Table 3.
Architecture of different Conv1D CNN model variants for the signal and derivative inputs. The output shape comprises (the number of nodes and the number of channels). The Conv1D layer parameters can be set as trainable or non-trainable in different model variants.
Layer | # of Classes = 3 | # of Classes = 4 | # of Classes = 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
Output Shape |
Output Shape |
Output Shape |
|||||||
Params | Params | Params | Params | Params | Params | ||||
Signal Input Layer | (64, 1) | 0 | 0 | (64, 1) | 0 | 0 | (64, 1) | 0 | 0 |
Conv1D Layer | (64, 11) | 363 | 715 | (64, 12) | 396 | 780 | (64, 13) | 429 | 845 |
BatchNormalization | (64, 11) | 44 | 44 | (64, 12) | 48 | 48 | (64, 13) | 52 | 52 |
Activation (Tanh) | (64, 11) | 0 | 0 | (64, 12) | 0 | 0 | (64, 13) | 0 | 0 |
GlobalMaxPooling | (11) | 0 | 0 | (12) | 0 | 0 | (13) | 0 | 0 |
Interval Input Layer | (4, 1) | 0 | 0 | (4, 1) | 0 | 0 | (4, 1) | 0 | 0 |
Dense Layer 1 (Relu) | (4, 32) | 64 | 64 | (4, 32) | 64 | 64 | (4, 32) | 64 | 64 |
Dense Layer 2 (Relu) | (4, 16) | 528 | 528 | (4, 16) | 528 | 528 | (4, 16) | 528 | 528 |
Dense Layer 3 (Relu) | (4, 8) | 136 | 136 | (4, 8) | 136 | 136 | (4, 8) | 136 | 136 |
Flatten | (32) | 0 | 0 | (32) | 0 | 0 | (32) | 0 | 0 |
Concatenate | (43) | 0 | 0 | (44) | 0 | 0 | (45) | 0 | 0 |
Softmax Output Layer | (3) | 132 | 132 | (4) | 180 | 180 | (5) | 230 | 230 |
Total params | 1267 | 1619 | 1352 | 1736 | 1439 | 1855 | |||
Trainable params | 882 | 882 | 932 | 932 | 984 | 984 | |||
Non-trainable params | 385 | 737 | 420 | 804 | 455 | 871 |