10 min, then to 280 °C at a rate of 20 °C/min with a final isotherm of 1 min; ionization energy: 70 eV | [114] |
Origanum dictamnus (dictamus), Eucalyptus globulus (eucalyptus), Origanum vulgare L. (oregano), Mellisa officinalis L. (balm mint), and Sideritis cretica (mountain tea) | Maceration of the dried sample (0.5 g) with 62.5% aqueous MeOH containing BHT (1 g/L); the addition of HCl (10 mL); sonication of the extraction mixture for 15 min and extraction under reflux at 90°C for 2 h; LLE with EtAc (3 × 10 mL); reduction of the organic phase and removing moisture with anhydrous Na2SO4; derivatization after the evaporation of the solvent with the mixture TMCS (100 µL) and BSTFA (200 µL) at 80 °C for 45 min. | GC/MS; capillary column low-bleed CP-Sil 8 CB-MS (30 m × 0.32 mm, 0.25 µm film thickness); carrier gas: helium; flow 1.9 mL/min; temperature of the injector 280 °C; volume of sample 1 µL; splitless mode; temperature of the interface 290 °C; column temperature program: oven equilibration time 1 min; initial temperature 70 °C then raised to 135 °C at 2 °C/min, kept for 10 min and then raised to 220 °C at 4 °C/min and kept for 10 min and up to 270 °C at a rate of 3.5 °C/min with a final isotherm of 20 min; ionization energy: 70 Ev | [115] |
Wines from different regions of Poland | UASE-PMLS of 25 µL sample on 60 mg of MgSO4, used as the sample support, using 1 ml of ACN or DCM or EtAc or MeOH; exposition for 25 min in an ultrasound bath; evaporation of the extract to dryness; derivatization with a mixture of 1% TMCS in BSTFA (30 µL) at 35°C for 30 min | GC-MS; ZB-5 MS capillary column (30 m×0.25 mm, 0.25 µm film thickness); carrier gas: helium; flow 1 mL/min; temperature of the injector 240 °C; sample volume 2 µL; splitless mode; temperature of the interface 300 °C; column temperature program: 70 °C for 1 min, then increased to 280 °C at 10 °C /min and kept for 5 min; ionization energy: 70 eV | [116] |
Blue Oak Plant | Hydrolysis of sample (1 g) with 10 mL of 3% HCl (v/v) at 110 °C for 4 h; maceration of hydrolyzed sample after its cooling with 5% EtOH in EtAc (100 mL) and 50 g of Na2SO4; evaporation of the extract to dryness; derivatization with TMCS after the solvent evaporation; LLE cleanup using back extraction with isooctane (1 mL) and water (1:1) | GC-MS; DB-1 capillary column (15 m × 0.53 mm, 0.1µm film thickness); carrier gas: helium; flow 7 mL/min; temperature of the injector 240 °C; sample volume 2 µL; splitless mode; temperature of the interface 280 °C; column temperature program: initial temperature 60 °C for 0.5 min, then raised to 110 °C at a rate of 5 °C/min, and then raised to 180 °C at 10 °C/min, and finally up to 275 °C at 30 °C/min with a final isotherm of 1 min; ionization energy 70 eV | [117] |
Wastewater olive oil | LLME with EtAc (0.5 mL) of 2 mL of acidified samples (pH 3) saturated with NaCl; evaporation to dryness in the nitrogen stream; derivatization of the solid residue with 50 µL of a mixture of BSTFA and pyridine in EtAc as the silylation reagent (4:1:5, v/v/v) | GC/MS with the SIM mode; HP-5MS fused silica capillary column (60 m × 0.25 mm × 0.25µm film thickness); carrier gas: helium; flow 1 mL/min; temperature of the injector 250 °C; sample volume 1 µL; splitless mode; temperature of the interface 280 °C; column temperature program: oven equilibration time 1 min; initial temperature 90 °C for 1 min, then raised to 220 °C at 6 °C/min and then to 290 °C at 10 °C/min and kept for 1.23 min and finally to 310 °C at a rate of 40 °C/min and kept for 7.5 min; ionization energy 70 eV | [118] |
Green tea sample | Maceration with water at pH3.0, adjusted with a phosphate buffer saline (PBS) | Differential pulse voltammetry with graphene modified glassy carbon electrode used as a working electrode, the saturated Ag/AgCl electrode and a Pt wire, which was used as a reference and counter electrode, respectively; potential window range from −0.4 to 1. 2 V; a scanning rate of 0.1 V·S−1; the stirring time −25 s at pH = 3(PBS) |
[119] |
Red wine | Unprepared samples | Differential pulse voltammetry win zinc oxide nanoparticles modified-carbon paste electrodeas working electrode, a KCl saturated Ag/AgCl as reference electrode, and a platinum wire as counter electrode; potential window range from 0 to 1. 2 V, a scanning rate of 0.1 V·S−1; the stirring time −25 s at pH = 2, adjusted with PBS | [120] |
Green tea sample | Maceration with water | Differential pulse voltammetry with poly(glutamic acid): graphene modified electrode; potential window range from −0.8 to 2 V, a scanning rate of 0.1 V·S−1 at pH 5, adjusted with acetate buffer | [121] |
Apple juice, lemon juice, peach juice, green tea, orange juice | Dilution of different beverage samples (5 mL) with 10 mL of phosphate buffer solution (0.1 mol/L, pH 7.0) | Amperometry with silver nanoparticle/delphinid in modified glassy carbon electrode. The experiments were carried out at a potential of 220 mV in a 0.1 mol/L phosphate buffer solution at pH 7.0 | [122] |
C. wightii (Commiphora mukul) known as Indianbdellium-tree, V. agnus-castus also called Vitex, C. sinensis (green tea) |
UASE with water: EtOH mixture (30:70) at 25 °C at a constant frequency of 35 kHz for 30 min extracts; filtration through Whatman no. 1 filter paper | Differential pulse voltammetry with carbon paste electrode modified with carboxylated multi-walled carbon nanotubes; a potential window range from 0 to 0.9 V, a scanning rate of 0.148 V·s−1 and solution was 0.2 M PBS at pH 2.0 | [123] |
Apple peel, apple flesh, nettle |
Maceration and dilution | Differential pulse voltammetry with a three electrode cell including modified or bare CPE, saturated calomel electrode and a platinum wire as working reference and counter electrodes, respectively; a potential window of 0.0–0.4 V; the scan rate was 40 mV s−1 and solution was phosphate buffer at pH 7.0 | [124] |
Fruit juice (e.g., orange, apple, and apricot juice) | Unprepared sample | Differential pulse polarography with dropping mercury electrode as a working electrode, a platinum counter electrode, and an Ag/AgCl (3 M NaCl) reference electrode; optimum conditions: 200–1000 μL of fruit juice samples pH 10.0, at the reduction (peak) potential of –160 mV, 2 s drop time, and 50 mV pulse amplitude | [125] |