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Abstract: The development of new biomaterials from natural fibres in the field of biomedicine have
attracted great interest in recent years. One of the most studied fibres has been silk fibroin produced
by the Bombyx mori worm, due to its excellent mechanical properties and its biodegradability and
bioavailability. Among the different biomaterials that can be prepared from silk fibroin, hydrogels
have attracted considerable attention due to their potential use in different fields, such as scaffolding,
cell therapy and biomedical application. Hydrogels are essentially a three-dimensional network of
flexible polymer chains that absorb considerable amounts of water and can be loaded with drugs
and/or cells inside to be used in a wide variety of applications. Here we present a simple sonication
process for the preparation of curcumin-hyaluronic acid-silk fibroin hydrogels. Different grades of
hydrogels were prepared by controlling the relative amounts of their components. The hydrogels
were physically and morphologically characterised by Fourier transform infrared spectroscopy (FTIR),
X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron
microscopy (FESEM) and their biological activity was tested in terms of cell viability in a fibroblast
cell line.

Keywords: silk fibroin; hyaluronic acid; hydrogel; curcumin; cellular proliferation

1. Introduction

In recent years, the development of biocompatible hydrogels for applications in the
biomedical field has gained much attention [1]. Their three-dimensional structure which
provides support, and their ability to absorb large amounts of water while maintaining
their structural integrity are useful features for these applications. In addition, their high
porosity allows the for rapid diffusion of small molecules. Recently, the use of hydrogels
for tissue engineering and wound healing applications has driven important research
efforts [2–4]. In vivo, the cells grow, divide, perform their functions, communicate with
others, and migrate; these functions are supported by the extracellular matrix (ECM), which
provides mechanical support as well as physicochemical signals to the cells to perform
these functions. The ECM is composed of fibrous proteins (mainly laminin, collagen,
and fibronectin) whose chains form physical networks that provide mechanical support,
and proteoglycans that occupy the interstitial sites of this polymeric network [5]. Thus,
hydrogels have been widely accepted as near prototypes of the ECM and have been found
to be suitable three-dimensional matrices for cell growth that provide a suitable biochemical
environment in which cell-matrix interactions can occur [6]. To achieve these requirements,
multi-component hybrid hydrogels are a more promising option because, by combining of
the appropriate materials, it easier to the properties of the hydrogel [7,8].
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A key concept in tissue engineering is the selection of the appropriate material to
design and produce an adequate hydrogel that does not induce any or minimal immune
reaction from the recipient. In this context, biomaterials have the ability to coexist and
interact in the presence of specific tissues or physiological systems such as blood, interstitial
fluids, and immune cells and molecules without inflicting intolerable damage [4]. Silk
fibroin (SF) Bombyx mori is a fibrous protein and a natural biopolymer extracted from
silk cocoons. It has been widely used for designing of biomaterials due to its relatively
inexpensive nature, wide availability and excellent properties, such as biocompatibility,
environmental stability, non-toxicity and a controllable rate of biodegradation [9,10]. Com-
pared to other naturally occurring fibres, SF occupies a special position in the preparation of
hydrogels due to its peculiar properties. In addition to being a good support for cell growth
and proliferation, SF-based biomaterials do not trigger activation of immune response
and have a slower degradation, which allows them to support neo-forming tissues for a
long duration. Furthermore, the degradation products of SF-based materials have been
shown to be harmless to the human body. In addition, not only can the properties of SF be
tailored by chemical and physical modifications, but they can also be modulated as need to
the requirements by genetic engineering [5]. Recently, SF-based hydrogels have received
great interest in the application of tissue engineering, wound repairing and drug delivery
therapies [5,11–15].

Hyaluronic acid (HA) is a natural non-immunogenic polysaccharide that is a unique
component of the ECM where it plays a vital role in cell-ECM interactions [16]. Naturally,
it is a polyanion composed of repeating disaccharide units of β-1,4-D-glucuronic acid–β-
1,3-N-acetyl-D-glucosamine [17]. This polymer has been explored for various biomedical
applications due to its good biocompatibility and promotion of soft tissue regeneration via
its water retention and bioactivity sites that allows good penetration and diffusion of small
molecules into HA hydrogels [1]. However, HA biomaterials have poor biomechanical
performance, rapid degradation and poor cell adhesion that limit their applications [18].
For this reason, combining HA with protein materials such as SF to mimic the composition
and structure of ECM is an excellent option for synthesising SF/HA hydrogels [1,16–24].
In this way, a significant improvement in the mechanical properties, biocompatibility
and bioactivity of SF/HA biomaterials is achieved, increasing their capability for tissue
regeneration [19].

SF/HA hydrogels have been found to be suitable for the storage and controlled re-
lease of drugs. Elia et al. [21] loaded SF/HA hydrogels with common anti-inflammatory
drugs such as dexamethasone, hydrocortisone, 6α-methylprednisolone, cortisone, pred-
nisolone, and prednisone, and found that the drugs were released in a sustained manner.
Wang et al. [22,23] synthesised a composite double-network hydrogel of SF and tyramine-
modified HA and used two model drugs (trypan blue and methylene blue as anionic and
cationic drugs, respectively) for drug delivery assays. They found that the drug loading and
release behaviours of the composite hydrogel can be well controlled by changing the pH
value and salt concentration of the soaking solutions. Ziadlou et al. [24] studied the release
of small hydrophobic anti-inflammatory and anabolic drugs (vanillic acid and epimedin
C) from SF/HA hydrogels, revealing their potential application in cartilage regeneration.
Yan et al. [1] loaded SF/HA hydrogels with rhodamine B as a model drug and found a
release profile with the features of early release concentration and sustained slow release,
which was suitable for the application of drug delivery. However, studies on this matter
are still scarce. More specific studies could contribute to the development of systems in
which therapeutically relevant drugs can be released in specific tissues or organs. In in
tissue engineering and wound healing, the presence of specific drugs in hydrogels may be
a successful strategy.

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a natural
yellow-orange compound that is the main phenolic pigment extracted from turmeric, the
powdered rhizome of Curcuma longa [25]. Curcumin is known for its anti-inflammatory,
anti-cancer, anti-oxidant, anti-bacterial, anti-viral, and anti-fungal activities [26–28]. These
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characteristics make curcumin a good candidate for use in biomedical and particularly in
wound healing applications [29–31]. In addition, curcumin also exhibits photodynamic prop-
erties that have been exploited to improve its antimicrobial efficacy [32]. This is because
curcumin enhances epithelial regeneration, fibroblast proliferation, vascular density, collagen
deposition and reorganisation [33]. However, curcumin has some drawbacks in its biomed-
ical application, such as low bioavailability, low aqueous solubility, rapid degradation in
physiological fluid and formation of aggregates in intravenous solution [25–34]. To address
these issues, the development of novel curcumin delivery strategies is required and the incor-
poration of curcumin into a hydrogel matrix can be used in order to achieve longer circulation
time, better permeability and stability and thus higher pharmacological activity [34]. Few
authors have studied the suitability of curcumin-loaded SF hydrogels [34–36] and curcumin-
loaded HA hydrogels [37,38] for biomedical purposes with promising results, but, to date,
the application of dual curcumin-loaded SF/HA hydrogels has not been explored. Curcumin
has been used for its therapeutic properties and there is no evidence that it has an additional
role, although in the case of other hydrogels or aerogels composed of other biopolymers,
such as collagen or chitosan, it has been described that curcumin may affect the gelation
process and confers a three-dimensional microstructure that improves cell adhesion and
proliferation [39,40]. As mentioned before, an improvement of the physical and biological
properties of the hydrogel is expected when both biopolymers, SF and HA, are used together.

In the present study, SF/HA, curcumin-loaded SF, and curcumin-loaded SF/HA
hydrogels are prepared by a simple sonication method. They were physically and morpho-
logically characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction
(XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscopy
(FESEM). In addition, its biological activity was tested in terms of cell viability in a fibroblast
cell line (L929). The main objective of this work is to determine the potential therapeutic
effect of hydrogels for biomedical applications.

2. Materials and Methods
2.1. Materials

Bombyx mori silk cocoons were reared in the sericulture facilities of IMIDA (Murcia,
Spain) and raised on a diet of natural fresh leaves of Morus alba L. To extract the SF, the
raw silk cocoons were shredded in a mill to a particle size of 1 mm, and then boiled in
a 0.1 M Na2CO3 aqueous solution for 120 min to remove sericin, waxes, and impurities.
The remaining water-insoluble SF was rinsed thoroughly with ultrapure water and air-
dried in a fume hood until constant weight (approximately 24 h). Hyaluronic acid sodium
was purchased from Monteloeder Digital Nutracetics (MW 8 × 105 Da, >90% purity).
Curcumin (99% purity) was purchased from ChromaDex (Irvine, CA, USA). Purified water
(18.2 MΩ·cm at 25 ◦C; from a Millipore Direct-Q1 ultrapure water system, Billerica, MA,
USA) was used throughout. All other chemicals and solvents were of analytical grade and
were used without further purification.

2.2. SF Dissolution

SF was dissolved in 9.3 M LiBr according to the following protocol. First, the 9.3 M
LiBr solution was heated to 60 ◦C, and then SF was added to obtain a 20 wt.% SF solution.
The sample was stirred at 60 ◦C for 6 h to obtain a yellowish solution. The solution was
then placed in a dialysis bag (12 kDa) for 72 h with distilled water to remove the lithium
salt. The water was changed every 3 h until a conductivity of less than 2 µS/cm (like
that of distilled water) was reached. Finally, the solution was centrifuged to eliminate SF
precipitates and concentrated up to a concentration of 5 mg/mL and 10 mg/mL. Both
solutions were stored at 4 ◦C.

2.3. Preparation of SF/HA Hydrogels

HA was dissolved in 1 mL of the 5 mg/mL SF solution with the final SF/HA mass
ratios of 100/0, 80/20, 60/40, 50/50 and 40/60. The SF/HA solutions were then sonicated
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for 20 s with an amplitude of 30% in an Eppendorf tube to induce the sol-gel transition and
the hydrogels were obtained. They were then lyophilised.

2.4. Preparation of Curcumin-Loaded SF Hydrogels

25 mg of curcumin was dissolved in 5 mL of NaOH (0.1 N) and several dilutions were
made to obtain a curcumin solution with concentrations of 0.66, 1.25 and 2.5 mg/mL. Then,
a fixed volume of 0.5 mL of the 10 mg/mL SF solution was mixed with a fixed volume
of 0.5 mL of the diluted curcumin solutions to obtain hydrogels with final SF/curcumin
mass ratios of 16/1, 8/1, 4/1 and 2/1. The SF/curcumin solutions were sonicated for
20 s with an amplitude of 30% in an Eppendorf tube to induce the sol-gel transition and the
hydrogels were obtained. They were then lyophilised. A sample blank without curcumin
was also prepared with this protocol.

2.5. Preparation of Curcumin-Loaded SF/HA Hydrogels

Curcumin-loaded SF/HA hydrogels were prepared following a procedure like that
described in 2.4. First, curcumin solutions in NaOH (1 N) of concentrations of 1.25 and
2.5 and 5 mg/mL were prepared. Then, a fixed volume of 0.5 mL of the 10 mg/mL
SF/HA (80/20, 50/50 and 40/60) solutions were mixed with a fixed volume of 0.5 mL
of the curcumin solutions to obtain hydrogels with final (SF/HA) curcumin mass ratios
of 8/1, 4/1 and 2/1. The (SF/HA)/curcumin solutions were sonicated for 20 s with an
amplitude of 30% in an Eppendorf tube to induce the sol-gel transition and the hydrogels
were obtained. They were then lyophilised. The Table 1 present the composition and
nomenclature of the samples prepared in this work.

Table 1. Composition and nomenclature of the curcumin-loaded SF/HA hydrogels prepared.

Sample
Code

SF/HA
(wt./wt.%)

SF/Curcumin
(wt./wt.%)

SF
(wt.%)

HA
(wt.%)

Curcumin
(wt.%)

A1 100/0 0/0 100 0 0
A2 80/20 0/0 80 20 0
A3 60/40 0/0 60 40 0
A4 50/50 0/0 50 50 0
A5 40/60 0/0 40 60 0

B1 100/0 0/0 100 0 0
B2 100/0 16/1 94 0 6
B3 100/0 8/1 89 0 11
B4 100/0 4/1 80 0 20
B5 100/0 2/1 67 0 33

C1 80/20 2/1 57 14 29
C2 50/50 2/1 40 40 20
C3 40/60 2/1 33 50 17
C4 80/20 4/1 67 17 17
C5 50/50 4/1 44 44 11
C6 40/60 4/1 36 55 9
C7 80/20 8/1 73 18 9
C8 50/50 8/1 47 47 6
C9 40/60 8/1 38 57 5

A1 and B1 samples have the same composition but have been prepared following different protocols.

2.6. Swelling Properties Test

A dried gels were submerged in deionized water at 25 ◦C for 24 h. After excess
water was removed from the gel surfaces, the wet weight of the gels was determined. The
swelling ratio and the water uptake in the gels were calculated by Equations (1) and (2)
respectively as follows:

Swelling ratio (g/g) = (Ws − Wd)/Wd, (1)
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Water uptake (%) = [(Ws − Wd)/Ws] × 100 (2)

where Ws and Wd are the weights of swollen and dried gels, respectively.

2.7. Study of the Kinetic Release of Curcumin from the Different Hydrogels

The in vitro kinetic release of curcumin from the different hydrogels was tested in a
self-made USP type 4 flow-through cell apparatus. The device is schematised in Figure 1.
The hydrogel was introduced with 50 mL of PBS (pH 7 with 0.5% m/V of Tween 80) in a
water-jacked vessel set at 37 ◦C. The mass of the introduced hydrogel was varied to keep
the mass of curcumin constant. For instance, 18, 12 and 22 mg of hydrogels B3, C4 and C9
were weighed, respectively, to maintain 2 mg of curcumin. A peristaltic pump was used to
recirculate the release media from the release vessel, through a 0.45 µM nylon filter and the
measuring cell at 15 mL/min. The absorbance at 421 nm was measured every 30 s until the
end of the experiment with a UV-Vis spectrometer (Reigol, CHINATOWN).
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2.8. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The infrared absorption spectra of the hydrogels were recorded on an iS5-Nicolet
Fourier-transform infrared spectrometer (Thermo Fischer Scientific, Waltham, MA, USA)
equipped with a Deuterated Triglycine Sulfate detector and a 1-reflection, 45◦ angle of
incidence diamond ATR accessory (iD7 ATR module, Thermo Fischer Scientific, Waltham,
MA, USA). Each measured spectrum was the average of 64 scans at a data collection rate
of 0.47 scans per second. OMNIC Software v9.9.471 (Thermo Fischer Scientific, Waltham,
MA, USA) was used to control and process the spectral data. Interferograms were recorded
at a resolution of 2 cm−1 with a zero-filling factor of 2 in the range of 4000–400 cm−1,
and Fourier-transformed using the Blackman-Harris 3-term apodization function. A back-
ground spectrum without a sample with the same number of scans was collected before
each measurement.

2.9. Field Emission Scanning Electron Microscopy (FESEM)

To observe the morphology of the hydrogels, an FEI SciosTMmicroscope (Thermo
Scientific, Waltham, MA, USA) was used. Cross sections of the lyophilised hydrogel
samples were deposited on a mica plate and coated with a thin layer of gold. The mica discs
were pre-treated by removing the top layers with scotch tape three times before placing
the sample.

2.10. X-ray Diffraction (XRD)

X-ray powder diffraction (XRPD) was performed with a D8 Advance diffractometer
in Bragg-Brentano geometry (Bruker, Karlsruhe, Germany) with CuKα radiation, 40 kV,
30 mA, and a 1-dimensional LynxEye detector with a 2◦ window. The primary optics
consisted of a 2◦ Soller slit, a 1 mm incidence slit and an anti-scattering screen that reduces
radiation scattering at low angles. The secondary optics included a 3 mm anti-scattering
slit, a nickel filter and a 2.5◦ Soller slit.

For the X-ray analysis, samples were disaggregated in an agate mortar and placed in a
0.5 mm Si sample holder. The samples were passed through a range of 5 to 45◦ at 2θ, 0.05◦

intervals, 2 s/stage and 30 rpm rotation.
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2.11. Thermogravimetric Analysis (TGA-DTA)

The thermal properties of SF were measured using a thermal gravimetric analyser (TA
instruments, SDT 2960 simultaneous DSC-TGA, Waters LLC, Champaign, IL, USA) in the
temperature range of 25–800 ◦C at a heating rate of 10 ◦C/min under an inert nitrogen
atmosphere in an open bin. The weight loss was recorded and plotted against temperature
for thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

2.12. In Vitro Cell Response
2.12.1. Cell Culture

A mouse lung fibroblast cell line (L929) from American Type Culture Collection (ATCC,
Manassas, VA, USA) was selected to evaluate the cytotoxicity and biological activity of the
hydrogels. L929 was sub-cultured in Dulbecco’s Modified Eagle Medium (DMEM) with a
low content of glucose (1 g/L) supplemented with fetal bovine serum (FBS) in a proportion
of 0.1 g/mL, 1 mM glutamax, 1 mM pyruvate and 1% antibiotics (penicillin-streptomycin).
Cells were incubated at 37 ◦C in a 5% CO2 atmosphere and trypsinised prior to passage
using a solution of 0.25% trypsin-0.25 mM ethylenediaminetetraacetic acid (EDTA). The
medium was changed twice a week. The cells were checked for absence of mycoplasma
before and after the experiments.

2.12.2. Cell Viability

The cytotoxicity of the SF/HA, curcumin-loaded SF and curcumin-loaded SF/HA
hydrogels was detected in L929 by MTT assay. In addition, some considerations were
taken into account to be able to detect significant changes in absorbance at 560 nm without
interference, such as the use of 48-well plates to increase the number of cells in the assay
and the use of media without phenol red. Every two days, the medium was changed to
fresh medium.

Cell viability of hydrogels was assessed at days 1, 3 and 7. Dried hydrogels were
sterilised by ultraviolet irradiation for 30 min. Small pieces of hydrogels were placed in
48-well plates with 250 µL of FBS for 48 h at 37 ◦C, 5% CO2. After FBS was removed,
3 × 104 cells/well were seeded (500 µL final volume) and allowed to incubate according to
the time of exposure to the hydrogel.

After treatment, the media was removed and 500 µL of MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) solution at a final concentration of 1 mg/mL was
added and left in in the dark for 4 h, after which MTT was removed and 250 µL of dimethyl
sulfoxide (DMSO) was added. Absorbance was measured on a microplate reader (FLUOstar
Omega) spectrophotometer at 560 nm. Each sample was tested in three independent sets
with triplicate points. Three controls (hydrogel only, cells only and culture medium only)
were added to each plate.

2.12.3. Cell Morphology

The dried hydrogels were cut into small slices and sterilised at 312 nm in 48-well
plates. They were then hydrated with 250 µL of FBS for 48 h. The FBS was removed and
a suspension of 30,000 L929 cells per well was added. After 72 h, cells were observed by
using a Leica inverted microscope: mod DMI1 with image acquisition system.

2.13. Statistics

Data were presented as mean ± SD (standard deviation), calculated from three in-
dependent samples per condition by using GraphPad Prism 8.0.1 software (GraphPad
Software, San Diego, CA, USA). Since normality (Kolmogorov-Smirnov, p > 0.05) and
homoscedasticity (Levene, p > 0.05) were met, statistical significance was determined using
Tukey’s parametric test (p < 0.05) and ANOVA (p < 0.05) for comparisons of two or more
groups, respectively.
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3. Results and Discussion
3.1. Characteristics of Hydrogels

The macroscopic appearance of hydrogel samples SF (a), A2 (b), B3 (c) and C4 (d) are
shown in Figure 2.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 23 
 

 

2.12.3. Cell Morphology 

The dried hydrogels were cut into small slices and sterilised at 312 nm in 48-well 

plates. They were then hydrated with 250 μL of FBS for 48 h. The FBS was removed and 

a suspension of 30,000 L929 cells per well was added. After 72 h, cells were observed by 

using a Leica inverted microscope: mod DMI1 with image acquisition system. 

2.13. Statistics 

Data were presented as mean ± SD (standard deviation), calculated from three inde-

pendent samples per condition by using GraphPad Prism 8.0.1 software (GraphPad Soft-

ware, San Diego, CA, USA). Since normality (Kolmogorov-Smirnov, p > 0.05) and homo-

scedasticity (Levene, p > 0.05) were met, statistical significance was determined using 

Tukey’s parametric test (p < 0.05) and ANOVA (p < 0.05) for comparisons of two or more 

groups, respectively. 

3. Results and Discussion 

3.1. Characteristics of Hydrogels 

The macroscopic appearance of hydrogel samples SF (a), A2 (b), B3 (c) and C4 (d) are 

shown in Figure 2. 

 

Figure 2. Macroscopic appearance of (a) sample SF, (b) sample A2, (c) sample B3 and (d) sample C4. 

From the point of view of the macroscopic appearance of the obtained hydrogels, the 

most remarkable is the color of the hydrogels containing curcumin as can be seen in Figure 

2. Other authors [19] suggest that the addition of HA significantly improves the hardness 

and other mechanical properties of composite hydrogels through the superhydrophilicity 

and supramolecular structure of HA macromolecules. 

3.2. Silk Fibroin Gelation Time 

The SF fibres obtained by the degumming method were analysed by infrared spec-

troscopy. Figure 3 shows the spectrum obtained, in which the typical bands of SF fibres 

are observed. Around 3310 and 3270 cm−1 is the amide A band, produced by the stretching 

of the NH group. Around 3100 and 3030 cm−1 is the amide B band, produced by the vibra-

tion of the CH group. The amide I band, produced mainly by the vibration of the stretch-

ing of the C=O group, is observed at approximately 1650 cm−1, with its maximum at 1627 

cm−1. Amide mode II is the out-of-phase combination of the in-plane strain of the NH 

group and the CN stretching vibration, with minor contributions from the in-plane strain 

of the CO group and the CC and NC stretching vibrations. For the SF fibre, this band is 

observed at 1528 cm−1. Finally, at 1251 cm−1 the amide III band is observed, which arises 

from the combination of NH group bending and CN group stretching with small contri-

butions from the CO group [41]. 

a b c d

Figure 2. Macroscopic appearance of (a) sample SF, (b) sample A2, (c) sample B3 and (d) sample C4.

From the point of view of the macroscopic appearance of the obtained hydrogels, the
most remarkable is the color of the hydrogels containing curcumin as can be seen in Figure 2.
Other authors [19] suggest that the addition of HA significantly improves the hardness and
other mechanical properties of composite hydrogels through the superhydrophilicity and
supramolecular structure of HA macromolecules.

3.2. Silk Fibroin Gelation Time

The SF fibres obtained by the degumming method were analysed by infrared spec-
troscopy. Figure 3 shows the spectrum obtained, in which the typical bands of SF fibres are
observed. Around 3310 and 3270 cm−1 is the amide A band, produced by the stretching of
the NH group. Around 3100 and 3030 cm−1 is the amide B band, produced by the vibration
of the CH group. The amide I band, produced mainly by the vibration of the stretching of
the C=O group, is observed at approximately 1650 cm−1, with its maximum at 1627 cm−1.
Amide mode II is the out-of-phase combination of the in-plane strain of the NH group and
the CN stretching vibration, with minor contributions from the in-plane strain of the CO
group and the CC and NC stretching vibrations. For the SF fibre, this band is observed
at 1528 cm−1. Finally, at 1251 cm−1 the amide III band is observed, which arises from the
combination of NH group bending and CN group stretching with small contributions from
the CO group [41].
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The ultrasound time at which the SF solution changed from solution to a non-mobile
state (gel) was determined by the evolution of the random coil structure to β-sheets by
measuring the ATR-FTIR spectrum. SF samples of 3 mg/mL were sonicated for 1, 2, 3, 5, 7,
10, 15 and 20 s. As shown in Figure 4, with increasing sonication time, there is a gradual
shift of the absorption maximum from approximately 1642 cm−1 to 1622 cm−1. This
evolution occurs due to the transition from irregular and type-II β-turns to β-sheets [42].
The samples can be classified into 3 groups based on the position and shape of their amides
I bands, which can be related to the sonication time. Samples sonicated for 3 s or less show
a broad amide I band with its maximum at 1638–1642 cm−1. The position of the absorbance
maximum is assigned to irregular and β-sheet structures [43]. When the samples are
sonicated for 20 s or more, a decrease in absorbance at 1642 cm−1 is observed, while a
sharp increase in absorption is seen at 1622 cm−1 along with the appearance of a weak
band at 1700 cm−1. The appearing bands correspond to the main absorption component
of antiparallel β-sheets and the high-wavenumber component, respectively. Finally, the
amide I band of the samples sonicated between 3 and 20 s shows a mixture of the latter
described groups, which is a sharp maximum at 1622 cm−1 corresponding to β-sheets with
a broad shoulder at 1642 cm−1 assigned to irregular and type-II β-turns structures. This
indicates that the transition from irregular and type-II β-turns structures to β-sheets is
induced by the energy provided by sonications. In the experimental conditions, at least
5 s of sonication were needed to induce a noticeable increase of β-sheets to support the
gelation of the solution.
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3.3. Structure of the Composite Hydrogels

To characterise the chemical structural changes in the preparation process of the com-
posite hydrogels, the samples were analysed by ATR-FTIR spectroscopy after sonication. As
shown in Figure 5, peaks appear around 1625 cm−1, 1515 cm−1 and 1230 cm−1 which were
assigned to β-sheet structures. For the spectra of the SF/HA hydrogels (Figure 5A), as the HA
content increased, the broad peak including the alcohol group around 1040 cm−1 increased
significantly. Since the silk fibroin protein has no strong vibrational mode within this region,
this region can be established as an indicator of the peaks of the HA components in the SF/HA
mixtures. Amide I and II regions (1700–1450 cm−1) of the SF and HA components overlap
strongly because both silk and HA have vibrational modes in this region.
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Figure 5. ATR−FTIR absorbance spectra of (A) SF/HA hydrogels (A1, A2, A3, A5), (B) SF/curcumin
hydrogels (B1, B2, B3, B5); (C) SF/HA/curcumin hydrogels with SF/HA = 80/20 and SF/curcumin 0,
2/1, 4/1 and 8/1 (A2, C1, C4, C7) and (D) SF/HA/curcumin hydrogels with SF/HA = 40/60 and
SF/curcumin 0, 2/1, and 8/1 (A5, C3, C9).

After loading curcumin into the SF and SF/HA hydrogels, none of the individual
peaks belonging to curcumin were observed in the spectra obtained (Figure 5B–D). This is
because the curcumin, SF and HA components strongly overlap having vibrational modes
in this region [34]. Only for the highest proportions of curcumin (B5, C1 and C3), a peak is
glimpsed at 1140 cm−1 that can be attributed to C-O-C stretching [44,45].

3.4. Cross-Sectional Morphology of the Hydrogels

The microstructure, which can be observed by the FESEM technique, has a great
impact on the properties of hydrogel, such as swelling behaviour, permeability, etc. [16].
The FESEM images shown in Figure 6 revealed that all cross-sectional samples had typically
porous scaffold structures with interconnected pores. As can be seen, the appearance is
quite similar, but some differences can be observed. Firstly, sample A1 (only SF) seems to
show the largest pore size. This could be due to the incorporation of HA into the hydrogel
matrix, which promotes the formation of porous structures, probably due to its high water-
binding capacity [46]. A Similar conclusion was reached by Xiao et al. [16] and Yan et al. [1].
However, sample B1, which also has only SF, shows a similar pore size compared to the
rest of samples containing HA. The differences found between samples A1 and B1 could be
due to the fact that sample B1 was synthesised using NaOH, which promotes the formation
of more and smaller pores in the SF hydrogel [47]. Secondly, the higher concentration of
HA (without the presence of curcumin), i.e., A5 sample with 60 wt.% of HA, seems to lead
to a more heterogeneous structure than sample A1 (0 wt.% of HA). In fact, the appearance
of sample A5 may induce some kind of phase separation. However, compared to the
samples with curcumin and similar content of HA, i.e., samples C6 and C9, we observed
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that a low concentration of curcumin (9 and 5 wt.%, respectively) gives surprisingly more
homogeneous structures. This fact could suggest a synergistic effect between the three
components (SF, HA, and curcumin).
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Figure 6. Observationof the morphology by FESEM of SF (A1,B1), SF/HA (A2,A5) and
SF/curcumin hydrogels (B1,B3,B5); SF/HA/curcumin hydrogels with SF/HA = 80/20 (C1,C4,C7) and
SF/curcumin = 40/60 (C3,C6,C9).

3.5. Thermal Stability of the Hydrogels

Figure 7 displays the weight loss of different samples from room temperature to
800 ◦C, which reveals the degradation rates and average degradation temperatures of each
component in the SF/HA, curcumin-loaded SF, and curcumin-loaded SF/HA hydrogels.
As can be seen, all samples show at least three ranges. The first loss corresponds to the
removal of bound water by evaporation of all samples at the temperature of 120 ◦C [48].
The water loss for pure SF ranged between 4.4 to 6.5 wt.% for B1 and A1, respectively. With
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the addition of HA, the percentage of bound water increases to 8.9% for sample A2 and
6.5% for A1. Sample C1 (curcumin-loaded SF/HA, 29/57/14) showed the highest amount
of bound water (about 14 wt.%) [48]. Between 120 and 250 ◦C, all samples showed a stable
weight loss. Above 250 ◦C, a change of a slope can be clearly observed, probably associated
to the degradation of SF [49,50], this result is also confirmed in the DTA curves.
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Figure 7. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA): (A) SF/HA; (B)
curcumin-loaded SF; and (C) curcumin-loaded SF/HA hydrogels.

In addition, the DTA curves showed a main peak between 284 and 311 ◦C for sample
B5 (curcumin-loaded SF) that can be attributed to thermal degradation of SF [51–55].
Two peaks at 247 ◦C and 253 ◦C occurred in the thermogram of samples A5 and C9,
which may be related to the decomposition of unbound HA remaining in the composite
hydrogel [49,50]. In addition, peaks at temperatures ranging from 266 ◦C to 277 ◦C could be
considered thermal decomposition of curcumin [56–58]. Finally, above 350 ◦C the weight
loss of approximately 17 to 32% corresponds to thermal decomposition of the residues.

3.6. X-ray Powder Diffraction

Figure 8 shows the X-ray diffraction of the SF, SF/HA, curcumin-loaded SF and
curcumin-loaded SF/HA hydrogels. As can be seen in Figure 8A, A1 shows three crystal
peaks when deconvoluted at 18.4, 20.64, and 24.1◦, and a broad peak at 28.1◦, and a smaller
one at 14.2 indicating the coexistence of silk I and silk II [55,59], which also confirmed
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the two other samples (A2 and A5) with peaks at 12.2, 20.6, 24◦ and 12.3, 20.4, 24.22,
28.3◦, respectively. Compared to SF hydrogel (see Supplementary Materials Table S1), the
d-spacing and the area of the crystalline regions increased with slight shifts, denoting that
the crystallinity of the SF/HA hydrogel decreased as the HA content increased, attributed
to the interactions and good compatibility between SF and HA [60]. This result revealed
that the complexation between SF and HA through high ultrasonic energy reduced the
crystallinity [59].

Polymers 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

respectively. Compared to SF hydrogel (see Supplementary Materials Table S1), the d-

spacing and the area of the crystalline regions increased with slight shifts, denoting that 

the crystallinity of the SF/HA hydrogel decreased as the HA content increased, attributed 

to the interactions and good compatibility between SF and HA [60]. This result revealed 

that the complexation between SF and HA through high ultrasonic energy reduced the 

crystallinity [59]. 

Figure 8B represents the diffractogram of the SF hydrogel and the curcumin-loaded 

SF hydrogels. After deconvolution, it showed a strong peak at 20.2° and three smaller 

peaks at 9.2°, 16°, 24.5° for β-sheet, and another broad peak at 28.03° also assigned the 

existence of α-helix. On the other hand, the X-ray diffractogram of curcumin showed in-

tense and narrow crystallinity peaks denoting a high crystallinity nature [56,61–63]. In the 

subsequent development, B2, B3, and B5 also describe the formation of silk I and silk II. 

Compared to B1, the peak at 9.2° disappeared, and the d-spacing and area of silk II in-

creased as the curcumin content increased (see Supplementary Materials Table S2). These 

findings suggested that, in the presence of curcumin, SF may develop a structural transi-

tion from silk I to silk II [64]; with the existence of silk I. The disappearance of the crystal-

line peaks of curcumin [62,65], probably revealed the effective loading in the SF/CUR com-

posite hydrogel [61,63], promoting the good solubility and bioavailability of curcumin 

[61,66]. 

The addition of curcumin to the SF/HA hydrogels also showed the formation of silk 

I and silk II (Figure 8) while the state of curcumin transitioned from crystalline to amor-

phous, which was determined by the disappearance of the crystalline peaks, and this is 

also confirmed by the d-spacing values (see Table S3 in the Supplementary Materials). 

 

Figure 8. X-ray patterns of (A) SF/HA hydrogels; (B) curcumin-loaded SF; and (C) curcumin-loaded 

SF/HA hydrogels. 

C

Figure 8. X-ray patterns of (A) SF/HA hydrogels; (B) curcumin-loaded SF; and (C) curcumin-loaded
SF/HA hydrogels.

Figure 8B represents the diffractogram of the SF hydrogel and the curcumin-loaded SF
hydrogels. After deconvolution, it showed a strong peak at 20.2◦ and three smaller peaks
at 9.2◦, 16◦, 24.5◦ for β-sheet, and another broad peak at 28.03◦ also assigned the existence
of α-helix. On the other hand, the X-ray diffractogram of curcumin showed intense and
narrow crystallinity peaks denoting a high crystallinity nature [56,61–63]. In the subsequent
development, B2, B3, and B5 also describe the formation of silk I and silk II. Compared
to B1, the peak at 9.2◦ disappeared, and the d-spacing and area of silk II increased as
the curcumin content increased (see Supplementary Materials Table S2). These findings
suggested that, in the presence of curcumin, SF may develop a structural transition from
silk I to silk II [64]; with the existence of silk I. The disappearance of the crystalline peaks
of curcumin [62,65], probably revealed the effective loading in the SF/CUR composite
hydrogel [61,63], promoting the good solubility and bioavailability of curcumin [61,66].

The addition of curcumin to the SF/HA hydrogels also showed the formation of
silk I and silk II (Figure 8) while the state of curcumin transitioned from crystalline to
amorphous, which was determined by the disappearance of the crystalline peaks, and this
is also confirmed by the d-spacing values (see Table S3 in the Supplementary Materials).
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3.7. Swelling Properties

The Table 2 presents the swelling ration and the water uptake of the differents samples.
As can be showed that all the hydrogels obtained presented a water uptake higher than 85%.

Table 2. Swelling properties of the different hydrogels sample obtained.

Sample
Code

Swelling Ratio
(g/g)

Water Uptake
(%)

B1 6.10 85.91
B2 7.79 88.62
B3 7.83 88.67
B5 6.21 86.13
C1 4.539 81.94
C3 9.46 90.44
C6 11.48 91.99

Regarding the swelling results, samples C3 and C6, with a SF/HA ratio of 40/60 have
the best water content and swelling properties (Table 2). These results may be related to the
size and homogeneity of the hydrogel pores.

3.8. Study of the Kinetic Release of Curcumin from Different Hydrogels

All release studies were performed under sink conditions after determining the solubil-
ity of curcumin (Curc) in the respective release medium. Figure 9 shows the release profiles
of free curcumin and the different curcumin-loaded hydrogels. It can be seen that in all
cases, the release profile follows first-order release kinetics [9,25] with a burst release phase
and a plateau phase. Free curcumin powder reaches the plateau at 0.2 h, while sample
B3, composed only of SF reaches the plateau at 0.1 h. The hydrogels containing HA, C4
and C9, reach the plateau later, 0.5 h. In all cases, the hydrogels despite their composition,
delay the releases of curcumin with respect to the free powder. The addition of HA in the
compositions studied (20 and 60%) hindered the release of curcumin compared to the pure
SF hydrogels sample. Pure HA hydrogels have been reported to exhibit slower release of
vanillic acid and Epimedin C than the SF/HA compositions [24]. While a small percentage
of HA (5%) accelerated the release of vascular endothelial growth factors [67]. Samples C4
and C9 did not show a significant difference despite their SF:HA composition.
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It was reported [44] that SF without antibacterial agent does not exhibit antibacterial
activity, however, SF composite films containing curcumin exhibited high inhibition ratios
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during 12 h of incubation against Staphylococcus aureus (S. aureus; G+) bacteria, which are
common bacteria found in wound infections [44]. Given the sustained release profile of
SF/curcumin and SF/HA/curcumin composite hydrogels, a diffusion release is expected
to be maintained for hours to constitute an effective bacterial barrier.

3.9. Cell Viability in Hydrogels

The MTT absorbance of the L929 cell line seeded into the hydrogels was used to
assess cell viability in the hydrogels. The main objective of this research is to discover the
importance of curcumin in the SF/HA hydrogel for L929 cell development, for 1, 3 and
7 days. Figures 10 and 11 represent the evaluation of cell viability of curcumin-loaded
SF/HA versus SF/HA and curcumin-loaded SF hydrogels.
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Figure 10. Cell density of (A) SF/HA; (B) curcumin-loaded SF; (C) curcumin-loaded SF/HA. Data are
expressed as percentage of cell viability ± SD vs. concentration. * Indicates p < 0.05, ** indicates p < 0.01,
and **** indicates p < 0.0001, compared to control.
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Figure 11. Comparative results of cell density between (A) SF/HA (A1, A2 and A5), curcumin-loaded
SF (B1, B3 and B5), and curcumin-loaded SF/HA hydrogels (C1, C3, C4, C6 and C7; (B) SF/HA (A5) and
curcumin-loaded SF/HA hydrogels (C3 C6, and C9)); (C) SF/HA (A2) and curcumin-loaded SF/HA
hydrogels (C1 C4, and C7). Data are expressed as percentage of cell viability ± SD vs. concentration.
* Indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001 and **** indicates p < 0.0001, compared
to control.

In Figure 10A, all samples showed good initial cell viability after one day, several
L929 cells developed in the samples and over seven days, cells continued to survive and
grow in the samples. Differences in proliferative activity between the control and A1 were
significant (* p < 0.05), as well as between control and A2 and A5 (**** p < 0.0001). In
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addition, the low HA content A2 hydrogel tended to have more cells than the high HA
content A5 hydrogel. The results are in agreement with those obtained by Xiao Hu et al. [48]
that after 10 days of incubation of hMSCs in various silk/HA hydrogels, the trend of cell
viability varied, with cell viability decreasing with increasing HA concentration.

Figure 10B shows the cytotoxicity of the curcumin SF-loaded scaffold on L929 cells.
The control had a high cell proliferation rate point (**** p < 0.0001) compared to SF and
curcumin-loaded SF, but the curcumin SF-loaded scaffold showed no toxicity during the
7 days of incubation and cell viability increased with increasing curcumin concentration.
This result confirms previous findings from several works [25,68,69] that curcumin im-
proved cell viability. The crucial point is that cell proliferation does not stop abruptly or
slow down dramatically during the period.

The curcumin-loaded SF/HA hydrogel shows high cell viability, rapid growth and
good compatibility results on the seventh day compared to the first day, furthermore, cell
viability goes from a highly significant point (**** p < 0.0001) on day 3 to non-significant
on day 7, where C6 and C9 are almost identical to the control (Figure 10C). These results
suggest that adding curcumin to SF/HA positively modifies the tendency of cells within
the SF/HA scaffold, which is also clear in Figure 10B,C.

As an epilogue, MTT values of the cells measured for the curcumin-loaded SF/HA
scaffolds were remarkably higher than those for the SF/HA and curcumin-loaded SF, as
shown in Figure 11A. The MTT viability experiment demonstrated how adding CUR to
the SF/HA hydrogel to create curcumin-loaded SF/HA scaffolds boosted the proliferation
of the L929 cell line compared to SF/HA hydrogels (Figure 11B,C), highlighting that the
concentration of CUR is an important factor to consider. This result is mainly attributed to
the good effect of curcumin on cell viability in the SF/HA scaffold.

3.10. Cell Morphology

L929 cells were observed microscopically to check the growth status of cells cultured
with the hydrogels. Figure 12 shows that cells cultured with the SF and SF/HA hydrogels
(A1 and A2) experienced a slight decrease in growth at 3 days with respect to the control
group, while those cultured with the curcumin-loaded SF/HA hydrogels (C4 and C7),
observed at 7 days, showed similar morphology and growth in the hydrogel as the control
group, corroborating the cell viability results and perspective of these hydrogels as a wound
healing therapy.
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L929 cells were observed microscopically to check the growth status of cells cultured
with the hydrogels. Figure 12 displays that cells cultured with the SF and SF/HA hydrogels
(A1 and A2) experienced a slight decrease in growth at 3 days with respect to the control
group, while those cultured with the curcumin-loaded SF/HA hydrogels (C4 and C7),
observed at 7 days, showed similar morphology and growth in the hydrogel as the control
group, corroborating the cell viability results and perspective of these hydrogels as a wound
healing therapy.

4. Conclusions

In this study, a simple, fast, and non-toxic method, sonication, was used to prepare
hydrogel for biomedical application. SF/HA hydrogel, curcumin-loaded SF and curcumin-
loaded SF/HA were prepared and characterised by Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scan-
ning electron microscopy (FESEM). This was done to ensure that the curcumin in the
SF/HA hydrogel was adequately loaded to improve its therapeutic properties. The main
objective of this study was achieved, as can be seen from the cell viability test which
clearly showed that curcumin improves the therapeutic characteristic of SF/HA. These
results suggest that the recently prepared scaffold, with its low cytotoxicity, excellent bio-
compatibility. In addition, curcumin-loaded nanofibrous scaffolds have been evaluated
for drug release, antioxidant, antimicrobial and anti-inflammatory activities in vitro. The
results showed that curcumin exhibited sustained release behavior from the nanofibrous
scaffolds and maintained its free radical scavenging ability, and these scaffolds effectively
inhibited the growth of S. aureus (>95%). Therefore, it is expected in vivo assays that
curcumin-loaded SF/HA hydrogels exhibit a synergistic effect as to be excellent potential
candidates for wound dressings and tissue engineering scaffolds. Furthermore, previous
studies [43] evaluated the in vitro antioxidant, antimicrobial and anti-inflammatory activ-
ities of curcumin-loaded P(LLA_CL) fibroin nanofibrous scaffolds. The results showed
that curcumin exhibited sustained release behavior from the nanofibrous scaffolds and
maintained its free radical scavenging ability, and these scaffolds effectively inhibited the
growth of S. aureus (> 95%). Cell viability studies have shown that the addition of CUR to
the SF/HA hydrogel enhances the proliferation of the L929 cell line compared to hydrogels
that do not contain CUR, highlighting that the presence and concentration of CUR is an
important factor for biomedical applications. Therefore, it is expected that in in vivo assays
curcumin-loaded SF/HA hydrogels obtained in this work will show a synergistic effect as
to be excellent potential candidates for wound dressings and tissue engineering scaffolds.
In vivo assays will constitute the next step of this work.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15030504/s1, Table S1: X-ray diffraction of SF/HA hydrogels; Table S2:
X-ray diffraction of curcumin-loaded SF; Table S3: X-ray diffraction of curcumin-loaded SF/HA hydrogels.
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