Skip to main content
. 2023 Jan 19;23(3):1152. doi: 10.3390/s23031152
Algorithm 1. Sampling. number of data per class is greater than or equal to the average
client executes:
Input
nK, r round index, δ oversampling exponent
Output
nK
1: tk1L𝓁Lnk𝓁×eδr 
2: repeat
3: oversampling for Dk
4: until nk𝓁  tk, 𝓁[1,L]
5: return nK
server executes:
Input
   S selected client set
Output
δ
1: if kSk(𝓁Lnk𝓁|Dk|)kSk|Dk|>θover //calculate oversample data rate
2: δδ+Δ
3: return δ