Skip to main content
. 2023 Jan 26;23(3):1365. doi: 10.3390/s23031365

Table 3.

Architecture of different Conv1D CNN model variants for the signal and derivative inputs. The output shape comprises (the number of nodes and the number of channels). The Conv1D layer parameters can be set as trainable or non-trainable in different model variants.

Layer # of Classes = 3 # of Classes = 4 # of Classes = 5
Output
Shape
NK=32 NK=64 Output
Shape
NK=32 NK=64 Output
Shape
NK=32 NK=64
Params Params Params Params Params Params
Signal Input Layer (64, 1) 0 0 (64, 1) 0 0 (64, 1) 0 0
Conv1D Layer (64, 11) 363 715 (64, 12) 396 780 (64, 13) 429 845
BatchNormalization (64, 11) 44 44 (64, 12) 48 48 (64, 13) 52 52
Activation (Tanh) (64, 11) 0 0 (64, 12) 0 0 (64, 13) 0 0
GlobalMaxPooling (11) 0 0 (12) 0 0 (13) 0 0
Interval Input Layer (4, 1) 0 0 (4, 1) 0 0 (4, 1) 0 0
Dense Layer 1 (Relu) (4, 32) 64 64 (4, 32) 64 64 (4, 32) 64 64
Dense Layer 2 (Relu) (4, 16) 528 528 (4, 16) 528 528 (4, 16) 528 528
Dense Layer 3 (Relu) (4, 8) 136 136 (4, 8) 136 136 (4, 8) 136 136
Flatten (32) 0 0 (32) 0 0 (32) 0 0
Concatenate (43) 0 0 (44) 0 0 (45) 0 0
Softmax Output Layer (3) 132 132 (4) 180 180 (5) 230 230
Total params 1267 1619 1352 1736 1439 1855
Trainable params 882 882 932 932 984 984
Non-trainable params 385 737 420 804 455 871