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Abstract: Globally, corrosion is the costliest cause of the deterioration of metallic and concrete
structures, leading to significant financial losses and unexpected loss of life. Therefore, corrosion
monitoring is vital to the assessment of structures’ residual performance and for the identification
of pathologies in early stages for the predictive maintenance of facilities. However, the high price
tag on available corrosion monitoring systems leads to their exclusive use for structural health
monitoring applications, especially for atmospheric corrosion detection in civil structures. In this
paper a systematic literature review is provided on the state-of-the-art electrochemical methods
and physical methods used so far for corrosion monitoring compatible with low-cost sensors and
data acquisition devices for metallic and concrete structures. In addition, special attention is paid to
the use of these devices for corrosion monitoring and detection for in situ applications in different
industries. This analysis demonstrates the possible applications of low-cost sensors in the corrosion
monitoring sector. In addition, this study provides scholars with preferred techniques and the most
common microcontrollers, such as Arduino, to overcome the corrosion monitoring difficulties in the
construction industry.

Keywords: corrosion monitoring; electrochemical sensors; data acquisition; data analysis; physical
methods; structural health monitoring; low-cost sensors; atmospheric corrosion

1. Introduction

Continuous maintenance and repair work are two vital factors to guarantee the neces-
sary conditions of safety, economy, and functionality during the life cycle of infrastructures.
However, the lack or inefficiency of these actions can significantly accelerate the deteriora-
tion of structures leading to more costly reparations. One harmful phenomenon that might
jeopardize the structural integrity of structures is corrosion, which is a thermodynamically
spontaneous process. In fact, the cost incurred from corrosion contributes more than the
total damage caused by all natural disasters (such as earthquakes, floods, and storms)
combined. The World Corrosion Organization (WCO) estimates that the annual cost of
problems caused by corrosion worldwide reaches $US2.4 trillion, which is 3% of the world’s
gross domestic product (GDP) [1]. In many developed nations, corrosion can cause struc-
tural damages with costs approaching 3.5% to 4.5% of the gross national product (GNP) [2].
For example, on 22 November 2013, corrosion was the main reason for the oil pipeline
explosion in the city of Qingdao in China’s eastern Shandong province, as it thinned the
pipeline’s wall, leading to the break and causing a substantial economic loss of $US123.9
million [3]. In addition to economic losses, corrosion might lead to structural collapses with
consequent casualties. For instance, the Guadalajara sewer explosion in Mexico in April
1992 claimed the lives of 215 people and injured another 1500 [4]. In addition, a $US75
million financial loss was estimated. The incident was linked to a gas line’s degradation,
which led to a gas leak into the nearby sewage main.
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Moreover, corrosion is also responsible for the leakage of devastating pollution into
the environment. For instance, on 12 December 1999; the tanker Erika sank off of France’s
Brittany coast [4]. This type of catastrophe also caused a heavy oil spill globally in 1998,
about 19,000 tons [5]. Another recent accident occurred during a severe rainfall event on
14 August 2018, when a 210 m portion of Ponte Morandi collapsed. Corrosion of the
concrete reinforcements was listed as one of the primary causes of the collapse [6].

These disasters could have been avoided if regular corrosion detections had been
conducted. Corrosion detection, in general, is the process of evaluating the relevant types
of corrosion in a particular environment and identifying the critical variables impacting the
rate of propagation, which is divided into corrosion inspection and corrosion monitoring [7].
Inspection typically refers to short-term “once-off” measurements performed in accordance
with maintenance and inspection schedules, whereas corrosion monitoring refers to the
measurement of corrosion damage or variables that accelerate the corrosion rate over
a longer time period. Corrosion monitoring frequently includes an attempt to gain a
deeper understanding of how and why the corrosion rate fluctuates over time. Therefore,
nowadays, corrosion monitoring has been attracting considerable attention among different
industries, such as oil and gas, civil infrastructures, and the marine industry as a means to
guarantee their structures’ safe operation. Figure 1 illustrates the distribution of papers
focused on corrosion monitoring from the SCOPUS database from the years 2004 to 2021.
Analysis of this graph shows a constant interest in this field among researchers.
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Figure 1. Distribution of publications on corrosion monitoring over time (2004–2021) in the
SCOPUS database.

Corrosion monitoring is carried out using a set of detectors, data storage and trans-
mission systems. The implemented system analyzes the detected data and assesses the
corrosion state of the structure and its components [4]. Among different types of detectors,
metal coupons are one of the most widely used and reliable methods for corrosion detec-
tion in different industries. Metal coupons are exposed to corrosive conditions in order to
calculate the mean corrosion rate from the mass loss, mass gain, or coulometric decrease of
corrosion products. However, this technique does not provide real-time measurements,
and corrosion monitoring usually relies on electronic corrosion sensors or probes [8]. These
electronic corrosion sensors or probes continuously or semi-continuously transmit corro-
sion information to the system. Afterwards, by using the proper corrosion management
algorithm in the corresponding data acquisition system, not only the performance data but
also a basis for life prediction of the under-study system are provided. Therefore, contin-
ued development of these electronic devices has a high level of importance, as corrosion
monitoring is one of the most essential components in corrosion prevention and corrosion
control. Figure 2 illustrates the scheme of a corrosion monitoring system, and, as can be
seen, it contains three main parts: (1) a sensor or probe that is connected to a corrosive area
in order to measure the events and changes of the environmental parameters; (2) a data
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acquisition system which is used to collect and transfer the data; and (3) a data processing
and storing component where the collected data are analyzed and stored.
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Corrosion is a highly complex process involving at least two phases. For instance,
solid and liquid; solid and gas; solid, liquid, and gas; or even a solid and a first and
second liquid might be involved in the corrosion process. Therefore, corrosion monitoring
is a multidisciplinary task, and very often, two or more methods are needed in order
to adequately manage the monitoring needs in a given situation. However, because
almost all corrosion processes in nature take place in the aqueous phase, electrochemical
detection and monitoring procedures are considered to be more efficient compared to
physical methods [9]. In addition, electrochemical techniques have several advantages,
including sensitivity to low corrosion rates, a short experimental period, and a well-
established theoretical understanding [10]. Nevertheless, due to their high sensitivity and
accuracy in corrosion measurements, monitoring for field applications is more complex
than laboratory experiments. Electrochemical techniques that are appropriate for field
applications should have two key properties. On the one hand, the methods must be
dependable and straightforward, which is crucial for long-term corrosion monitoring.
Numerous complex electrochemical techniques exist that are effective for understanding
the kinetics and mechanism of corrosion. Nevertheless, they may not be applicable to
field evaluation, because they are either too slow or too complex for the typical operator
to utilize in the field. On the other hand, in order to minimize the negative impact on the
materials being studied, the techniques used should be non-destructive.

Depending on different natural environments, such as corrosion in soils, atmospheric
corrosion, fresh-water corrosion and seawater corrosion, corrosion monitoring instances
are usually considered separately, and different electrochemical or physical techniques are
used. For instance, in the case of corrosion in different industries (i.e., chemical processing,
oil and gas production, power generation, civil infrastructures), different electronic systems
are implemented [11]. Lately, with the development of technology the demand for adopting
sensors in civil infrastructures and buildings for static or dynamic structural system identifi-
cation (SSI) has increased. However, in order to implement sensors to monitor the corrosion
in these structures, the atmospheric conditions are normally monitored. Although there
are many methods available for monitoring metal corrosion, only some of them can be
applied in the atmosphere [12]. Among all of the methods available, atmospheric corrosion
monitoring (ACM), electrochemical impedance spectroscopy (EIS), electrochemical noise
(EN), and electrical resistance (ER) probes stand out for their unique ability to monitor
the real-time data of environmental corrosiveness [13]. ACM is also known as a galvanic
corrosion sensor, which is composed of two different metal electrodes insulated from each
other. One of them is fashioned from a noble metal, and the other one is formed from
the metal of interest in order to create galvanic corrosion, and by measuring the galvanic
current using a galvanometer or a zero-resistance ammeter (ZRA), the corrosion current
and corrosion rate are measured [14]. EIS is a non-destructive monitoring technique that
provides information about the corrosion progress and condition of protective coatings.
EIS measures the amplitude and phase of the surface impedance at different frequencies.



Sensors 2023, 23, 1309 4 of 28

Traditionally, measurements are performed by employing a conventional electrochemical
cell filled with an electrolytic solution so that, if a corrosion product layer coats the metallic
surface, the current gets through owing to both an electronic and an ionic contribution.
Since corrosion products, such as metallic oxides and hydroxides, have low electronic
conductivity, their ionic contribution can become significant. Therefore, measuring the
impedance at different frequencies enables the study of electrochemical reactions on the
metallic surface and permits highlighting of the presence of cracks and porosity on the
surface layer, both of which can act as starting points for localized corrosion attacks [15–17].
Although the use of EIS in atmospheric circumstances is constrained by the requirement
for an electrolyte, it has recently been used in a number of atmospheric corrosion exper-
iments [18,19]. Generally speaking, EN refers to the current or potential fluctuation that
occurs on a corroding electrode. In this method, the current between two identical elec-
trodes (ECN) and the potential difference between the two identical electrodes compared
with the potential of a reference electrode (EPN) are measured simultaneously. The poten-
tial measurement (EPN) is related to the corrosion mechanism, whereas the current data
(ECN) indicates the corrosion rate [20]. EN is the only electrochemical approach that is ideal
for in situ measurements [21], straightforward to set up, and does not affect the system
while conducting experiments [22]. ER probes have been widely used since the 1950s to
track corrosion in soils, solutions, concrete, and atmosphere [23]. In short, a metallic sensor
crafted from the same element as the materials of the structure under study is exposed to
the corrosive environment and its resistance is monitored by detecting a potential drop
while applying a small current. Primarily thin films are used for atmospheric systems due
to their high sensitivity. The principle relies on the fact that the resistance of an element
is a function of its resistivity and geometrical parameters (length, width, and thickness).
Therefore, by tracking the resistance values, the values of the thickness loss due to corrosion
and the corrosion depth (CD) will be acquired, and consequently, the corrosion rate, which
is the slope of CD with respect to time, is monitored [5].

Table 1 provides an overview of the techniques mentioned for monitoring corrosion in
the atmosphere. For a quick orientation, the sensitivity is indicated in general categories.
Moreover, the main benefits and drawbacks of each method are presented.

Table 1. Comparison of atmospheric corrosion methods.

Method Sensitivity Benefits Drawbacks

Coupons Medium, unless there
are long exposure times

Standardized method
Simple to analyze the
data

Does not have real-time
updates
Requires a long time for
measurements

Galvanic Medium

Not affected by
temperature changes
Suitably equipped for
harsh outdoor
conditions

Galvanic corrosion
increases the corrosion
rate
Electrolyte connection
required

EIS Medium

Details of the
mechanism of corrosion
Non-destructive
examination of coatings

Data interpretation
requires deep
knowledge of EIS
Unevaluable data in the
presence of a thick
corrosion product
Electrolyte connection
required

EN Medium
Localized detection
Identification of the
corrosion mechanism

Complicated data
interpretation
Electrolyte connection
required



Sensors 2023, 23, 1309 5 of 28

Table 1. Cont.

Method Sensitivity Benefits Drawbacks

ER High

Standardized method
Very sensitive
Data interpretation and
operation are simple.
The best option for
consistent corrosion
monitoring

Temperature dependent
Monitoring limitations
for non-uniform
corrosion

The cost of commercial corrosion systems is a crucial determinant to their suitability
for use in given services. Therefore, Table 2 presents a list of common corrosion monitoring
devices with real-time updates available on the market for each technique, including their
names, measurement ranges, and their retail prices in 2022.

Table 2. List of commercial corrosion sensors in the market for real-time update.

Technique Device Corrosion Rate
Range (mpy) Price ($US) Ref.

ER ZK9800 0.00394–39.34 1250 [24]
EIS CST1808 0.00394–0.3934 5511 [25]
Galvanic CST480MS 0.00394–3.934 3150 [26]
LPR AquaMate 0.01–200 2925 [27]

As can be seen from Table 2, commercial corrosion monitoring devices are character-
ized by their high precision and their high price. In addition to these prices, the cost of data
acquisition equipment (such as cables, a corrosion data logger, an inductance transmitter,
and a corrosion management system) must be added. These needed auxiliary elements can
increase the prices of the aforementioned sensors by up to an additional $US7000. More-
over, it is well established that corrosion detection and monitoring in outdoor applications
is more complicated in comparison to laboratory experiments. Some areas that require
ongoing development are probe/sensor design, data processing, and electrochemical in-
strumentation. In some circumstances, environmental noise is mixed with the observed
data, thereby necessitating the use of appropriate signal processing technology to filter
or even analyze this noise. In fact, because many corrosion systems are not steady-state,
and as the corrosion potential may change, it is possible to apply transient techniques like
electrochemical noise analysis (ENA) or other physical methods (image analysis [28–30],
acoustic emission [31–34]). However, these systems are generally quite large and expensive,
because they need to be equipped with complex auxiliary assets.

The high price tag on corrosion monitoring systems leads to their exclusive use
with limited measuring points. These systems are typically used only in areas with the
highest probability of corrosion, for example, inside petrochemical pipelines. However, in
conventional structures, which are those in which many pathologies occur, the provision
of corrosion monitoring systems is not usual, and insufficient attention has been paid
to evaluating the progress of corrosion, especially in the case of atmospheric corrosion
attacks in civil infrastructure. Additionally, this high price tag is a barrier to the long-term
monitoring of structures on a low structural monitoring budget.

Therefore, the demand to use low-cost probes and open-source platforms for data
acquisition systems by implementing various techniques to improve their accuracy com-
pared to high-cost precision systems has attracted considerable attention for structural
assessments [35–37]. This includes improvement such as increasing the density of mea-
surement points as well as making it possible to implement long-term monitoring systems
in order to reduce the uncertainty of the obtained data [38]. Low-cost sensor (LCS) usage
for many aspects of structural health monitoring is evident in the literature due to the
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rapid advancement of micro sensor technology and microcontrollers (such as Arduino and
Raspberry Pi) [39,40]. The monitoring of acceleration [41–43], tilt [44], temperature [45,46],
humidity [47], and corrosion [19] are a few examples of this research. Komarizadehsasl et al. [48]
reported that, with a proper code and the right mode to exploit the features and potential of
inexpensive electronics, it is possible to obtain valuable data that can provide useful insights for
structural health monitoring applications. In this work, a high-precision low-cost inclinome-
ter was developed through the fusion of multiple microelectromechanical systems (MEMS).
There are also various review papers in the literature concerning the use of low-cost sensors
(LCSs) in structural health monitoring applications. Mobaraki et al. [49] reviewed the applica-
tion of some low-cost sensors for the measurement of temperature, humidity, and airflow for
building monitoring.

For corrosion monitoring systems, there are several literature reviews concerning
different electrochemical methods used both for in situ and laboratory assessments [50],
corrosion monitoring in atmospheric conditions [13], different techniques for monitoring
the corrosion of steel rebar in reinforced concrete structures [51], using fiber optic sensors
for the assessment of rebar corrosion in RC structures [52], and the advancement of a
sensor capable of corrosion detection [53]. However, a systematic literature review on the
use of LCSs and inexpensive technologies as low-cost solutions for corrosion monitoring
applications is lacking. Therefore, in order to fill this gap, the current review offers a
thorough, up-to-date analysis of the state of the art for using low-cost digital technologies
for sustainable corrosion monitoring by examining the SCOPUS database. Additionally,
the authors pay close attention to the presentation of many elements of the main fields of
corrosion monitoring (such as techniques and ambient conditions) and the most popular
sensors used in each technique.

The current review is divided into four sections. The primary topic of discussion in this
study is the research on in situ measurements of atmospheric corrosion. The background
and research significance of corrosion detection and monitoring are briefly introduced
in Section 1. The rest of the paper is organized as follows. The data sampling technique
for low-cost corrosion technologies is described in Section 2. In addition, the approach
for processing data from inexpensive monitoring equipment is presented. The results are
presented in Section 3. Specifically, Section 3.1 provides a thorough discussion of the many
domains of corrosion monitoring as well as the reviewed articles. The distribution of the
publications among different countries and industries are also reviewed in this section.
Section 3.2 reviews the use of low-cost corrosion monitoring systems using electrochemical
methods. In addition, the open-source microcontrollers discussed in the literature are
evaluated, and the ones recommended for use in the installation of inexpensive monitoring
devices are described. Section 3.3 describes and compares the use of low-cost technologies
to detect and monitor the physical parameters induced by corrosion. The conclusions of
the current literature review are presented in the final section.

2. Materials and Methods

This section describes the sources of the data, the evaluation techniques, and the
classifications of low-cost technologies used for corrosion monitoring. Two main fields of
corrosion monitoring in the industry are associated with (1) electrochemical methods and
(2) physical methods. These two fields could provide and cover a structure’s corrosion
monitoring for atmospheric corrosion. Measurements made in the field are the next primary
discipline of this review. This paper addresses the publications in the SCOPUS database
between the years 1986 and 2021. The current review was carried out in November
2022. The initial search technique used for this systematic review paper consists of three
major components. The first stage is meant to provide an initial set of articles found by
employing a certain search algorithm using the Boolean operator AND (Figure 3). The
obtained articles in the first stage were then filtered further in the next step in order to
eliminate duplicates and irrelevant ones. Following this process 209 articles were deemed
inappropriate because they lacked information on corrosion monitoring or did not clearly
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cover low-cost features. It shall be highlighted that in this study, the authors only considered
peer-reviewed papers written in English. This exclusion was accomplished using the “AND
NOT” command, and the final outcome was 38 using electrochemical methods and 52
articles implementing physical methods to track and monitor the essential parameters of
corrosion across all industries.
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In the final step, a detailed review of the selected articles was conducted in terms of
defining the main methods featured in the selected articles, assessing their distribution in
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different countries around the world, analyzing their contribution in different industries,
and finally, evaluating the types of sensors and technologies used for the installation of the
low-cost corrosion monitoring system.

There are several methods available in the literature to detect corrosion and monitor
its essential parameters for different type of structures. However, the principal aim of this
article is to present comprehensive information about low-cost technologies implementing
electrochemical methods in this field, and to do so, only corrosion detection methods
that are compatible with the intended inexpensive electronics are reviewed in this paper.
Therefore, this review can be used as a thorough reference for scholars interested in low-cost
corrosion monitoring. Moreover, this review provides comprehensive information about
low-cost technologies measuring physical parameters to track corrosion progress as well as
the preferred data acquisition systems and their important parameters for use in low-cost
corrosion monitoring applications. Table 3 provides a summary of the corrosion monitoring
methods introduced so far in the literature and their designated categories.

Table 3. Shows methods for the two main fields of electrochemical and physical techniques.

Fields of
Corrosion

Monitoring
Electrochemical Physical

Methods used EIS LPR Galvanic EN ER Optical
fiber

Radio
frequency

Image
sensor Ultrasonic Electromagnetic

induction

Recent advances in data processing technology, along with an ever-increasing demand
for online structural health monitoring, have resulted in the development of more efficient
monitoring systems. One of the most essential features of current low-cost monitoring
systems is that they run open-source software. This enables the users to access the library
source of the low-cost sensors, thereby giving them the chance to improve and develop
their own algorithms in the post-processing stage [54]. However, the vast majority of the
commercial corrosion monitoring devices on the market have already been programmed
by the associated companies, and they are based on closed source platforms. This implies
that users have no access to inspect and develop the software, which represents a huge
drawback for researchers interested in this field. Therefore, this paper provides insight to
the scholars for choosing the most desirable low-cost open-source monitoring system for
their project by reviewing the most-preferred options in the literature.

3. Results
3.1. Overview of the Results

The first study found in the SCOPUS database dealing with the idea of low-cost
corrosion monitoring is dated to 1984 [55]. However, this paper is not included in the
statistical analysis of this research, as it only introduced the use of various types of probes
with portable devices to reduce the risk and the cost of the corrosion monitoring procedure
in the oil and gas industry. In fact, the actual first paper that focused on the use of a low-cost
corrosion monitoring device was dated to 1986. Knuutila et al. were the first researchers
to describe the use of a low-cost microcomputer compatible with electrochemical systems
for polarization and cyclic voltammogram measurements [56]. Since then, the number of
yearly publications on the subject was limited until 2008, when a significant increase was
observed (Figure 4). A second relative rebound can be seen between 2008 and 2012. It was
observed that more than 54% of all the publications over a 36-year period (1986–2021) were
condensed between 2012 and 2021, highlighting the importance of technology’s growth
on the development of new low-cost electronics. It can be seen from Figure 4 that the
majority of the authors investigated low-cost approaches using physical methods (almost
58%), whereas only 42% of the articles introduced economic developments by employing
electrochemical methods. In addition, it was observed that from 1986 until 2007, the number
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of papers associated with the use of electrochemical methods for corrosion monitoring was
quite few (23.7%), and more than 76.3% of the articles were published in the last 14 years
(from 2008 to 2021). This rebound in projects concentrating on the use of physical methods
for corrosion monitoring applications occurred within the same amount of time as the
number of papers that contributed more than 78.9% in the last 14 years, and only 21.1% of
them were published in the years 1986 to 2007.
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Figure 4. Distribution of publications over time (1986–2021) from the SCOPUS database.

Figure 5 illustrates the number of papers by country. It an be observed that, in terms of
the publication numbers, the countries that put forth the largest contribution to the use of
low-cost technologies for corrosion monitoring are the United states (43 papers), the United
Kingdom (7 papers), Italy and China (6 papers each), Canada (5 papers), and Australia and
Portugal (3 papers each), followed by Spain, Mexico, India, and Germany (2 papers each).
In total, researchers from 26 countries around the world contributed to investigating and
introducing the use of new low-cost systems in different industries in order to overcome
corrosion monitoring’s high price tag problem in all 90 of the reviewed publications.
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Figure 6 shows the contribution of the reviewed publications to different industries.
It can be seen that 51% of the researchers devoted their studies to developing low-cost
solutions for monitoring the corrosion parameters of civil structures. The second most-
interesting industry for corrosion monitoring using low-cost technologies is the oil and
gas industry, for which the most pipeline pathologies have occurred, and 18% of the pub-
lications implemented low-cost solutions to overcome the high price tag of conventional
corrosion monitoring systems in this industry. The analysis in Figure 6 shows that the
monitoring of artifacts is considered to be a vital area among researchers for develop-
ing low-cost monitoring techniques for tracking and controlling the corrosion process of
these valuable assets. The rest of the industries for which researchers developed low-cost
corrosion monitoring systems are shown in Figure 6.
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3.2. Electrochemical Methods Used for Corrosion Monitoring

In this section, the reviewed articles associated with the use of electrochemical methods
for low-cost corrosion monitoring techniques are presented. This first group of papers can
be classified into four separate categories. The first category is a group of publications
that devoted their research to the application of EIS in the corrosion field and especially
to the development of low-cost systems compatible with this method. In the second
category, authors utilized linear polarization resistance (LPR)-based devices to remotely
track corrosion potential in their studies. In Sections 3 and 4, Galvanic and EN methods
were respectively used to measure and monitor electrochemical parameters for low-cost
corrosion monitoring. Figure 7 shows the distribution of the reviewed publications in
SCOPUS associated with the above-mentioned methods.

It can be seen that among the four groups, the highest number of papers dealt with the
application of the EIS method for the measuring and monitoring of electrochemical param-
eters involved in the corrosion process. This category contained 58% of the publications
from 1986 to 2021. Analysis of Figure 7 proves that EIS is considered among authors to be
the most reliable method of monitoring the coating condition and the corrosion progress
for their projects [57–59]. It also shows that the distribution of the publications dealing with
LPR as their main method was almost constant during the years (from 2007 to 2018) with
no significant changes, representing 34% of the total publications in the field of low-cost
corrosion monitoring. Although EN and galvanic are considered to be useful electrochemi-
cal methods in the corrosion industry, they have not attracted the attention of researchers
for low-cost monitoring applications, and they only contributed 3% and 5% (respectively)
of the entire number of publications. The main reason for this low participation is their
complicated data interpretation and the short life span of their sensors, respectively [13].
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Figure 7. Distribution of the reviewed articles associated with the application of electrochemical
methods for corrosion monitoring from 1986 to 2021.

3.2.1. Electrochemical Impedance Spectroscopy

This subsection provides detailed information on the reviewed publications that
introduced low-cost corrosion monitoring systems based on the EIS principle. EIS is one
of the most commonly used methods in the industry that enables researchers to study
and monitor the coating conditions of metallic structures. However, the corrosion rate
measurements produced by EIS are not so simple, and it is normally considered to be a time-
consuming method due to the requirement of recording data at various frequencies [60]. In
addition, EIS measurements require 3 electrodes as well as an electrolyte connection, which
makes mostly limits this method to laboratory use. Therefore, attempts to develop low-cost
portable EIS-based devices are considered to be highly valuable among various industries.
These attempts are focused either on the development of the sensing component (low-cost
electrodes or sensors) or the data acquisition implement (use of a low-cost microcontroller).

Licina et al. [61], Thien et al. [62], Park et al. [63], Yu et al. [64], Thien et al. [65], Abdur
Rahman et al. [66], Mejía-Aguilar et al. [67], Azhari et al. [68], Friedersdorf et al. [69],
Andrews et al. [70], Nazir et al. [57], Bansal et al. [71], Li et al. [72], Corva et al. [73],
Chowdhury et al. [74], and Strachotová et al. [75] all employed new technologies (such
as piezoelectric materials and advanced nanocomposites) for the sensing section of their
EIS-based corrosion monitoring systems in order to obtain low-cost and low-power features.
For instance, Yu et al. [64] used a piezoelectric wafer active sensor (PWAS) for the detection
of coating thickness and the monitoring of the corrosion condition of metallic plates and
pipes with a price of $US10 for each sensor.

Thien et al. [62] developed a low-cost active-sensing-based diagnostic system using
flexible micro-fiber composite (MFC) patches as both the sensors and the actuators in
order to detect cracks or corrosion damage along the pipeline structures by recording
the impedance responses. Figure 8 illustrates that only 27% of the authors—such as
Carullo et al. [76], Davis et al. [77], Angelini et al. [19], Matsiev [78], Grassini et al. [79], and
Sebar et al. [80]—focused on the use of open-source microcontrollers (such as Arduino and
AD5933) in the development of their reliable low-cost EIS-based data acquisition systems.
Among the reviewed microcontrollers that are able to perform impedance measurement
through various frequencies, Arduino board—which costs less than $US50—stands out
for its unique benefits, such as ease of use, active user community and various available
libraries due its open-source feature. Angelini et al. [19] and Grassini et al. [79] proposed a
simple low-cost solution based on a commercial Arduino board coupled with a logarithmic
amplifier to perform impedance measurements in the frequency range of 0.01 Hz to 100 kHz.
Sebar et al. [80] proposed a novel low-cost device that measured EIS using a simple
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Teensyduino board in the frequency range of 0.01 to 10,000 Hz without need of an additional
analog amplifier.
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Figure 8. Two areas of development in the SCOPUS database for the application of low-cost corrosion
monitoring solutions using the EIS technique: Area 1 focusing on the development of the sensing
elements, and Area 2 focusing on the use of open-source microcontrollers as the low-cost data
acquisition system.

3.2.2. Linear Polarization Resistance

LPR is one of the most commonly used methods for corrosion monitoring in field
applications. In this method, a very small polarization potential (usually ± 30 mV) above
and below the corrosion potential is applied to the sample. The current response recorded
over this short range near the corrosion potential is linear. As a result, the polarization
resistance (RP) is defined as the slope of this current–potential curve, which is constant.
Under certain conditions RP is inversely related to the instantaneous corrosion rate, accord-
ing to the Stern–Geray equation [81]. In fact, polarization techniques such as EIS and LPR
are considered highly accurate with easy data interpretation. Hence, many investigators
have tried to develop low-cost monitoring solutions through the use of either open-source
microcontrollers or developed sensing elements. In Figure 9 it is shown that 54% of the
publications that implemented LPR method focused the development of their data acquisi-
tion system on using open-source microcontrollers, while 46% of the articles addressed the
use of low-cost sensors.

For instance, Niblock et al. [82], Wood et al. [83], Abu Yosef et al. [84], Rafezi et al. [85],
Perveen et al. [86], and Ahmad et al. [87] employed low-cost passive wireless sensors such
as piezoelectric sensors for the detection of corrosion in pipelines and in concrete by taking
advantage of the LPR technique. At the same time, Knuutila et al. [56], Arpaia et al. [88],
Mugambi et al. [89], Kwan et al. [90,91], Samoilǎ et al. [92], and Degrigny et al. [93]
devoted the main objective of their research to developing open-source hardware systems
with low-cost and easy-to-use instrumentation for in-field measurements. For example,
Samoilǎ et al. [92] presented virtual instrument technology made up of a low-cost but
powerful Cypress PSoC microcontroller based on the polarization resistance technique.



Sensors 2023, 23, 1309 13 of 28

Sensors 2023, 23, x FOR PEER REVIEW 13 of 29 
 

 

acquisition system on using open-source microcontrollers, while 46% of the articles ad-

dressed the use of low-cost sensors. 

 

Figure 9. Two areas of development in the SCOPUS database on the application of low-cost corro-

sion monitoring solutions using the LPR technique: Area 1 focusing on the development of the sens-

ing elements, and Area 2 focusing on the use of open-source microcontrollers as the low-cost data 

acquisition system. 

For instance, Niblock et al. [82], Wood et al. [83], Abu Yosef et al. [84], Rafezi et al. 

[85], Perveen et al. [86], and Ahmad et al. [87] employed low-cost passive wireless sensors 

such as piezoelectric sensors for the detection of corrosion in pipelines and in concrete by 

taking advantage of the LPR technique. At the same time, Knuutila et al. [56], Arpaia et 

al. [88], Mugambi et al. [89], Kwan et al. [90,91], Samoilǎ et al. [92], and Degrigny et al. [93] 

devoted the main objective of their research to developing open-source hardware systems 

with low-cost and easy-to-use instrumentation for in-field measurements. For example, 

Samoilǎ et al. [92] presented virtual instrument technology made up of a low-cost but 

powerful Cypress PSoC microcontroller based on the polarization resistance technique. 

3.2.3. Galvanic or Atmospheric Corrosion Monitoring 

In the late 1950s, the first attempts to quantify atmospheric corrosion using galvanic 

sensors were made. An ACM system is composed of two different metal electrodes insu-

lated from each other. One of them formed from is a noble metal, while the other is crafted 

from the metal of interest in order to create galvanic corrosion, and by measuring the gal-

vanic current using a galvanometer or a zero-resistance ammeter (ZRA), the corrosion 

current and corrosion rate are measured. Figure 10 shows a schematic illustration of an 

ACM sensor used to monitor automotive corrosion. However, due to the fact that galvanic 

coupling accelerates the corrosion process, which results in a shorter life span of the sen-

sors and unclear data interpretation in harsh environments, researchers have not found 

this technique interesting for the development of low-cost monitoring solutions. Never-

theless, Castro-Borges et al. [94] proposed a reasonable, low-cost solution for the detection 

and monitoring of the corrosion performance of concrete columns after localized repairs 

using galvanic sensors to measure the electrochemical parameters. Mierau [95] proposed 

a remote monitoring solution for corrosion monitoring at airports, solving the access and 

field-diagnostic issues. The proposed low-cost PC-based control system, which employs 

galvanic sensors, provides corrosion engineers with a remote monitoring system with 

real-time updates. 

46%

54%

0

1

2

3

4

5

6

7

8

9

10

Low-cost sensors Open-source microcontrollers

N
u

m
b

er
 o

f 
p

u
b

li
ca

ti
o

n
s 

in
 S

C
O

P
U

S

Development Area

Figure 9. Two areas of development in the SCOPUS database on the application of low-cost corrosion
monitoring solutions using the LPR technique: Area 1 focusing on the development of the sensing
elements, and Area 2 focusing on the use of open-source microcontrollers as the low-cost data
acquisition system.

3.2.3. Galvanic or Atmospheric Corrosion Monitoring

In the late 1950s, the first attempts to quantify atmospheric corrosion using galvanic
sensors were made. An ACM system is composed of two different metal electrodes
insulated from each other. One of them formed from is a noble metal, while the other is
crafted from the metal of interest in order to create galvanic corrosion, and by measuring the
galvanic current using a galvanometer or a zero-resistance ammeter (ZRA), the corrosion
current and corrosion rate are measured. Figure 10 shows a schematic illustration of
an ACM sensor used to monitor automotive corrosion. However, due to the fact that
galvanic coupling accelerates the corrosion process, which results in a shorter life span of
the sensors and unclear data interpretation in harsh environments, researchers have not
found this technique interesting for the development of low-cost monitoring solutions.
Nevertheless, Castro-Borges et al. [94] proposed a reasonable, low-cost solution for the
detection and monitoring of the corrosion performance of concrete columns after localized
repairs using galvanic sensors to measure the electrochemical parameters. Mierau [95]
proposed a remote monitoring solution for corrosion monitoring at airports, solving the
access and field-diagnostic issues. The proposed low-cost PC-based control system, which
employs galvanic sensors, provides corrosion engineers with a remote monitoring system
with real-time updates.
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3.2.4. Electrochemical Noise

EN is a useful electrochemical method for investigating and monitoring corrosion
processes such as pitting and stress corrosion cracks’ growth, microbial corrosion, and
uniform corrosion. The measuring mode, the surface area of the working electrodes, the
electrolyte resistance, and the symmetry of the electrode system all have a significant impact
on the EN results. In addition, depending on the measurement mode, this technique can be
used for in situ measurements employing either three-electrode or two-electrode setups [96].
Although the EN method has numerous benefits, such as localized corrosion detection
because of its complex and unclear data interpretation, very little attention has been paid to
using it to implement new technologies for low-cost monitoring developments. However,
Arellano-Pérez et al. [27] developed a portable device for measuring and monitoring
corrosion parameters such as electrochemical potential (EP) and electrochemical current
(EC) based on EN signals. In this research, the corrosion type and rate, a probe made
of three identical electrodes (6061-T6 aluminum) was constructed in order to evaluate.
Furthermore, the proposed low-cost portable device includes a signal amplifier, a physical
filter, and an analog-to-digital convertor (ADC), which enables it to measure weak signals
and analyze the corrosion variables in different materials. Figure 11 illustrates both the
three-electrode probe and the proposed low-cost portable device.
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3.3. Physical Methods Used for Corrosion Monitoring

In this section low-cost approaches for corrosion monitoring implementing physical
methods are reviewed. Controlling and tracking the physical parameters of the corrosion
progress—such as metal thickness loss, crack propagation, and physical pathologies—are
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the main features of this method [97]. Unlike the electrochemical methods, these techniques
do not directly measure the corrosion parameters such as corrosion potential or corrosion
current. However, depending on the requirements of the projects, these techniques provide
the possibility of measuring and tracking the physical changes caused by corrosion, and
furthermore, calculating the corrosion rate. Therefore, in this section, the existing low-
cost technologies for the measurement of the physical changes to structures caused by
corrosion are reviewed. The reviewed publications are categorized into six distinct groups.
The first category is a group of researchers that used ER as their principal method of
measuring and monitoring corrosion rate using low-cost electronics. The second group
of authors profited from radio frequency sensors (RF) and their unique features in their
respective projects aimed at developing inexpensive remote corrosion monitoring systems.
In the third group are authors who employed optical fiber (OF) sensors as their principal
physical detection method for low-cost corrosion monitoring applications. The fourth
group of authors focused on adapting ultrasonic waves (UW) to introduce their novel
low-cost remote technologies for monitoring the coating and internal corrosion condition of
structures in different industries. Authors from Group 5 implemented the electromagnetic
induction (EMI) method to track physical changes using passive wireless sensors. Finally,
in Group 6, authors addressed a novel technique taking advantage of image recognition
(IR) technology to develop low-cost image sensors for tracking the progression of corrosion
in their projects.

Figure 12 illustrates the rise in the number of publications associated with low-cost
corrosion monitoring using physical methods that were published over the period from
1998 to 2021 and found in the SCOPUS database. It can be seen that researchers chose a
more balanced distribution of physical methods suitable for low-cost corrosion monitoring
applications as compared to the electrochemical approaches mentioned before. Neverthe-
less, among the six groups, the majority of the authors employed ER sensors and RF-based
methods to detect physical changes (such as strain and thickness loss) and monitor them
using inexpensive wireless technologies. These two groups contain 25% and 23% of the
publications from 1998 to 2021, respectively. Analysis of Figure 12 shows that 75% of the
articles focusing on the use of RF-based sensors were published in the past 10 years. At the
same time, the least attention was paid to the use of IR for detecting and tracking structural
pathologies. This technique has only been investigated in publications in recent years, with
100% of the articles having been published in the last 6 years. In fact, the developments
in camera sensors and artificial intelligence (AI) technology in recent years have made
them more accessible and thus more affordable for the development of low-cost corrosion
monitoring systems [98]. Figure 12 also illustrates that the distribution of publications
employing OF sensors and UW for low-cost corrosion monitoring solutions has been almost
constant through across the years 1998 to 2021. However, low-cost monitoring solutions
based on the EMI technique have been only reviewed by authors over a 10-year period
between 2006 and 2016.

3.3.1. Electrical Resistance

Low-cost sensors based on the ER principle have been widely utilized to monitor corro-
sion in various industries since 1998. As shown in Figure 13, these sensors generally contain
two parts: a reference element, which is protected by a coating layer, and an exposed element.
The resistance of the sensing element is measured by comparing its potential drop to the refer-
ence element, which is proportional to the loss in metal thickness experienced by the sensing
element for a uniform corrosion mechanism. Furthermore, these values are used to calculate
the accurate corrosion rate over time. Due to the simplicity and high precision of this
technique, many scholars such as Taylor [99], Hautefeuille et al. [100], McCarter et al. [101],
Holst et al. [102], Materer et al. [103], Halabe et al. [104], Hurley et al. [105], and
Corva et al. [106] have introduced the use of low-cost ER sensors in their projects. Strom-
ment et al. [107] introduced FSM (the field signature method) for the first time in 1998, which
is an economical solution based on the ER principle for internal corrosion and crack monitor-
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ing in pipelines and vessels. In that study the authors combined non-destructiveness, high
sensitivity, and real-time updateability with the ability to cover large areas and no mainte-
nance requirements as the main features of their technique in order to develop their low-cost
corrosion monitoring system. Andringa et al. [108,109] and Pasupathy et al. [110,111]
demonstrated in their publications the use of sacrificial transducers as sensing elements for
monitoring corrosion in concrete. This passive wireless sensor, which is ideal for in situ
measurements in inaccessible locations, contains a resonant inductor–capacitor circuit with
a resistive transducer that is exposed to the corrosive ambient in order to perform resistance
measurement based on the ER technique.
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3.3.2. Radio Frequency

Radio-frequency identification (RFID) sensors are generally employed for inventory
management and product tracking, and their application for corrosion monitoring is a
relatively new concept established in the previous decade. However, in recent years
numerous authors have addressed applications of this method in the field of corrosion
monitoring. Bouzaffour et al. [112] introduced an innovative embedded UHF RFID (ultra-
high-frequency RFID) sensor in concrete in order to detect the mass loss of the steel and
monitor its corrosion process. El Masri et al. [113] addressed the sensitivity feature of the
UHF RFID sensors and investigated their potential as indoor environmental corrosiveness
detectors sensitive to variation of the metal thickness loss in the range of tens of nanometers.
One of the controversial issues for corrosion monitoring sensors is the interpretation of
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the output data when localized corrosion phenomena appear. Yasri et al. [114] proposed
a novel RF-based technique for atmospheric corrosion monitoring, the results of which
showed the ability to distinguish between uniform and localized corrosion mechanisms.
Another important usage for this technique within corrosion monitoring applications is
in tracking the condition of the coating layer and monitor its degradation process [115].
This ability allows for the improvement of infrastructure maintenance operations and can
result in large financial savings in many industrial fields. Generally, the basic components
of an RFID system are a reader and a tag sensor. The tag is a transponder with integrated
circuits and an antenna that can be activated by the reader’s electromagnetic radiation, and
it communicates stored information back. Figure 14 shows a detailed view of a commercial
RFID system´s scheme for crack detection. Depending on the power supply, tags can be
active or passive. Active tags can convey data and have their own power sources (such as a
battery or solar cell), making them larger and more expensive. Passive tags convey data
in response to reader inquiry, since their only power source is the electromagnetic field
transmitted by the reader. These tags are simpler, less expensive, more dependable, and
more widely utilized. Therefore, for low-cost corrosion monitoring applications, passive
wireless RFID sensors are predominantly used. In the publications reviewed in this study,
Lippincott [116], Dante et al. [117], Palmer et al. [118], He et al. [119], Zhang et al. [120],
Sunny et al. [121], Bruciati et al. [122], and Marindra et al. [123] addressed the use of
low-cost passive wireless RFID sensors (tags) in order to detect physical parameters such as
coating thickness and crack propagation which are essential corrosion elements in pipelines
and concrete structures. It is important to mention that in the aforementioned studies, real-
time corrosion monitoring and corrosion rate calculation were not performed. However,
Zhang et al. [124], Zarifi et al. [125], Deif et al. [126], and Rioual et al. [127] developed
RFID-based low-cost corrosion monitoring systems with real-time update ability.
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3.3.3. Optical Fiber

Over the last few decades, optical fibers have been developed and widely used for a
variety of applications in the oil and gas sector; civil engineering construction; structural
health monitoring; and cracks, strain, temperature, and pH monitoring. Essentially, the
approach employs optical fibers composed of glass or plastic that convey light along their
length and are thus sensitive to any parameter that can change the intensity, frequency,
polarity, or phase of the light. For corrosion monitoring, optical fiber sensors such as
fiber Bragg gratings (FBG), interferometers, surface plasmon resonances (SPR), distributed
sensing, or optical intensity modulations are used. As can be seen in Figure 15, optical fiber
sensors for low-cost corrosion monitoring applications are categorized into four types based
on how they detect the presence of corrosion in the structure. The first group employs the
direct measurement of corrosion effects. For that purpose, sensors measure parameters such
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as corrosion-induced strain, deformation, and displacements within the structure. FBGs,
white light interferometry, and optical time domain interferometry (OTDR)—a technology
within optical distributed sensing—are among the optical sensors used in this category.
These sensors are implanted in the building’s structure in order to monitor the corrosion
in concrete structures as well as in civil and military airframes where corrosion is a worry
because they are working beyond their projected lifetime in some circumstances.
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Among the authors who developed low-cost corrosion monitoring solutions based on
optical fiber sensors, Zhao et al. [97] implemented a white light interferometer,
Ramani et al. [128] addressed the use of lens-based plastic optical fibers (LPOF), and
Dos Santos et al. [129] and Chen et al. [130] employed long-period grating (LPG) sensors
to detect and monitor parameters such strain and corrosion crack propagation in their
projects. In the second group, the corrosion of the structure of interest was estimated rather
than directly measured by monitoring the corrosion of a similar substance deposited onto
an optical fiber. Obviously, this sensor must be situated near the structure whose corrosion
is being investigated in order to experience identical conditions. Wan et al. [131] and
Guan et al. [132] employed this approach to monitor corrosion in metals such as steel and
aluminum as well as for the monitoring of coating layer thickness. In terms of corrosion
precursors, optical fiber sensors can detect ions that cause a higher corrosion rate, with
waterborne chlorides being the most relevant. Elster et al. [133] and Chen et al. [134] used
fluorescence-based optical fiber sensors to detect chlorides ions inside of concrete structures.

Environmental parameters such as humidity and pH play an important role in cor-
rosion, therefore optical fiber sensors such as fluorescence or colorimetry are widely used for
monitoring these elements. Cooper et al. [135], Casas et al. [136], and Kiremidjian et al. [137]
developed novel low-cost systems based on the combination of type 1 and type 4 measure-
ments using LPG sensors in order to detect both the strain and environmental parameters
and therefore obtain better corrosion data on the analyzed structure.

3.3.4. Ultrasonic Wave

Ultrasonic corrosion monitoring is a type of non-destructive testing (NDT) that is used
to track the corrosion process. High-frequency acoustic waves (sound waves) are used in
this monitoring technique to measure or map the interior structure, thickness, and other
properties of the material being monitored. There are numerous commercial ultrasound in-
struments available that provide useful information regarding various types of degradation
(i.e., cracks, deformations, thinning, and corrosion). They are, however, generally classified
as inspection equipment rather than monitoring devices. Therefore, in this this paper,
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publications that presented low-cost corrosion monitoring solutions for various industries
based on ultrasound technology are reviewed. For instance, in the aerospace industry,
the use of ultrasonic sensors is very common. Zhao et al. [138], Meyendorf et al. [139],
and Perelli et al. [140] introduced novel low-cost monitoring systems based on ultrasound
technology for aircraft´s health monitoring applications. In the oil industry, in order to track
the health of the pipelines, Wan et al. [141] and Barshinger et al. [142] developed low-cost
wireless ultrasound-based monitoring devices. Harper et al. [143] and Jalali et al. [144]
proposed remote ultrasound-based techniques for corrosion monitoring in civil structures.
The aforementioned corrosion monitoring systems take highly frequent readings in order
to detect minor variations, which in this case are connected to corrosion phenomena. The
accuracy of ultrasound signals enables very frequent thickness measurements that can be
used to monitor corrosion.

3.3.5. Electromagnetic Induction

Over the last few years, a novel corrosion control method has been created for pro-
tecting damaged, painted surfaces in contact with atmospheric conditions, and it employs
electromagnetically induced surface currents. In addition, this technique has attracted
considerable attention for the initial monitoring of corrosion in concrete structures. Several
scholars have introduced monitoring sensors based on Faradays law of electromagnetic
induction (EMI) for the early assessment of corrosion in reinforced concrete (RC) structures.
In this review, authors such as Andringa et al. [145], Vinogradov [146], Chen et al. [147,148],
and Kranz et al. [149] introduced low-cost corrosion monitoring solutions based on this
technique. The monitoring devices used in the aforenamed experiments are made up of
multiple loop coils (MLCs) which operate as sensors and have a receiver and a transmit-
ter coil. The positioning of the two coils on concrete structures measures the potential
difference, which is then used to analyze the extent of the corrosion. Gallo et al. [150]
introduced a novel corrosion monitoring method based on the magnetic field induced
by the electrochemical activity from a uniform corrosion mechanism of a metal sample.
Figure 16 shows a scheme of the monitoring system containing a two-unit set of commercial
giant magneto-resistive (GMR) sensors for tracking the magnetic fields from the active
corrosion of metal plates.
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3.3.6. Image Recognition

Human-based visual inspection, which is time-consuming, costly, and even danger-
ous, has so far been one of the most-used techniques for structural health monitoring
applications. Concerns about safety, high costs, as well as recent developments in image
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detection sensors and AI technology have highlighted the urge for the development of
a reliable, low-cost, safe, and quantitative solution known as image recognition (IR) or
image analysis technology. In fact, the phenomenon of corrosion leads to changes in the
surface structure, morphology, and composition of materials [151]. These changes can be
captured by a number of image sensors, and by implementing image recognition technolo-
gies, information about the type and extent of corrosion can be obtained [152]. Figure 17
illustrates a simple image-collection setup using a portable CCD camera. Xia et al. [153]
presented a comprehensive review of the digital image analysis systems as well as the
developed algorithms used to assess and process the corrosion images. In addition, some
physical and electrochemical methods that can be employed to support the IR results are
summarized in this study. However, this technique is still considered to be new for low-cost
corrosion monitoring applications, and it has not yet been widely investigated. Among the
reviewed publications, Igoe et al. [154] addressed the use of smartphone cameras to detect
and monitor the corrosion process on the surface of a clean iron sample. Smartphone tech-
nology offers numerous prospects for increased participation in scientific and technological
research. In fact, in this research, congruent validation tests and errors of less than 5%
demonstrated the efficiency of this method for the characterization of a smartphone image
sensor response to the degree of steel corrosion. These findings show that a smartphone
can be used to evaluate surface corrosion efficiently and at a low cost. Moreover, Jindal
et al. [155] proposed the use of a panoramic image transmission and refinement technique
in order to overcome difficulties such high time consumption, blurred data, and color
variations that are common problems in underwater pipeline monitoring applications. The
proposed method was validated efficiently in terms of energy consumption and commu-
nication, and it showed maximum data delivery at a low-cost compared to conventional
techniques. A more recent development in the field of corrosion monitoring using image
sensors was produced by Benkhoui et al. [156]. In this study the authors introduced the use
of an unmanned aerial vehicle (UAV) for crack detection in a bridge and investigated the
adoption of stereo cameras based on passive and active depth calculation for the assessment
of bridge structural integrity.
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4. Conclusions

In this paper, a systematic literature review of low-cost technologies for corrosion
monitoring applications has been presented. After the filtering process, 90 articles published
since 1986 were examined that address the use of low-cost technologies such as sensors and
microcontrollers in the corrosion monitoring field. According to the reviewed articles, this
paper could provide the readers with an overview of the low-cost technologies that have
been implemented so far for the monitoring of corrosion parameters using electrochemical
methods (EIS, LPR, galvanic, and EN) and physical methods (ER, RF, OF, UW, EMI, and IR).
In the case of using electrochemical methods as the principal measurement technique, it
was found that the majority of the authors (58%) focused their studies on the use of EIS, as it
turned out to be the most reliable and feasible method for corrosion monitoring applications.
In the case of physical methods, ER has proven to be the most reliable method, indicating
that 25% of the scholars were focused on development of their respective low-cost corrosion
monitoring systems based on this technique. Regarding the architecture of the low-cost data
acquisition system, it has been discovered that the Arduino microcontroller has attracted a
lot of attention for EIS and ER measurements. Moreover, among the physical methods, it
was found that RFID and OF sensors were the two second-most-reliable areas in which the
majority of the researchers focused the development of their respective low-cost corrosion
monitoring systems (23% and 21%, respectively). Furthermore, it has been observed that
most of the reviewed articles were published in the US (43 out of 90), and the majority of
the projects were established in the civil structure industry (46 out of 90).

This article shows that, despite the fact that a significant number of studies have been
reviewed with the goal of employing low-cost technologies for corrosion monitoring, there
are still some gaps in the literature that must be addressed in future research. The same
systematic literature research should be conducted using other databases (such as IEEE
explore or Google Scholar) in order to give a full analysis of the used low-cost solutions for
corrosion monitoring. It is also necessary to provide an overview of the existing low-cost
sensors for corrosion monitoring in the market and compare their features with the those
in the literature.
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