Table 2.
Quantitative results with all variants of Monodepth2 [3] and other self-supervised methods on the KITTI 2015 dataset.
| Method | Train Input | Abs Rel | Sq Rel | RMSE | RMSE log | δ < 1.25 | δ < 1.252 | δ < 1.253 |
|---|---|---|---|---|---|---|---|---|
| AdaDepth 2018 [10] | D* | 0.167 | 1.257 | 5.578 | 0.237 | 0.771 | 0.922 | 0.971 |
| Kuznietsov 2017 [33] | DS | 0.113 | 0.741 | 4.621 | 0.189 | 0.862 | 0.96 | 0.986 |
| DVSO 2018 [34] | D*S | 0.097 | 0.734 | 4.442 | 0.187 | 0.888 | 0.958 | 0.98 |
| SVSM FT 2018 [15] | DS | 0.094 | 0.626 | 4.252 | 0.177 | 0.891 | 0.965 | 0.984 |
| Guo 2018 [32] | DS | 0.096 | 0.641 | 4.095 | 0.168 | 0.892 | 0.967 | 0.986 |
| DORN 2018 [35] | D | 0.072 | 0.307 | 2.727 | 0.12 | 0.932 | 0.984 | 0.994 |
| Zhou 2017 [28] | M | 0.183 | 1.595 | 6.709 | 0.27 | 0.734 | 0.902 | 0.959 |
| Yang 2018 [7] | M | 0.182 | 1.481 | 6.501 | 0.267 | 0.725 | 0.906 | 0.963 |
| Mahjourian 2018 [36] | M | 0.163 | 1.24 | 6.22 | 0.25 | 0.762 | 0.916 | 0.968 |
| GeoNet 2018 [37] | M | 0.149 | 1.06 | 5.567 | 0.226 | 0.796 | 0.935 | 0.975 |
| DDVO 2018 [29] | M | 0.151 | 1.257 | 5.583 | 0.228 | 0.81 | 0.936 | 0.974 |
| Ranjan 2019 [38] | M | 0.148 | 1.149 | 5.464 | 0.226 | 0.815 | 0.935 | 0.973 |
| EPC++ 2020 [39] | M | 0.141 | 1.029 | 5.35 | 0.216 | 0.816 | 0.941 | 0.976 |
| Struct2depth 2019 [40] | M | 0.141 | 1.026 | 5.291 | 0.215 | 0.816 | 0.945 | 0.979 |
| Monodepth2 w/o pretraining 2019 [3] | M | 0.132 | 1.044 | 5.142 | 0.21 | 0.845 | 0.948 | 0.977 |
| Monodepth2 (640 × 192), 2019 [3] | M | 0.115 | 0.903 | 4.863 | 0.193 | 0.877 | 0.959 | 0.981 |
| Monodepth2 (1024 × 320), 2019 [3] | M | 0.115 | 0.882 | 4.701 | 0.19 | 0.879 | 0.961 | 0.982 |
| BTS ResNet50, 2019 [11] | M | 0.061 | 0.261 | 2.834 | 0.099 | 0.954 | 0.992 | 0.998 |
| Garg 2016 [41] | S | 0.152 | 1.226 | 5.849 | 0.246 | 0.784 | 0.921 | 0.967 |
| Monodepth R50 2017 [6] | S | 0.133 | 1.142 | 5.533 | 0.23 | 0.83 | 0.936 | 0.97 |
| StrAT 2018 [42] | S | 0.128 | 1.019 | 5.403 | 0.227 | 0.827 | 0.935 | 0.971 |
| 3Net (VGG), 2018 [43] | S | 0.119 | 1.201 | 5.888 | 0.208 | 0.844 | 0.941 | 0.978 |
| SuperDepth & PP, 2019 [44] (1024 × 382) | S | 0.112 | 0.875 | 4.958 | 0.207 | 0.852 | 0.947 | 0.977 |
| Monodepth2 w/o pretraining 2019 [3] | S | 0.13 | 1.144 | 5.485 | 0.232 | 0.831 | 0.932 | 0.968 |
| Monodepth2 (640 × 192), 2019 [3] | S | 0.109 | 0.873 | 4.96 | 0.209 | 0.864 | 0.948 | 0.975 |
| Monodepth2 (1024 × 320) 2019 [3] | S | 0.107 | 0.849 | 4.764 | 0.201 | 0.874 | 0.953 | 0.977 |
| Monodepth2 w/o pretraining, 2019 [3] | MS | 0.127 | 1.031 | 5.266 | 0.221 | 0.836 | 0.943 | 0.974 |
| Monodepth2 (640 × 192), 2019 [3] | MS | 0.106 | 0.818 | 4.75 | 0.196 | 0.874 | 0.957 | 0.979 |
| Monodepth2 (1024 × 320), 2019 [3] | MS | 0.106 | 0.806 | 4.63 | 0.193 | 0.876 | 0.958 | 0.98 |
| Ours w/o pretraining (640 × 192) | S | 0.083 | 0.768 | 4.467 | 0.185 | 0.911 | 0.959 | 0.977 |
| Ours (640 × 192) | S | 0.080 | 0.747 | 4.346 | 0.181 | 0.918 | 0.961 | 0.978 |
| Ours (1024 × 320) | S | 0.077 | 0.723 | 4.233 | 0.179 | 0.922 | 0.961 | 0.978 |
| Ours (1024 × 320) + PP | S | 0.075 | 0.700 | 4.196 | 0.176 | 0.924 | 0.963 | 0.979 |