Skip to main content
. 2023 Jan 20;23(3):1193. doi: 10.3390/s23031193

Table 3.

Machine learning models’ settings.

Models Parameters Models Parameters
NB useKernelEstimator: False
useSupervisedDiscretization: True
RotF classifier: RF
numberOfGroups: True
projectionFilter: PrincipalComponents
LR ridge = 108
useConjugateGradientDescent: True
J48 reducedErrorPruning: False
savelnstanceData: True
useMDLCorrection: True, subtreeRaising: True
binarySplits = True, collapseTree = True
MLP learning rate = 0.1
momentum = 0.2
training time = 200
Stacking classifiers: RF and NB
metaClassifier: LR
KNN K=3
Search Algorithm: LinearNNSearch
with Euclidean
cross-validate = True
Voting classifiers: RF and NB
combinationRule: average
of probabilities
RF breakTiesRadomly: True
numIterations = 500
storeOutOfBagPredictions: True
Bagging classifiers: RF
printClassifiers: True
storeOutOfBagPredictions: True