Skip to main content
. 2023 Jan 27;28(3):1245. doi: 10.3390/molecules28031245

Table 3.

Summary of the enzymatic modification of steviol glycosides using CGTases.

Enzyme Source Glycosyl Donor Glycosyl Acceptor pH Temperature (°C) Reaction Time Reaction Type Stev Conversion (%) Reb A Conversion (%) Reference
Bacillus macerans INMIA-BIO-4 m, Bacillus circulans INMIA-BIO-5 m, Bacillus stearothermophilus INMIA-B-4006, Bacillus alcalophilus INMIA-VA-4229, Bacillus halophilus INMIA-BIO-12N Cyclodextrin Stev 6.5–7.5 45, 32 20 h Conventional ND ND [30]
Bacillus sp. BL-12 β-CGTase Maltodextrin Stev 8.5 40 12 h Conventional 76 ND [19]
Bacillus firmus β-CGTase β-cyclodextrin Stev 1–11 10–80 1 min Microwave reactor 80 W 70 ND [5]
Thermoanaerobacter Toruzyme® 3.0 L CGTase Cornstarch Stev 5–6 60 3 h Conventional 77.11 ND [23]
T. aerobacter Toruzyme® 3.0 L CGTase, Bacillus subtilis α-amylase Cyclodextrins and starches Stev - - 5 h Conventional 80 ND [29]
Paenibacillus sp. CGMCC 5316 CGTase Soluble starch Stev - 37 24 h Conventional 85.6 ND [28]
T. aerobacter Toruzyme® 3.0 L CGTase Gelatinized cornstarch Stev 6–8 60 3 min Microwave reactor 50 W 61.2 ND [24]
Trichoderma viridae cellulase Onozuka R-10 Soluble starch, sucrose, lactose, glucose, β-cyclodextrin Stevia leaf 4.6 50 10 h Conventional ND ND [31]
Bacillus licheniformis DSM 13 CGTase Sucrose Plant extract 3–9 14–45 16 h Conventional 70–80 ND [13]
A. oshimensis CGMCC 23164 CGTase-13 Soluble starch Steviol glycosides - 40 18 h Conventional 86.1 90.8 This study