Skip to main content
. 2023 Jan 28;23(3):1444. doi: 10.3390/s23031444
Algorithm 1 DANN Training

    Inputs:

initial source domain S, target domain T

hyperparameters for FE, C, and D networks hFE,hC,hD

number of epochs for three steps of the training process n1,n2,n3

number of training cycles n

    Algorithm:

    Slabeled,Sunlabeled separate data from S for labeled and unlabeled training

    XFEC extract inputs from Slabeled

    YFEC extract outputs from Slabeled

    XFED combine inputs from T and Sunlabeled

    YFED create domain labels from T and Sunlabeled

    FE,C,D initialize networks with hFE,hC,hD

    for i < n do

    FECFE+C

    train FEC by (XFEC,YFEC) for n1 epochs

    FE FE part of FEC

    C C part of FEC

    FEDFE+D

    train FED by (XFED,YFED for n2 epochs with FE part frozen

    D D part of FED

    YFEDinv invert YFED

    train FED by (XFED,YFEDinv for n3 epochs with D part frozen

    FE FE part of FED

    end for