Skip to main content
. 2023 Jan 26;23(3):1365. doi: 10.3390/s23031365

Table 5.

Comparison between the Conv1D MF model and state-of-the-art inter-patient ECG classification methods. The best results per column (metric) are highlighted in red.

ID Model Classes Features Classifier ACC
%
N SVEB VEB Macro Average Scores
PREC SEN PREC SEN PREC SEN PREC SEN F1
1 Proposed MF 1 3 ECG Segments + RR Conv1D MF 96.48 99.38 96.96 58.06 85.30 90.20 96.34 82.55 92.87 86.81
2 Proposed MF 6 3 ECG Segments + RR Conv1D MF 98.18 99.00 99.10 82.68 81.60 95.63 95.00 92.44 91.90 92.17
3 Zhang et al. [13] 3 ECG Segments + RR Conv1D +ADNN 94.70 98.00 96.20 90.80 78.80 94.30 92.50 94.37 89.17 91.62
4 Wang et al. [14] 4 CWT + RR Conv2D 99.27 98.17 99.42 89.54 74.56 93.25 95.65 70.75 67.47 68.76
5 Mondéjar-Guerra et al. [15] 4 Wavelets + HOS + LBP + RR Ensemble SVM 94.50 98.20 95.90 49.70 78.10 93.90 94.70 66.35 70.28 67.08
6 Raj and Ray [16] 5 DOST ABC + LSTSVM 96.08 88.50 98.54 72.29 52.06 81.59 62.35 54.89 43.15 45.88
7 Garcia et al. [17] 3 TVGG + PSO SVM 92.40 98.00 94.00 53.00 62.00 59.40 87.30 70.13 81.10 74.60
8 Chen et al. [18] 3 DCT + Projection + RR SVM 93.10 95.40 98.40 38.40 29.50 85.10 70.80 72.97 66.23 69.18
9 Zhang et al. [19] 5 Morph + RR SVM 88.34 98.98 88.94 35.98 79.06 92.75 85.48 65.65 81.53 65.46
10 Lin and Yang [20] 3 Morph + WT + RR LDC 93.00 99.30 91.60 31.60 81.40 73.70 86.20 68.20 86.40 73.43