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Abstract: The local and global order in dense packings of linear, semi-flexible polymers of tangent
hard spheres are studied by employing extensive Monte Carlo simulations at increasing volume
fractions. The chain stiffness is controlled by a tunable harmonic potential for the bending angle,
whose intensity dictates the rigidity of the polymer backbone as a function of the bending constant
and equilibrium angle. The studied angles range between acute and obtuse ones, reaching the limit
of rod-like polymers. We analyze how the packing density and chain stiffness affect the chains’ ability
to self-organize at the local and global levels. The former corresponds to crystallinity, as quantified
by the Characteristic Crystallographic Element (CCE) norm descriptor, while the latter is computed
through the scalar orientational order parameter. In all cases, we identify the critical volume fraction
for the phase transition and gauge the established crystal morphologies, developing a complete phase
diagram as a function of packing density and equilibrium bending angle. A plethora of structures are
obtained, ranging between random hexagonal closed packed morphologies of mixed character and
almost perfect face centered cubic (FCC) and hexagonal close-packed (HCP) crystals at the level of
monomers, and nematic mesophases, with prolate and oblate mesogens at the level of chains. For
rod-like chains, a delay is observed between the establishment of the long-range nematic order and
crystallization as a function of the packing density, while for right-angle chains, both transitions are
synchronized. A comparison is also provided against the analogous packings of monomeric and fully
flexible chains of hard spheres.

Keywords: semi-flexible polymers; hard sphere; athermal chain; Monte Carlo; molecular simulation;
crystallization; packing; phase transition; order parameter; liquid crystal; nematic order; oblate
mesogen; prolate mesogen; face centered cubic; hexagonal close packed; bending angle; freely-jointed
model; rod-like molecules

1. Introduction

Over the last few decades, developments in the synthesis of novel polymers and
the fabrication of polymer-based materials have turned them into key components of
our daily lives. The research is ever-growing in the pursuit of polymer-based materials
with enhanced properties as chain connectivity endows macromolecules with unique
properties compared to monoatomic systems [1,2]. Describing polymer conformations and
configurations statistically and understanding how these are connected to macroscopic
properties are thus of paramount importance in technology and industry [3,4].

In parallel, many aspects of the phase behavior and self-organization of general atomic
and particulate systems remain unknown or poorly understood. The analysis becomes a
great deal harder when macromolecular systems are tackled. Advances in experimental,
theoretical, and simulation methods continually enrich our fundamental knowledge of
the phenomenon in a wide range of physical systems [5–11]. For example, theoretical
models have been developed to predict the effect of the processing conditions on the phase
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transition in order to analyze the final morphologies [12,13]. Advances in the synthesis and
characterization of colloidal and granular systems have provided significant insights on the
phase behavior of monomeric and polymeric systems, particularly given their simplicity
and large size compared to traditional polymers [14–22]. Simulations can further aid
in the research studies of phase transition given the persistent advances at the level of
hardware and software, with traditional approaches at the molecular level being based on
the Molecular Dynamics (MD) or Monte Carlo (MC) algorithms [23–27].

The hard-sphere model is frequently used in the study of crystallization due to its
simplicity and athermal nature, despite the obvious disadvantage of lacking chemical
detail. Through molecular dynamics (MD) simulations, early and pioneering works have
reported the entropy-driven crystallization of systems of hard spheres [12,28] once the
melting point ϕM

monomers = 0.545 is reached [29] and given sufficient time for the observation
of the phenomenon [30,31]. For individual hard spheres, the crystal expected to be obtained
in experiments or simulations should be the face centered cubic (FCC), as it is slightly
more thermodynamically stable than the hexagonal close-packed (HCP) one [32–34]. How-
ever, extensive experimental [35–40], analytical and simulation [30,41–45] studies have
clearly demonstrated the difficulty of obtaining a perfect crystal. Thus, random hexagonal
close packing (RHCP) is almost always observed due to the small free energy of stacking
faults [46], while the more stable FCC structure appears after a very slow transition from the
RHCP morphology [47–50]. Therefore, crystal perfection in the form of pure FCC crystals
is rarely encountered in computer simulations under constant volume and starting from a
predominantly amorphous initial configuration [50–52].

The mechanism of the crystallization of hard colloidal polymers [52–60] differs sub-
stantially from that of traditional polymers, the latter as revealed in x-ray scattering studies
of short alkane chains [61–63], and in MD [64–67] or MC [54,68] simulations, including sim-
ulations with highly precise, all-atom interaction potentials [69–78]. Just as for monomeric
packings, off-lattice MC simulations have shown that random packings of fully flexible
linear chains of tangent hard spheres are able to crystallize at high volume fractions through
an entropy-driven mechanism, very similar to the one of monomeric analogs [52,55–57,79].
Extremely long simulations [52] have further shown the FCC polymorph to be the stable
one for fully flexible chains of tangent hard spheres. In shorter simulations, an RHCP phase
with a unique stacking direction [55–57] appears most often. In spite of the similarities to
monomeric counterparts, athermal polymer crystallization shows unique characteristics:
the critical volume fraction for the phase transition (melting point) for the fully flexible
(freely-jointed, FJ) chains of tangent hard spheres, ϕM

chains(FJ) (>0.56), is higher than the melt-
ing point of monomers. Monomeric systems present diverse crystal morphologies, ranging
between single FCC or HCP structures and close-stacked packings with random directions
where twin defects, associated with the formation of fivefold (FIV) symmetry structures,
kinetically frustrate crystallization [80,81]. However, both the FCC and RHCP crystals of
tangent hard-sphere chains are usually free of twin defects due to a conformational entropic
barrier [82]. It has been established that the phase transition and the ordered morphologies
of hard-sphere chains are affected insignificantly by chain length, but are sensitive to factors
such as gaps in bond lengths [58,83], the presence of surfaces/confinement [59,60,84] and
chain stiffness [85–88].

For semi-flexible polymers [89–92], the rigidity of the chains is generally implemented
in molecular simulations through bending [93–100] and/or torsional [99] potentials. A
common topic of study about the phase behavior of semi-flexible polymers is the ori-
entational (nematic) ordering of the chains. According to Onsager, thin and infinitely
long rigid rods undergo a transition from the isotropic to the nematic phase, which is
driven by entropy, resulting from the competition between translational and orientational
ordering [101]. Building on this, Bolhuis and Frenkel mapped out the complete phase
diagram of hard spherocylinders as a function of shape anisotropy [102]. The long-range,
nematic order in solutions of semi-flexible polymers depends on the size ratio of the
chain [103–105]. For tangent hard-sphere chains in the rod limit, the transition occurs at
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high concentrations, still lower than the solidification of the system [106,107]. Theories
have been developed [108–111] and studies have been conducted [112–117] under various
conditions on the isotropic-to-nematic transition of semi-flexible chains, as the effect on the
nematic order and the phase separation of different types of blends through experimental
studies [118–120] and computer simulations [117,121–124]. Nguyen et al. studied the effect
of chain stiffness and temperature on the competition between crystallization and glass for-
mation for unentangled semi-flexible polymer melts [85,86]. Shakirov and Paul studied the
crystallization in melts of short, semi-flexible hard-sphere chains employing Monte Carlo
simulations [87,88]. In their works, rod-like polymer melts undergo a first-order transition
at a density lower than a melt of hard-sphere monomers or flexible hard-sphere chains [88].
During crystallization, the orientational ordering (nematic) transition is accompanied by
a 2-D translational ordering on the plane perpendicular to the chains. These orderings
induce the formation of hexagonal crystal planes [89].

Although rod-like chains have been extensively researched in the literature, the cor-
responding body of work on semi-flexible chains with different bending angles is very
limited. Recent MD simulations, studying the jamming and solidification of semi-flexible
polymers employing the freely-rotating model varying the fixed bending angle, have re-
vealed the different mechanisms in solidification depending on the equilibrium bending
angle, θ0 [125,126].

The present manuscript analyzes the phase behavior of linear, semi-flexible chains
of tangent hard spheres, as a function of the equilibrium bending angle and packing
density. This is achieved through extensive Monte Carlo (MC) simulations using the Simu-
D simulator-descriptor [127], built around polymer-oriented algorithms and particularly
chain-connectivity-altering moves (CCAMs) [128,129]. Motivated by previous studies on
the crystallization of linear, fully flexible chains of hard spheres [55–59,130,131], we extend
the research through the inclusion of chain stiffness via a bending potential that depends
on a bending constant, kθ , and an equilibrium bending angle, θ0. The global order, at
the level of the chains, is quantified through the orientational (nematic) order parameter,
q. The local order, at the level of the monomers, is gauged through the Characteristic
Crystallographic Element (CCE) norm descriptor [132,133]. Compiling the results of all the
simulated systems, we present a phase diagram that reflects the combined effect of packing
density and chain stiffness (equilibrium bending angle) on the local and global order of the
semi-flexible systems.

This article is organized as follows: in Section 2 we describe the molecular model and
the simulated systems, and we briefly explain the descriptors to gauge the long-range order
and local structure; Section 3 presents the results on the phase behavior of the simulated
semi-flexible systems; finally, we summarize the main conclusions and discuss the current
efforts in Section 4.

2. Model and Methods
2.1. Molecular Model and Systems studied

Polymers are modeled as linear chains of identical hard spherical monomers with
a collision diameter σ, which is considered the characteristic length. The systems are
composed of Nat monomers distributed in Nch chains of average chain length of Nav (in
monomers). All of the systems consist of Nch = 100 chains of average chain length Nav = 12,
resulting in Nat = 1200. The chains present dispersity in their lengths following a uniform
distribution in the range N ∈ [6, 18] due to the presence of chain-connectivity-altering MC
moves (see below).

The non-overlapping condition of the hard monomers is adopted by employing the
Hard Sphere (HS) potential to describe all of the non-bonded interactions between the
monomers. According to the HS potential, the pair-wise energy, UHS

(
rij
)
, is determined by:

UHS
(
rij
)
=

{
0, rij ≥ σ

∞, rij < σ
(1)
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where rij is the distance between the centers of the monomers i and j. Periodic boundary
conditions are applied in all dimensions, corresponding to a bulk, unconstraint system.
For non-overlapping objects’ packing density (volume fraction), ϕ, is defined as the total
volume occupied by the monomers over the volume of the simulation cell. This is given by:

ϕ =
Vmon

Vcell
=

π

6
Nat

Vcell
σ3 (2)

where Vmon is the total volume occupied by the monomers and Vcell is the volume of the
cubic simulation cell.

Figure 1 shows a sketch of the bond geometry encountered in linear chains, consisting
of bond lengths, l, bending angles, θ, and torsion angles, φ. Bond lengths can fluctuate
uniformly in the interval l ∈ [σ, σ + dl], where dl is the maximum gap between successive
monomers of the chain. For all of the systems simulated here, dl = 6.5× 10−4 (in units
of σ), practically enforcing tangency between bonded monomers [58]. Chain stiffness is
introduced through a potential controlling the bending angle, θ, which is the angle formed
by two successive bond vectors (Figure 1). The bending potential is given by:

Ubend(θ) = kθ(θ − θ0)
2 (3)

where kθ is the bending constant and θ0 is the equilibrium bending angle. For fixed
bond lengths, setting kθ = 0 allows the simulation of freely-jointed chains while kθ → ∞
corresponds to freely-rotating chains. The equilibrium bending angle can vary from fully
extended (θ0 = 0◦) to fully compact (θ0 = 120◦) configurations of triplets. In this work,
we study five specific equilibrium bending angles: 0◦, 60◦, 90◦, 108◦, and 120◦, as they are
represented, schematically, in Figure 1. Torsion angles, φ, are allowed to fluctuate freely.
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Figure 1. (a) Scheme of the bond geometry of a linear sequence of four monomers, indicating bond
lengths, l, bending angles, θ, and torsion angles, φ. (b) Schematic representation of trimers having
equilibrium bending angles (θ0 ) studied in the present work.

The bending constant is set equal to kθ/kBT = 9 rad−2 (for simplicity in the con-
tinuation we will report it as kθ = 9) in all of the simulated systems, where kB and T
are the Boltzmann constant and temperature, respectively. The specific choice of the har-
monic constant was made considering the computational expediency and the fact that this
range of constraints leads to orientational ordering for rod-like chains, as demonstrated
in [87]. This degree of stiffness limits the deviations from the equilibrium bending angle
to, approximately, ±20◦, as shown in Figure 2 where, for comparison, we also present the
corresponding curves as obtained by increasing the bending constant to kθ = 50.



Polymers 2023, 15, 551 5 of 23Polymers 2023, 15, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Distribution of bending angle, θ, of a 100-chain system of Nav = 12 at 𝜑 = 0.30 in the bulk 
for 𝑘ఏ = 9 (solid lines) and 50 (dashed lines) and different equilibrium bending angles, 𝜃଴. 

2.2. Simulation Algorithm 
The simulations are carried out by means of the Simu-D simulator-descriptor suite 

[127]. The simulations are performed under constant volume and temperature (𝑇 = 1 𝑘஻⁄ ), 
employing Periodic Boundary Conditions (PBCs). The equilibrium simulations are per-
formed mainly at high packing densities in the range 𝜑 = ሾ0.54, 0.60ሿ. Additionally, sim-
ulations are also carried out at significantly lower volume fractions to study the long-
range orientational order, particularly for rod-like chains (𝜃଴ = 0°). The choice of volume 
fractions is driven by the fact that, in past studies, we showed that crystallization for sys-
tems of freely-jointed chains of tangent hard spheres occurs once a packing density of 𝜑 ≈ 
0.58 is reached while at 𝜑 = 0.56 polymer packings remain amorphous [55–57]. For com-
parison, monomeric analogs crystallize at 𝜑௠௢௡௢௠௘௥௦ெ = 0.545. In Figure S1 (see Supple-
mentary Materials), computer-generated configurations are visualized corresponding to 
dilute conditions (𝜑 = 0.10) for all of the semi-flexible systems studied here. 

The systems are generated and equilibrated by employing a mix of localized algo-
rithms and chain-connectivity-altering moves (CCAMs), as implemented in the Simu-D 
simulator [127]. The MC mix is composed of the following moves: reptation (10%); rota-
tion (10%); flip (34,8%); intermolecular reptation (25%); end-segment re-arrangement (or 
CCB as in Refs. [134,135]) (20%); simplified end-bridging (sEB) (0.1%); and simplified in-
tramolecular end-bridging (sIEB) (0.1%). The attempt probabilities of each MC move are 
reported in parentheses and remain unaltered for all of the systems. Due to the high pack-
ing densities, all of the local moves are executed according to a configurational bias (CB) 
pattern (see more technical explanations in Refs. [127,128]), with the number of trials per 
attempted move depending on the packing fraction, according to Table 1 of Ref. [128]. 

The initial configurations are generated at very dilute conditions (𝜑 = 0.001) as fully 
flexible systems. Under these conditions, the desired equilibrium bending angle, 𝜃଴, and 
bending constant, 𝑘ఏ are activated, followed by rapid constant-volume equilibration. The 
dilute systems of the semi-flexible chains are then shrunk until the desired volume frac-
tion is reached through isotropic volume compressions attempted at regular intervals 
[128]. The equilibrium, constant-volume simulations are conducted between a minimum 
of 5 × 10ଵଵ and a maximum of 8 × 10ଵଵ MC steps, depending on the system. The systems’ 
configurations (“frames” or “snapshots”) are recorded every 10଻ MC steps. 

  

Figure 2. Distribution of bending angle, θ, of a 100-chain system of Nav = 12 at ϕ = 0.30 in the bulk
for kθ = 9 (solid lines) and 50 (dashed lines) and different equilibrium bending angles, θ0.

2.2. Simulation Algorithm

The simulations are carried out by means of the Simu-D simulator-descriptor suite [127].
The simulations are performed under constant volume and temperature (T = 1/kB), em-
ploying Periodic Boundary Conditions (PBCs). The equilibrium simulations are performed
mainly at high packing densities in the range ϕ = [0.54, 0.60]. Additionally, simulations
are also carried out at significantly lower volume fractions to study the long-range orien-
tational order, particularly for rod-like chains (θ0 = 0◦). The choice of volume fractions
is driven by the fact that, in past studies, we showed that crystallization for systems of
freely-jointed chains of tangent hard spheres occurs once a packing density of ϕ ≈ 0.58 is
reached while at ϕ = 0.56 polymer packings remain amorphous [55–57]. For comparison,
monomeric analogs crystallize at ϕM

monomers = 0.545. In Figure S1 (see Supplementary Mate-
rials), computer-generated configurations are visualized corresponding to dilute conditions
(ϕ = 0.10) for all of the semi-flexible systems studied here.

The systems are generated and equilibrated by employing a mix of localized algo-
rithms and chain-connectivity-altering moves (CCAMs), as implemented in the Simu-D
simulator [127]. The MC mix is composed of the following moves: reptation (10%); rotation
(10%); flip (34,8%); intermolecular reptation (25%); end-segment re-arrangement (or CCB as
in Refs. [134,135]) (20%); simplified end-bridging (sEB) (0.1%); and simplified intramolecu-
lar end-bridging (sIEB) (0.1%). The attempt probabilities of each MC move are reported in
parentheses and remain unaltered for all of the systems. Due to the high packing densities,
all of the local moves are executed according to a configurational bias (CB) pattern (see
more technical explanations in Refs. [127,128]), with the number of trials per attempted
move depending on the packing fraction, according to Table 1 of Ref. [128].

The initial configurations are generated at very dilute conditions (ϕ = 0.001) as fully
flexible systems. Under these conditions, the desired equilibrium bending angle, θ0, and
bending constant, kθ are activated, followed by rapid constant-volume equilibration. The
dilute systems of the semi-flexible chains are then shrunk until the desired volume fraction
is reached through isotropic volume compressions attempted at regular intervals [128].
The equilibrium, constant-volume simulations are conducted between a minimum of
5× 1011 and a maximum of 8× 1011 MC steps, depending on the system. The systems’
configurations (“frames” or “snapshots”) are recorded every 107 MC steps.
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2.3. Global (Long-Range) Orientational Order

As we simulate semi-flexible chains, it is important to quantify the long-range ori-
entational order of the chains [101]. In the nematic order, the chains exhibit a long-range
orientation with their long axis aligned along a preferent direction, denominated nematic
director n. The isotropic-to-nematic transition is influenced by parameters such as packing
density [106,107] and ratio of chain size [103–105].

The chain orientational order is determined through averages of a second-order in-
variant [136]. The orientation of each molecule is defined by the unit vector u along the
long axis of the molecule. The long axis of each chain is determined by the inertia tensor I,
a second-order tensor calculated according to Equation (4), where N(j) is the number of
monomers of the chain j, mi is the mass of the monomer (considered here as unity), xi is the
coordinate vector of the monomer, xcm is the coordinate vector of the centre of mass of the
chain and δ is the second order isotropic tensor. The long axis of each chain corresponds to
the eigenvector, v3, of the lowest eigenvalue of the inertia tensor I so that the unit vector u
is calculated normalizing the eigenvector v3.

I =
N(j)

∑
i=1

mi

(
‖xi − xcm

σ
‖

2
δ− xixi

)
(4)

u =
v3

‖v3‖
(5)

As an average of all the molecular orientations, we define the second-order tensor Q
according to:

Q =
1

Nch

Nch

∑
i=1

uiui −
1
3

δ. (6)

The Q tensor is: (1) symmetric, and (2) traceless (TrQ = 0). These two properties reduce
the independent components of the second-order tensor from 9 to 5.

The tensor Q can be calculated for the different ideal phases (isotropic phase; prolate
mesogen, nematic mesophase; and oblate mesogen, nematic mesophase; for their schemes
see for example Figure 4 in [136]). For the isotropic phase, denoted here as “ISO”, the
molecules can present any random orientation with equal probability, so no orientation
is preferred. Thus, all components of the resulting matrix QISO are zero. In the perfectly
aligned prolate mesogen, the long axis of every molecule is aligned along a preferred
orientation leading to the nematic mesophase. In a coordinate system in which the preferred
orientation of the system is along the x-axis, the matrix representation of Q for the perfect
prolate mesogen, nematic mesophase, denoted here as “PRO”, takes the form:

QPRO =

 2
3 0 0
0 − 1

3 0
0 0 − 1

3

 (7)

In the oblate mesogen, nematic mesophase, it is the short axis of the molecules that
tends to be aligned with the nematic director n. In the same coordinate system, the matrix
representation of Q for the oblate mesogen, nematic mesophase, denoted here as “OBL”,
takes the form:

QOBL =

− 1
3 0 0

0 1
6 0

0 0 1
6

 (8)

In order to identify the similarities with these ideal cases, we diagonalize Q and use
its normalized eigenvalues as unit vectors of a new Cartesian coordinate system where
Q’ is diagonal and its diagonal elements are its eigenvalues (λ1, λ2, and λ3), ordered by
decreasing the absolute value. The eigenvector of the largest absolute eigenvalue λ1, in the
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case of a nematic mesophase (denoted here as “NEM”), would correspond to the preferred
orientation of the system or nematic director n.

A scalar order parameter q is obtained by comparing the diagonal tensor Q’ with the
corresponding tensor QPRO of a perfect prolate mesogen, nematic mesophase. This scalar q
represents the degree of alignment between the chains. In an isotropic system, where Q is
null, q→ 0. For the perfectly aligned prolate mesogen, nematic mesophase system, q = 1,
while q = −1/2 for the ideal oblate mesogen, nematic mesophase. The orientational order
parameter, thus, takes values in the range −1/2 ≤ q ≤ 1.

Q′ =

λ1 0 0
0 λ2 0
0 0 λ3

 = q

 2
3 0 0
0 − 1

3 0
0 0 − 1

3

 |λ1| > |λ2| ≥ |λ3| (9)

Accordingly, the long-range orientational order is characterized by the scalar orienta-
tional order parameter q and the nematic director n.

2.4. Local Order: Characteristic Crystallographic Element Norm

The metric used in this work to identify the disorder-order transition at the local
level and quantify the degree of crystallinity of the simulated systems is the Characteristic
Crystallographic Element (CCE) norm, which is explained in detail in Refs. [132,133]. The
CCE norm is integrated into the descriptor part of the Simu-D suite, which is also used for
the MC simulations [127].

The CCE norm descriptor gauges the crystallinity of an atomic or particulate system
in two (2D) or three (3D) dimensions by comparing the local environment around each
site with a set of ideal reference crystals under the main concept that each ideal crystal is
uniquely identified by a set of symmetry operations [137–140]. Therefore, for every site
i of a system, the CCE norm descriptor identifies the nearest neighbors and quantifies
the orientational and radial deviations of the “real” local environment with respect to the
“ideal” environment of each reference crystal. This comparison provides, for the given site i,
a CCE norm value with respect to each X reference crystal, εX

i . The closer the X-CCE norm
is to zero, the higher the similarity of the local environment to the respective reference
crystal X. Site i is identified as an X-type crystal when the calculated CCE norm is lower
than a critical threshold, εX

i ≤ εthres. In past studies, an empirical threshold of 0.245 was
determined for packings of non-overlapping spheres [56,132,133] in the bulk [55–58,80,81]
and under confinement [59,60]. Due to the strict concept behind the descriptor, the CCE
norm is highly discriminatory, so the value of a site cannot be simultaneously very low
for two different reference crystals. The current version of the CCE norm descriptor can
identify similarity with respect to the following crystals: hexagonal close packed (HCP);
face centered cubic (FCC); body centered cubic (BCC); and hexagonal (HEX) for 3D systems,
and triangular (TRI); square (SQU); and honeycomb (HON) for 2D systems. The fivefold
(FIV) and pentagonal (PEN) local symmetries can also be identified in three and two
dimensions, respectively. Sites that cannot be assigned to any of the previous reference
ideal environments are labeled as amorphous (AMO) or, more precisely, as “unidentified”.

The process explained before is repeated over all sites of the system for each reference
crystal. Once the CCE norm has been evaluated for every site and reference crystal, an
order parameter for each reference crystal X, SX (SX ∈ [0, 1]), can be calculated for the
snapshot as:

SX =

εthres∫
0

P
(

εX
)

dεX (10)

where P
(
εX) is the probability function of CCE-based norms of the reference crystal X.
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Additionally, a degree of crystallinity (or total crystallinity), τc, can be calculated as
the sum of the order parameters of all the reference crystals. For a bulk, 3D system, the
degree of crystallinity is calculated as:

τc =
4

∑
k=1

εthres∫
0

P
(

εX
)

dεX =
4

∑
k=1

Sk = SHCP + SFCC + SBCC + SHEX . (11)

In the present work, no appreciable population of sites with HEX or BCC similarity
was detected (SHEX, SBCC → 0). Thus, in the continuation, we consider only the HCP and
FCC crystals, as well as fivefold local symmetry (FIV).

3. Results

The phase behavior of polymer chains under the effect of the chain stiffness is the
main focus of this work, emphasizing the long-range, orientational (nematic) ordering and
the local structure.

Prior to the simulation data being analyzed in a post-processing step, a preliminary
visual inspection of the initial and resulting system configurations is performed. In the case
of rod-like chains (θ0 = 0◦), the visual inspection of the initial configurations, as presented
in Figure 3, suggests a transition from an isotropic (ϕ = 0.10 and 0.20) to a nematic phase
(ϕ = 0.30 and 0.50) with increasing packing density, i.e., the rod-like chains align in the
system along the common nematic director. This transition occurs at a packing density
that is significantly lower than for solidification, in perfect qualitative agreement with
past independent works on similar systems [101,106,107]. Figure S2 (see Supplementary
Materials) shows snapshots at the end of the simulation for all systems at ϕ= 0.60.
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with VMD visualization software [141]. Individual panels are also available as stand-alone, inter-
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the second-order tensor Q and the scalar order parameter q, as explained previously. As 
an example, Figure S3 (see Supplementary Materials) shows the evolution of the exponen-
tial moving average of q as a function of the MC steps for rod-like chains at different pack-
ing densities. The dependence of the nematic order parameter q on the packing density, 𝜑, is presented in Figure 4 for all of the semi-flexible systems under study (𝜃଴ = 0, 60, 90, 
108, and 120°), averaged over all frames of the equilibrated part of the simulation trajec-
tory. In line with Figure 3, the rod-like chains of average length Nav = 12 show a well-

Figure 3. Snapshots of the initial configurations for the 100-chains, Nav = 12, kθ = 9, θ0 = 0◦ system
showing at increasing packing densities. From left to right: ϕ = 0.10, 0.20, 0.30, and 0.50. Monomers
are colored according to the parent chain. For clarity, only 50 chains (half of the total population) are
shown. Chains are shown with the coordinates being fully unwrapped in space. Images created with
VMD visualization software [141]. Individual panels are also available as stand-alone, interactive,
3-D images (in Supplementary Materials).

3.1. Global Orientational Order

Following the preliminary visual inspection of the initial configurations for the rod-like
chains (θ0 = 0◦), the long-range, orientational (nematic) ordering is analyzed through the
second-order tensor Q and the scalar order parameter q, as explained previously. As an
example, Figure S3 (see Supplementary Materials) shows the evolution of the exponential
moving average of q as a function of the MC steps for rod-like chains at different packing
densities. The dependence of the nematic order parameter q on the packing density, ϕ, is
presented in Figure 4 for all of the semi-flexible systems under study (θ0 = 0, 60, 90, 108,
and 120◦), averaged over all frames of the equilibrated part of the simulation trajectory.
In line with Figure 3, the rod-like chains of average length Nav = 12 show a well-defined
isotropic-nematic transition as the concentration increases. This transition takes place in the
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interval 0.15 ≤ ϕ ≤ 0.20 and very closely resembles the prediction of Onsager’s theory. At
higher volume fractions, the chains form a prolate mesogen, nematic mesophase (PRO), as
seen by the monotonically increasing value of q. A perfect PRO phase (q→ 1) is established
at packing densities approximately equal to ϕ = 0.45. For the average length studied here
(Nav = 12), the transition from the isotropic to the nematic phase, ISO→ PRO (i.e., nematic
mesophase with prolate mesogens) for rod-like athermal chains occurs at significantly
lower packing densities (ϕnem ≈ 0.20) than the freezing (ϕF

monomers ≈ 0.495) and melting
(ϕM

monomers ≈ 0.545) points of monomeric hard spheres.
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Figure 4. Evolution of the orientational (nematic) order parameter, q, as a function of the packing
density, ϕ, at different equilibrium bending angles, θ0. The freezing, ϕF

monomers ≈ 0.495, and melting,
ϕM

monomers ≈ 0.545, points of monomeric hard spheres are also shown as dashed vertical lines for
comparison.

In addition to this expected isotropic-to-nematic (ISO→ PRO) transition exhibited by
the rod-like chains, a nematic mesophase with oblate mesogens, OBL, (q < 0) appears for
semi-flexible chains with θ0 = 90◦. In contrast to the long-range orientational order of the
rod-like chains, the isotropic-to-oblate, ISO→ OBL, transition takes place at ϕobl ≈ 0.57,
which is higher than the melting point of HS.

For the remaining values of the equilibrium bending angles, each chain system remains
in the isotropic phase in the whole concentration range. Still, a small peak is produced at
very high packing densities that can be associated with chains primarily of θ0 = 60◦, taking
some preferred directions, corresponding to the values of the nematic order parameter
of around q ≈ 0.15. This can be explained as the establishment of the FCC and HCP
crystallites (see later discussion on local order) enforces specific bending angles which
are compatible with these crystals. If such bending angles are not available through intra-
chain arrangements, then the only other option is inter-chains ones, thus inducing partial
alignment among the chains at a local level.

In the case of semi-flexible chains with θ0 = 90◦, the left panel of Figure 5 hosts the
evolution of the exponential running average of the orientational order parameter, q, as a
function of the MC steps for the packing densities where a certain degree of nematic order
was observed in Figure 4. A tendency for the formation of an oblate mesogen, nematic
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mesophase (OBL) is observed after enough simulation time. The degree of ordering of the
oblate mesogens increases with the volume fraction, as indicated by q approaching the ideal
value −1/2. Compared to the crystallization at the level of monomers (see below), the ISO
→ OBL transition for θ0 = 90◦ takes places with an equal or even slower rate. We should
note here that the “rate” used in the present manuscript has no physical meaning and it
corresponds to the number of MC steps required to observe the phase transition. Thus,
the nematic phase for the semi-flexible chains with θ0 = 90◦ practically coincides with
crystallization, i.e., self-organization at the local and global levels appears synchronized.
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3.2. Local Order: Crystal Nucleation and Growth 

Figure 5. (Left) Exponential moving average of the orientational order parameter, q, as a function
of MC steps for the 100-chains Nav = 12 semi-flexible system with bending constant kθ = 9 and
equilibrium bending angle θ0 = 90◦ at different packing densities, ϕ. (Right) Visual representations
at ϕ = 0.59 showing all 100 chains (top) and 10 randomly selected chains (bottom) with coordinates
of the monomers being fully unwrapped in space. Monomers are colored according to the parent
chain. Images created with VMD visualization software [141]. Individual panels are also available as
stand-alone, interactive, 3-D images (in Supplementary Materials).

The right panels of Figure 5 show the semi-flexible chains with θ0 = 90◦ at ϕ = 0.59
at the end of the MC simulation, once the system has reached the OBL state. The top
snapshot presents the unwrapped representation of the semi-flexible chains of the complete
system. As in the previous snapshots, the monomers are color-coded according to the
parent chain. For clarity, the bottom snapshot contains only 10 randomly selected chains of
the same system. The semi-flexible chains tend to form flat layers, interrupted occasionally
by right-angle jumps between planes, consistent with the employed constraint of θ0 = 90◦.
These flat chain configurations have, in general, a common behavior that further explains
the OBL phase in Figure 4 and the left panel of Figure 5.
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3.2. Local Order: Crystal Nucleation and Growth

The local structure is gauged through the CCE norm descriptor [132,133]. For consis-
tency with our past studies on the flexible chains of hard spheres, we employ a threshold
of εthres = 0.245 to label a site as X-type, where X is the reference crystal or local symmetry.
In the present work, given that no appreciable population of BCC or HEX sites is detected
in any of the simulated systems, X corresponds to HCP, FCC, and FIV. In the continuation,
and throughout the manuscript, the corresponding colors to be used for the representation
of the HCP, FCC, and FIV sites (in snapshots) and curves (in figures) are blue, red, and
green, respectively. The results from the semi-flexible systems are also compared with the
ones of fully flexible (freely-jointed) chains of tangent hard spheres simulated and analyzed
through the Simu-D software under the same conditions of volume fraction and average
chain length [55–57,130,131].

Figure 6 presents the CCE-based order parameters for HCP (SHCP), FCC (SFCC), and
FIV (SFIV), along with the degree of crystallinity, τc, as a function of the MC steps at a
packing density ϕ = 0.59 for all of the semi-flexible systems, including the fully flexible one
as reference. This volume fraction is higher than the melting transition of the freely-jointed
hard-sphere chains, as established in [52,55–57,79]. An inspection of all of the panels shows
clearly that the mechanism of the phase transition, here in the form of crystallization, is
very similar and rather independent of the equilibrium bending angle. The initial packings
are amorphous (AMO) as the fraction of sites with non-ordered local structure is vastly
dominant: the percentage of close packed sites does not exceed 5% and, in most cases, the
FIV population is commensurate or even exceeds the combined HCP + FCC one. This
initial state of the AMO athermal chain packings agrees with the past works on dense
monomeric and polymer assemblies [57,60,80–82]. Out of all of the systems, the rod-like
one is characterized by the lowest population of FIV sites at the beginning, as FIV appears
to be incompatible with the perfect nematic ordering exhibited by the chains at this range
of volume fractions.

Once crystallites of the HCP and FCC characters start growing, at almost identical
rates, the fraction of the FIV-like sites decreases gradually until it practically disappears. The
structural competition, observed here for all of the semi-flexible chain systems, between
the FIV local symmetry and crystallization in the form of the HCP and FCC sites is in
perfect match with identical observations in simulations of fully flexible [52,55–60] and
monomeric HS systems [80,81], including bead-spring chains under quenching [85,142].
Once the population of FIV sites is eliminated, a trend manifestly valid for all of the
simulated packings, the relative fractions of the HCP and FCC crystals undergo a sharp
variation, which is followed by the establishment of the final, stable ordered structures of
the crystalline (CRY) character. The average degree of crystallinity in the final CRY phase
ranges between 0.65 and 0.85, with the lowest and highest values corresponding to the
fully flexible and rod-like chains, respectively. At ϕ = 0.59, as seen in Figure 6, all of the
crystals contain appreciable fractions of FCC and HCP sites, and no perfection is registered.
Accordingly, one expects that the formed morphologies correspond to fivefold-free but
defect-ridden RHCP crystals.

Figure 7 shows, for all of the systems whose phase transition is presented in Figure 6,
the snapshots at the beginning (top panels) and the end (bottom panels) of the corre-
sponding MC simulations. As already quantified by the data in Figure 6, all of the initial
configurations show amorphous structures with a remarkable population of FIV-like sites.
At the end of the MC simulations, the crystalline phase of every system shows a stable
configuration of mixed HCP/FCC structures, being defect-ridden and fivefold-free, exactly
as expected by the fractions of sites in Figure 6. In their majority, the semi-flexible chain
packings form RHCP structures of alternating layers of unique FCC and HCP character
with a single stacking direction, as in the freely-jointed systems. Additionally, the semi-
flexible systems can also form crystal structures with multiple, random stacking directions,
as it is observed for the system with θ0 = 90◦.
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Figure 6. Crystal nucleation and growth, as quantified by the evolution of the HCP, SHCP, and FCC,
SFCC, order parameters ((left) y-axis), and fraction of fivefold-like sites, SFIV ((right) y-axis), as a
function of MC steps for 100-chains Nav = 12 systems of freely-jointed chains and semi-flexible chains
with bending constant kθ = 9 and equilibrium bending angle θ0 = 0, 60, 90, 108, and 120◦ at a packing
density ϕ = 0.59.
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regime of defects in the form of amorphous (AMO) sites. Figure S4 (see Supplementary 
Materials) hosts the CCE-based snapshots of the final configuration for the corresponding 
systems. 

While perfection in the form of an FCC crystal has been reported very recently from 
extremely long simulations on freely-jointed chains of hard spheres [52], it is the first time 
that an almost perfect HCP crystal, made of hard-sphere chains, in extended rod-like con-
formations, is observed. The easiness with which the crystal perfection is observed could 

Figure 7. Snapshots of the initial (top) and final (bottom) configuration of the MC simulations for the
100-chains Nav = 12 systems at ϕ = 0.59 of (from left to right) freely-jointed chains and semiflexible
chains (kθ = 9 ) with equilibrium bending angle θ0 = 0, 60, 90, 108, and 120◦. Monomers are
color-coded according to CCE norm. Blue, red, cyan, purple, and green correspond to HCP-, FCC-,
BCC, HEX-, and FIV-like sites, respectively. Amorphous (AMO) sites are colored in yellow and are
shown with reduced dimensions for visual clarity. Individual panels are also available as stand-alone,
interactive, 3-D images (in Supplementary Materials).

The formation of RHCP crystals of mixed HCP/FCC structures, with unique or
multiple stacking directions, is also observed for all of the equilibrium bending angles and
packing densities studied where crystallization takes place.

Although almost all of the semi-flexible systems crystallize in RHCP crystals of mixed
HCP/FCC layers, two important exceptions exist for the rod-like chains (θ0 = 0◦) at
ϕ = 0.58 and 0.60. Figure 8 shows the CCE-based local order parameter, SX , and the total
crystallinity, τc, as a function of the MC steps, while the corresponding snapshots at various
simulation instances can be found in Figure 9. Both systems show very similar trends: after
a very short initial period, characterized by the rapid increase in the HCP and FCC sites
and the parallel reduction of the FIV population, the growth rates stop being the same
and one type grows in favor of the other. At ϕ = 0.58, the resulting morphology is an
almost perfect FCC crystal (τc = 0.83, SFCC = 0.83), while the opposite occurs at ϕ = 0.60,
where a (less) perfect HCP crystal emanates (τc = 0.77, SHCP = 0.74). In the case of the
HCP crystal at ϕ = 0.60, the resulting structure is not as stable as that of the FCC crystal,
alternating between the almost perfect HCP crystal ( SFCC → 0) and an HCP crystal with a
small population of FCC-like sites (SFCC ≈ 0.1). For the latter case, when FCC impurities
appear in the HCP crystal, these are produced on the border of the crystal with a regime of
defects in the form of amorphous (AMO) sites. Figure S4 (see Supplementary Materials)
hosts the CCE-based snapshots of the final configuration for the corresponding systems.

While perfection in the form of an FCC crystal has been reported very recently from
extremely long simulations on freely-jointed chains of hard spheres [52], it is the first
time that an almost perfect HCP crystal, made of hard-sphere chains, in extended rod-like
conformations, is observed. The easiness with which the crystal perfection is observed
could be related to the nematic ordering exhibited by the rod-like chains. This trend,
particularly compared to the fully flexible model, will be explored in more detail in future
studies.
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Figure 8. CCE norm order parameter, SX , as a function of MC steps for the 100-chains Nav = 12
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at ϕ = 0.58 ((left panel)) and 0.60 ((right panel)). Inset corresponds to the early part of the MC
trajectory ((left): 10 × 109 and (right): 35 × 109 MC steps). Dashed black line corresponds to the
degree of crystallinity, τc.
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Figure 9. Computer-generated representations of the crystal growth of the 100-chains Nav = 12 semi-
flexible system chains with bending constant kθ = 9 and equilibrium bending angle θ0 = 0◦ at (top)
ϕ = 0.58 after (from left to right) 1, 25, 60 and 100× 108 MC steps, and at (bottom) ϕ = 0.60 after (from
left to right) 1, 240, 300 and 350× 108 MC steps. Monomers are color-coded according to CCE norm.
Blue, red, and green correspond to HCP-, FCC-, and FIV-like sites, respectively. Amorphous (AMO)
sites are colored yellow. For visual clarity, monomers are shown with reduced dimensions. Individual
panels are also available as stand-alone, interactive, 3-D images (in Supplementary Materials).

3.3. Local Order: Total Crystallinity

From the local order parameters SX , the total degree of crystallinity, τc, can be gauged
for all the simulated semi-flexible systems. As in the previous analysis, the present results
are compared against the ones of fully flexible (freely-jointed) analogs. Figure S5 (see
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Supplementary Materials) presents the evolution of the degree of crystallinity as a function
of the MC steps at different packing densities, ϕ.

Based on these results and utilizing the value of the total crystallinity as established
in the final, stable part of the MC simulation, we can further extract the one-dimensional
phase diagram of local order, quantified by the degree of crystallinity, as a function of the
packing density and equilibrium bending angle (Figure 10). It is worth keeping in mind
here that the melting point for monomers is ϕM

monomers = 0.545, while freely-jointed chains of
tangent hard spheres crystallize at higher volume fractions, ϕM

chains (>0.56). Some important
conclusions can be drawn from the diagram. First, all of the semi-flexible chain packings
eventually crystallize, independently of the equilibrium angle. Second, the equilibrium
angle profoundly affects the onset of the phase transition of the systems. For example,
the rod-like chains present semi-crystalline and crystalline phases at volume fractions
significantly lower than the melting point for freely-jointed chains, even lower than the
one for monomeric hard spheres, due to the effect of the nematic (global) ordering that
precedes the local order (as will be demonstrated in the continuation). On the other hand,
chains with θ0 = 60◦ crystallize later than all of the other systems, as at ϕ = 0.57 no
crystal nucleation and growth is observed, even after 7× 1011 MC steps. Finally, based
on the above, the melting transition shows the trend: ϕM

chains(0
◦) < ϕM

monomers = 0.545 <

ϕM
chains(120◦) < ϕM

chains(108◦) < ϕM
chains(90◦) = ϕM

chains(FJ) < ϕM
chains(60◦).
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Figure 10. Degree of crystallinity, τc, as a function of packing density, ϕ, and equilibrium bending
angle, θ0, for 100-chains Nav = 12 systems of semi-flexible chains with bending constant kθ = 9
(filled symbols) and freely-jointed chains (open square). Dashed lines connecting points are used as
visual support. Vertical dashed line corresponds to the melting transition (ϕM

monomers ≈ 0.545 ) for
monomeric hard spheres [29].

In general, with the sole exception of the rod-like chains, the presence of constraints,
related to bond geometry in the form of bonds or bending angles, increases the melting
transition with respect to the monomeric analogs. Nevertheless, it is quite surprising that
the systems with obtuse bending angles (θ0 = 120 and 108◦) crystallize earlier, and the
right angle (θ0 = 90◦) at a very similar volume fraction as the fully flexible chains, which
are completely free of bending constraints. Obtuse angles are favored at high volume
fractions as they minimize the local volume compared to acute ones. However, one should
further consider the fact that only specific geometric arrangements of polymer chains are
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compatible with the sites of ideal FCC and HCP crystals. For example, the FCC and HCP
share the bending angles of 0, 60, 90, and 120◦, while the angles at 33.5 and 70.5◦ exist
exclusively on the HCP crystal [52]. The lack of bending angles compatible with these
crystals would require the adjacent sites to be covered by monomers belonging to other
chains, imposing specific arrangements at the intermolecular level.

The phase behavior at the local (CCE-based crystallinity, τc) and global (nematic
orientational order parameter, q) levels as a function of the density for rod-like and right-
angle chains is presented in Figure 11. As was explained previously, and based on the data
of Figure 4, the rod-like chains present an isotropic-nematic transition at ϕnem ≈ 0.20, a
volume fraction significantly lower than the freezing point for monomeric hard spheres
(ϕF

monomers = 0.494), in accordance with the trends presented in [106,107]. At volume
fractions close to the freezing point, the rod-like systems reach a practically perfect PRO
phase. According to Shakirov and Paul [87], the rod-like chains self-arrange into a 2D
hexagonal crystal structure in the plane perpendicular to the nematic director at a volume
fraction ϕ = 0.47, driven by 2D translational entropy. Thus, those 2D hexagonal crystal
structures evolve into a 3D semi-crystalline phase of RHCP structures with the increase
in concentration in the range between the freezing and melting point for monomeric hard
spheres. After reaching the melting point for monomeric hard spheres, the nematic systems
start to crystallize in the HCP, FCC, or mixed HCP/FCC structures, maintaining the nematic
order. Thus, rod-like systems pack at high densities into Nematic Close Packed (NCP)
structures, as was observed by independent researchers through MD simulations [85,86].
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Figure 11. Orientational order parameter, q ((left) y-axis, blue color), and crystallinity, τc ((right)
y-axis, red color), as a function of packing density, ϕ, for 100-chains Nav = 12 systems of semi-flexible
chains with bending constant kθ = 9 and equilibrium bending angle θ0 = 0◦ (left) and θ0 = 90◦

(right). Dashed lines connecting points are used as visual support. Vertical dashed lines correspond
to the freezing (ϕF

monomers ≈ 0.494 ) and melting (ϕM
monomers = 0.545 ) transition for monomeric hard

spheres [29].

Based on the local and global phase behavior, the one-dimensional diagram as a
function of the packing density can be split into three distinct regions, marked by XX-
YY, where the first index XX corresponds to the local structure (XX = AMO or CRY) and
the second index YY to the global structure (YY = ISO, PRO or OBL). Accordingly, for
the rod-like chains studied here (Nav = 12, kθ = 9), we have the following approximate
domains of phase behavior (left panel of Figure 11): (i) AMO-ISO (ϕ ≤ 0.15), where
the system is amorphous at the local level and isotropic at the global; (ii) AMO-PRO
(0.20 ≤ ϕ ≤ 0.45), where the packing is amorphous locally and nematic globally; and (iii)
CRY-PRO (0.50 ≤ ϕ), where the system shows crystallinity in the form of HCP and FCC
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close packed morphologies of varied levels of perfection, and perfect nematic ordering at
the global orientational level. Comparing the local and global trends, a delay is evident as
the local order is established at volume fractions significantly higher than the ones for the
ISO→ PRO transition.

In the case of the right-angle chains (θ0 = 90◦), the phase behavior is quite different
compared to the rod-like chains, as seen in the right panel of Figure 11. First, we should
note that the small decrease in the long-range orientational order can be attributed to
higher statistical uncertainty as the higher the packing density, and the closer to jamming,
the more difficult the sampling, even when such advanced MC algorithms are employed.
Accordingly, significantly longer simulations are required and the statistical uncertainty is
higher. The right-angle systems do not crystallize until after they reach volume fractions
higher than the melting point for monomeric hard spheres (ϕM

monomers = 0.545). Then,
the ISO → OBL transition occurs simultaneously to the crystal nucleation and growth.
The formation of RHCP structures requires a semi-nematic OBL phase for the right-angle
systems as the right-angle chain exists but is not dominant in the FCC and HCP crystals.
Accordingly, for their creation, specific chain alignments are required. As a result, the
local and global orders are simultaneously established, and no delay is observed. The
phase diagram consists of only two regimes: (i) AMO-ISO (ϕ ≤ 0.56), where the system is
amorphous at the local level and isotropic at the global level; and (ii) CRY-OBL (ϕ > 0.56),
where the system shows RHCP morphologies and a nematic order of oblate mesogens.

4. Discussion and Conclusions

We present the results from extensive Monte Carlo simulations on the phase behavior
of semi-flexible chains of tangent hard spheres as a function of the packing density and
equilibrium bending angle while fixing the temperature, spring bending constant, and
average chain length. The local structure is quantified through the Characteristic Crystallo-
graphic Element (CCE) norm, while the global structure is gauged through the nematic
order parameter. A rich one-dimensional phase diagram as a function of packing density is
identified where chains crystallize in close-packed morphologies, including random hexag-
onal close (RHCP) ones of single or multiple stacking directions, or in almost perfect HCP
and FCC crystals in the case of rod-like chains. The analysis of the long-range orientational
tensor reveals the formation of prolate mesogen, nematic mesophase (PRO) for rod-like
chains at rather low volume fractions and of oblate mesogen, nematic mesophase (OBL) at
high packing densities. Although all of the systems of semi-flexible chains crystallize, the
equilibrium bending angle significantly affects the melting point. While equilibrium angles
of 108◦ and 120◦ degrees favor crystallization compared to the freely-jointed model, chains
with 90◦ show a behavior that almost coincides with the fully flexible chains, and the acute
angle of 60◦ hinders crystallization, enforcing nucleation and growth to take place at higher
concentrations.

In particular, for rod-like chains, three distinct regimes can be identified in the one-
dimensional phase diagram, where a delay is observed between local and global self-
organization: (i) AMO-ISO (ϕ ≤ 0.15), where the system is amorphous at the local level and
isotropic at the global; (ii) AMO-PRO 0.20 ≤ ϕ ≤ 0.45), where the packing is amorphous
locally and nematic globally; and (iii) CRY-PRO (0.50 ≤ ϕ), where the system shows
crystallinity in the form of HCP and FCC close packed morphologies of varied levels
of perfection and perfect nematic ordering at the global orientational level. Right-angle
systems show a synchronous establishment of long-range nematic orientational order and
formation of RHCP crystallites, thus splitting the behavior into two distinct regimes: (i)
AMO-ISO (ϕ ≤ 0.56), where the system is amorphous at the local level and isotropic at the
global level; and (ii) CRY-OBL (ϕ > 0.56), where the system is crystalline at the local level
and shows a nematic mesophase of oblate mesogens at the long-range.

The present simulations are currently expanded to treat semi-flexible chains of tangent
hard spheres in composites with nanofillers, under confinement, and in mixtures with
different species in the form of linear chains and monomeric counterparts.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym15030551/s1, Figure S1: Snapshots of systems of semi-flexible chains of tangent hard
spheres (Nch = 100, N = 12) at a packing density ϕ = 0.10 with a bending constant kθ = 9 and different
equilibrium bending angles, θ0; Figure S2: Snapshots of the final configurations from MC simulations
on semi-flexible chains of hard spheres at ϕ = 0.60 and different equilibrium bending angles, θ0;
Figure S3: Exponential moving average of the orientational order parameter, q, as a function of MC
steps for 100-chains Nav = 12 semi-flexible system with bending constant and equilibrium bending
angle θ0 = 0◦ at different packing densities, ϕ; Figure S4: Final configuration for the 100-chains Nav =
12 semi-flexible system chains with bending constant kθ = 9 and equilibrium bending angle θ0 = 0◦

at ϕ = 0.58 and 0.60; Figure S5: Degree of crystallinity, τc, as a function of MC steps at different
packing densities, ϕ.
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The following abbreviations are used throughout the manuscript:
2D Two dimensions
3D Three dimensions
AMO Amorphous
BCC Body Centered Cubic
CB Configurational Bias
CCAM Chain-Connectivity-Altering Move
CCB End-segment re-arrangement move
CCE Characteristic Crystallographic Element (norm)
FCC Face Centered Cubic
FIV Fivefold
FJ Freely-Jointed
HCP Hexagonal Close Packed
HEX Hexagonal
HON Honeycomb
HS Hard Sphere
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ISO Isotropic phase
MC Monte Carlo
MD Molecular Dynamics
NCP Nematic Close Packed
NEM Nematic mesophase
OBL Oblate mesogen, Nematic mesophase
PBC Periodic Boundary Condition
PEN Pentagonal
PRO Prolate mesogen, Nematic mesophase
RHCP Random Hexagonal Close Packing
SQU Square
TRI Triangular
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