Skip to main content
. 2023 Feb 2;23(3):1650. doi: 10.3390/s23031650

Table 2.

Quantitative results with all variants of Monodepth2 [3] and other self-supervised methods on the KITTI 2015 dataset.

Method Train Input Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253
AdaDepth 2018 [10] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Kuznietsov 2017 [33] DS 0.113 0.741 4.621 0.189 0.862 0.96 0.986
DVSO 2018 [34] D*S 0.097 0.734 4.442 0.187 0.888 0.958 0.98
SVSM FT 2018 [15] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo 2018 [32] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986
DORN 2018 [35] D 0.072 0.307 2.727 0.12 0.932 0.984 0.994
Zhou 2017 [28] M 0.183 1.595 6.709 0.27 0.734 0.902 0.959
Yang 2018 [7] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian 2018 [36] M 0.163 1.24 6.22 0.25 0.762 0.916 0.968
GeoNet 2018 [37] M 0.149 1.06 5.567 0.226 0.796 0.935 0.975
DDVO 2018 [29] M 0.151 1.257 5.583 0.228 0.81 0.936 0.974
Ranjan 2019 [38] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ 2020 [39] M 0.141 1.029 5.35 0.216 0.816 0.941 0.976
Struct2depth 2019 [40] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 w/o pretraining 2019 [3] M 0.132 1.044 5.142 0.21 0.845 0.948 0.977
Monodepth2 (640 × 192), 2019 [3] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Monodepth2 (1024 × 320), 2019 [3] M 0.115 0.882 4.701 0.19 0.879 0.961 0.982
BTS ResNet50, 2019 [11] M 0.061 0.261 2.834 0.099 0.954 0.992 0.998
Garg 2016 [41] S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Monodepth R50 2017 [6] S 0.133 1.142 5.533 0.23 0.83 0.936 0.97
StrAT 2018 [42] S 0.128 1.019 5.403 0.227 0.827 0.935 0.971
3Net (VGG), 2018 [43] S 0.119 1.201 5.888 0.208 0.844 0.941 0.978
SuperDepth & PP, 2019 [44] (1024 × 382) S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 w/o pretraining 2019 [3] S 0.13 1.144 5.485 0.232 0.831 0.932 0.968
Monodepth2 (640 × 192), 2019 [3] S 0.109 0.873 4.96 0.209 0.864 0.948 0.975
Monodepth2 (1024 × 320) 2019 [3] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
Monodepth2 w/o pretraining, 2019 [3] MS 0.127 1.031 5.266 0.221 0.836 0.943 0.974
Monodepth2 (640 × 192), 2019 [3] MS 0.106 0.818 4.75 0.196 0.874 0.957 0.979
Monodepth2 (1024 × 320), 2019 [3] MS 0.106 0.806 4.63 0.193 0.876 0.958 0.98
Ours w/o pretraining (640 × 192) S 0.083 0.768 4.467 0.185 0.911 0.959 0.977
Ours (640 × 192) S 0.080 0.747 4.346 0.181 0.918 0.961 0.978
Ours (1024 × 320) S 0.077 0.723 4.233 0.179 0.922 0.961 0.978
Ours (1024 × 320) + PP S 0.075 0.700 4.196 0.176 0.924 0.963 0.979