Skip to main content
. 2023 Jan 20;23(3):1193. doi: 10.3390/s23031193

Table 4.

Performance evaluation of ML models in terms of accuracy, precision, recall and AUC metrics.

Accuracy Precision (CAD class) Recall (CAD Class) AUC
No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE
NB 0.700 0.906 0.336 0.973 0.318 0.835 0.700 0.941
LR 0.754 0.779 0.645 0.710 0.088 0.762 0.729 0.793
MLP 0.730 0.798 0.355 0.742 0.146 0.801 0.661 0.833
3-NN 0.722 0.796 0.311 0.760 0.140 0.867 0.585 0.854
RF 0.748 0.855 0.493 0.844 0.063 0.871 0.693 0.931
RotF 0.751 0.845 0.625 0.827 0.054 0.872 0.713 0.925
J48 0.714 0.787 0.268 0.777 0.205 0.804 0.636 0.857
Stacking 0.747 0.909 0.482 0.967 0.059 0.876 0.698 0.961
Bagging 0.748 0.843 0.500 0.827 0.045 0.866 0.702 0.926
Voting 0.787 0.908 0.367 0.960 0.187 0.852 0.702 0.958