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Abstract: This is a comparative study to clarify the effect of the introduction of layered double
hydroxide (LDH) into various polymer matrices. One perfluorosulfonic acid polymer, i.e., Nafion,
and two polyaromatic polymers such as sulfonated polyether ether ketone (sPEEK) and sulfonated
polysulfone (sPSU), were used for the preparation of nanocomposite membranes at 3 wt.% of
LDH loading. Thereafter, the PEMs were characterized by X-ray diffraction (XRD) and dynamic
mechanical analysis (DMA) for their microstructural and thermomechanical features, whereas water
dynamics and proton conductivity were investigated by nuclear magnetic resonance (PFG and
T1) and EIS spectroscopies, respectively. Depending on the hosting matrix, the LDHs can simply
provide additional hydrophilic sites or act as physical crosslinkers. In the latter case, an impressive
enhancement of both dimensional stability and electrochemical performance was observed. While
pristine sPSU exhibited the lowest proton conductivity, the sPSU/LDH nanocomposite was able
to compete with Nafion, yielding a conductivity of 122 mS cm−1 at 120 ◦C and 90% RH with an
activation energy of only 8.7 kJ mol−1. The outcome must be ascribed to the mutual and beneficial
interaction of the LDH nanoplatelets with the functional groups of sPSU, therefore the choice of the
appropriate filler is pivotal for the preparation of highly-performing composites.

Keywords: proton exchange membranes; nanocomposite membranes; layered double hydroxides;
swelling tests; PFG-NMR; proton conductivity; dynamic mechanical analysis; proton exchange
membrane fuel cells

1. Introduction

Ever-increasing green energy demands due to environmental pollution caused by the
consumption of fossil fuels at a high rate, have urged researchers to discover sustainable
and eco-friendly alternatives. The adoption of fuel cells is now being considered one of the
decisive steps for clean energy generation because only water and heat are the by-products
resulting from electrochemical conversion reactions [1,2]. Among various types of fuel
cells, proton exchange membrane fuel cells (PEM-FCs) have now emerged as a promising
technology due to their quick start-up, high power density, low operating temperatures,
and high commercialization possibilities [3]. Proton exchange membrane (PEM) is an
essential component of PEM-FCs which allows the transfer of H+ from one electrode to
another electrode. Perfluorinated membrane (Nafion®) developed by DuPont is considered
a standard proton exchange membrane to date due to its chemical and thermal stability,
high mechanical resistivity, and good ion conductivity [4]. All these attributes are ow-
ing to the hydrophobic/hydrophilic structure having polytetrafluoroethylene (PTFE) as a
strong hydrophobic backbone and hydrophilic ether-linked side chains containing sulfonic
acid (-SO3H) groups capable of transporting protons [5]. Despite all these advantages,
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Nafion® membranes present some limitations i.e., ionconductivity drops rapidly in anhy-
drous conditions (RH < 80%) restricting the temperature to that not exceeding the boiling
point of water and Nafion® is an expensive material priced at about 500–700$ per m2 [6–8].
So over the last few years, many alternative polymeric materials for PEM have been
proposed which include sulfonated polyether ether ketone (sPEEK) [9–11], sulfonated
polysulfone (sPSU) [12,13], sulfonated polyether sulfone (sPES) [14–16], polybenzimida-
zole (PBI) [17–19] and sulfonated polystyrene (sPS) [20–22]. In addition, many research
groups have prepared composite PEMs using organic and inorganic fillers like TiO2, ZrO2,
ZrP, BPO4, graphene oxide (GO), and SiO2 to enhance the properties of proton exchange
membranes [23–28]. More recently, innovative nanomaterials such as metal-organic frame-
works (MOFs), halloysite nanotubes (HNTs), and MXene also gained increasing attention
as promising inorganic fillers [29–31]. Overall, the strategy allowed for the successful
achievement of noticeable improvements in terms of ionic conductivity and mechanical
resistance. For instance, Yosuff et. al. prepared a high-temperature PBI membrane for
anhydrous conditions and used sulfonated graphene oxide as an inorganic filler. They
reported a two-times enhancement in proton conductivity at 150 ◦C after the addition of
graphene oxide in the polymer matrix [32]. Heo et. al. also used sulfonated graphene oxide
as a filler and studied the performance of sPEEK membranes for a direct methanol fuel
cell. They observed a significant drop in methanol crossover and also noticed a high proton
conductivity value [33]. In another work reported by Lee et. al., sulfonated titanium oxide
(s-TiO2) was used as a filler with polybenzimidazole, and the performance of the composite
membrane improved by 30% at 150 ◦C.

Among the multitude of inorganic fillers, Layered double hydroxides (LDHs), also
known as hydrotalcite, have been widely investigated as inorganic fillers due to their
special physicochemical properties [34,35]. LDHs, whose structure is very similar to brucite
[Mg(OH)2], belong to a family of inorganic materials having theformula [M2+

1−xM3+.(OH)2]
(An−)x/n.mH2O, where M2+ represents a divalent cation such as Cu, Zn, Ni, Co, Mg, etc.
while M3+ is a trivalent cation such as Fe, Ga, V, Al, Cr, etc., A− denotes anion with charge n
and x is the layer charge density [34,35]. Inorganic LDH material has metallic cation layers
with a cation at the center and six oxyanions (OH−) attached making an octahedron [36].
Several LDH platelets are usually stacked and held together by weak interactions, typically
hydrogen bonding. In their interlayer spacings there are anions (NO−) present which act
as exchangeable ions [37–40]. As one of the key features of LDHs material as filler for
PEMs, the platelets are expected to participate in the proton conduction once dispersed in
the polymer matrix. Despite this, the studies reported to date are quite contrasting. Kim
and coworkers reported an increase in the thermal stability and proton conductivity of the
sPEEK after the introduction of LDH [41]. Similar results were obtained by Herrero et al.
in the case of sPSU-based nanocomposites [35]. In contrast, Lee et al. [42,43] have demon-
strated that the addition of LDH might have detrimental effects on the ion conductivity
and diffusion coefficient for Nafion-based nanocomposites. Similarly, Zeng and coworkers
have reported a decrease in the conductivity performance of poly(vinyl alcohol)/LDH
composites compared to virgin PVA [44]. De facto, the phenomena governing the interplay
between LDH materials and the hosting polymer, which might affect the physicochemical
properties of the resulting nanocomposite, are still not clarified.

To fill this lack, we provide a comparative analysis with an attempt to elucidate the
effect of LDHs materials on the physicochemical and ion conductive properties of three
of the most used proton conductive membranes, which are Nafion, sulfonated polyether
ether ketone (sPEEK) and sulfonated polysulfone (sPSU). For this study, LDH based on
Mg2+/Al3+ (2:1 metals ratio) with NO3

− interlayer anion was chosen and membranes at
3 wt.% of filler loading with respect to the polymer were prepared by simple solution
intercalation. According to the literature, 3 wt.% of loading has been demonstrated to be
the optimal one in most of the nanocomposite systems and for various types of inorganic
materials [45–49]. Additionally, during our previous works, we have demonstrated that the
introduction of 3 wt.% of LDH material can ensure the maximum improvement in terms of
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transport properties, conductivity values, and mechanical properties either in the case of
Nafion-based [50], sPEEK-based [51], and sPSU-based [46] composite membranes. Indeed,
higher filler contents resulted in particle agglomeration, membrane inhomogeneity, and
thus deterioration of the physicochemical and electrochemical performance. The microstruc-
ture of the composite membranes was investigated by X-ray diffraction, while dynamic
mechanical analysis was carried out to characterize the thermomechanical performance
of the various PEMs. Swelling tests and NMR spectroscopy allowed for a better compre-
hension of the molecular dynamics of water in the prepared membranes. In particular, the
influence of the LDHs materials on the transport properties of the resulting nanocomposite
membrane was investigated through direct measurements of the self-diffusion coefficients
(by Pulse Field Gradient NMR method) and of the relaxation times (T1). Finally, the proton
conductivity has been assessed by electrochemical impedance spectroscopy (EIS).

2. Materials and Methods
2.1. Materials

Nafion (20 wt.% dispersion in water and lower aliphatic alcohols) was supplied by
Aldrich (Sigma-Aldrich, Milan, Italy), Polyether ether ketone (PEEK, Victrex 450PF) was
purchased by ICI (London, UK) and commercial Polysulfone (Lasulf) was supplied by Lati
SPA (Varese, Italy).

Sulfuric acid (95–98 wt.%), Chloroform, trimethylsilyl chlorosulfonate, sodium methox-
ide/methanol solution, ethanol, N,N-Dimethylformamide (DMF), N,N-Dimethylacetamide
(DMAc) and Sodium Hydroxide (NaOH, 0.1 M, volumetric standard) were all purchased
from Sigma-Aldrich (Sigma-Aldrich, Milan, Italy) and used as received.

2.2. Synthesis of Sulfonated Polyether Ether Ketone

The procedure for the synthesis of sulfonated Polyether ether ketone (sPEEK) has
been deeply described elsewhere [52]. 2.5 g of polyether ether ketone (PEEK) was dried
in a vacuum oven overnight at 100 ◦C for 24 h, then treated with 50 mL of concentrated
sulfuric acid (H2SO4) and left under vigorous magnetic stirring at 25 ◦C till a homogeneous
solution was obtained. The reaction was heated at 40 ◦C and left under stirring for 5 h
before quenching with ice-cold distilled water. This led to precipitation of sPEEK into flake
form, which was recovered by filtration and washing several times with distilled water
(until pH 6–7). Finally, sPEEK was dried in a vacuum oven at 60 ◦C for 24 h and stored in a
desiccator until use.

2.3. Synthesis of Sulfonated Polysulfone

Polysulfone sulfonation was achieved through the procedure described in the previous
papers [13,53]. After dissolution of PSU into anhydrous chloroform at room temperature,
trimethylsilyl chlorosulfonate was added to the reaction as sulfonating agent. The molar
ratio between sulfonating agent and repetitive units was fixed equal to 2.5, and the reaction
left at 50 ◦C under vigorous mechanical stirring. This allowed the production of the
silyl polysulfonate derivative as an intermediate product. After 6 h, sodium methoxide
solution was added dropwise to the reaction to cleave the silyl sulfonate moieties. After
1 h, polysulfone in sodium form was recovered from the solution by precipitation in a bath
of ethanol, filtration, and washing several times with ethanol and distilled water. The fine
powder was dried in an oven at 60 ◦C overnight.

2.4. Synthesis of Layered Double Hydroxide (LDH)

Layered double hydroxide (LDH) nanofillers were synthesized by co-precipitation in
an aqueous solution of sodium hydroxide and salts of Mg2+ and Al3+, using a previously
reported procedure [53]. Briefly, the magnesium/aluminum metal ratio was adjusted to 2/1
in 100 mL of an aqueous solution containing magnesium nitrate hexahydrate (0.05 mol),
aluminum nitrate nonahydrate (0.025 mol), and a sodium nitrate salt (0.045 mol).
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Successively, an aqueous solution of sodium hydroxide (2.5 M) was added slowly
until a pH value of 10 was reached. The precipitated LDH nanomaterials were stirred at
60 ◦C for about 24 h and separated by centrifugation, washed several times with water, and
dried at 80 ◦C for 24 h. The synthesis was performed under a constant flow of nitrogen and
using decarbonate-deionized water. Finally, the structure of LDH was characterized using
powder X-ray diffraction spectroscopy.

2.5. Preparation of Nanocomposite Membrane

All the nanocomposite membranes were prepared by simple solution intercalation
method [51,54–56]. In the case of Nafion/LDH composite membrane, 1 g of commercial
Nafion resin solution was heated at 60 ◦C until dried from the solvents and then re-dissolved
in 10 mL of DMF until a clear solution was obtained. LDH was first dispersed in DMF for
48 h by alternating vigorous mechanical stirring with ultrasonication. This dispersion was
then added to the solution of Nafion in DMF and left under stirring at room temperature
for another 24 h. Finally, when the final solution was homogeneous, solvent-casting is
performed on a Petri dish and left in the oven at 60 ◦C to evaporate the solvent for many
hours. Pristine Nafion membrane was simply obtained from the casting of the Nafion/DMF
solution. Finally, both Nafion-based membranes were subjected to thermal and chemical
activations according to a method used in the literature [57].

With regard to the sPEEK/LDH and sPSU/LDH nanocomposites, an adequate amount
of LDH was first dispersed in DMAc during 24 h by alternating vigorous mechanical
stirring with ultrasonication. In the meantime, the selected polymer was also dissolved in
10 mL of DMAc at room temperature. Once a homogeneous dispersion was obtained, the
LDH dispersions were then added to the corresponding polymer solution and left under
stirring at room temperature for an additional 24 h. The membranes were obtained by
casting the polymer dispersion onto a Petri dish and heating in an oven at 60 ◦C until dry.
Pristine sPEEK and sPSU membranes were obtained by dissolving an appropriate amount
of polymer into DMAc followed by casting. Before testing, the sPEEK-based [58], and
sPSU-based [46,59] membranes were converted into the acid form by soaking them in a
1M H2SO4 solution for 7 h at 50–60 ◦C, followed by several washes with boiling deionized
water to remove any residual acid.

For this study, all the nanocomposite membranes were prepared at 3 wt.% of loading
with respect to the polymer. Figure 1 shows the photos of the membranes prepared in this
study. Even after introduction of the LDH nanoplatelets inside the Nafion, sPEEK, and sPSU
matrices, all the membranes still appear completely homogeneous and highly transparent.
In fact, no clay particle crystals are observed suggesting the absence of agglomerates or
inhomogeneity. The average thickness of the membranes ranged between 50 and 55 µm.
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2.6. Characterization Techniques

Ion Exchange Capacity (IEC, in milliequivalents per g of dry polymer) for all the
membranes was measured by the acid-base titration method [60]. The samples in the
acid-activated form were immersed in 2M NaCl solution for 24 h at room temperature to
completely release H+ due to the exchange with Na+. Thereafter, the amount of released H+

was titrated with standard NaOH solution (0.1 M). Phenolphthalein was used as indicator.
The IEC values (meq g−1) were calculated according to Equation (1):

IEC
(

meq·g−1
)
=

M(NaOH) V(NaOH)

Wdry
(1)

where V is the volume (mL) and M is the concentration (mol/L) of the NaOH solution
consumed to neutralize the H+ ions, while Wdry is the dry weight of the sample.

Water uptake (wu%) was measured by soaking the dried membranes (whose weight is
wdry) in deionized water at room temperature for 24 h. Each sample was then quickly dried
with tissue paper to remove surface water droplets and weighted (wwet). The water uptake
was calculated by Equation (2) and reported as an average of at least three independent
measurements.

wu (wt.%) =
wwet − wdry

wdry
∗ 100 (2)

Similarly, the swelling stability of the samples was evaluated in terms of dimensional
variation during heating. In detail, each sample was swelled in distilled water heated at a
temperature ranging from 30 to 80 ◦C, each 10 ◦C. For each temperature, equilibration time
was 2 h. The water uptake was then calculated from the difference between the wet and
the dry mass.

From the water content and the IEC, the number of water molecules per -SO3H group,
defined as λ value, can be calculated by the formula reported in Equation (3):

λ =
wu

MMH2O
× IEC (3)

X-ray diffraction (XRD) measurements were performed using the Cu-Kα radiation of
a Bruker Axis Diffractometer/Reflectometer (D8) equipped with a Dynamic Scintillation
Detector, NaI, and with a Göbel mirror [61]. Spectra were collected at room temperature in
the 2θ range from 5◦ to 40◦, in steps of 0.03◦, and the counting time was 1 s/step [47].

NMR spectroscopy measurements were performed on a Bruker AVANCE 300 wide
bore spectrometer working at 300 MHz on 1H [62]. The employed probe was a Diff30
Z-diffusion 30 G/cm/A multinuclear with substitutable RF inserts. The self-diffusion
coefficients (D) of water confined in the membranes were measured by the pulsed field
gradient stimulated-echo (PFG-STE) technique [63]. In these experiments the following
experimental parameters were used: diffusion time (∆) of 8 ms, pulse length (δ) of 0.8 ms,
gradient amplitude varying from 100 to 900 G/cm and the number of scans was 8. Due to
the very low standard deviation of the fitting curve and repeatability of the measurements,
the uncertainties in D values were lower than 3%. Longitudinal relaxation time (T1) values
of water were instead obtained by the inversion recovery sequence (π-τ-π/2). Measure-
ments were conducted by increasing temperature step by step from 20 ◦C to 130 ◦C, every
20 ◦C, leaving the sample to equilibrate at each temperature for about 15 min.

Electrochemical Impedance Spectroscopy (EIS) was used to measure through-plane
proton conductivity of all nanocomposite membranes. It used a homemade two-electrode
cell connected with a fuel cell test hardware (850C, Scribner Associates, Inc., Southern
Pines, NC, USA). The measurements were performed at 90% RH in the temperature range
between 20 ◦C and 120 ◦C. A PGSTAT 30 potentiostat/galvanostat (Methrom Autolab)
equipped with an FRA module was used to measure the AC impedance response of the
cell. The AC voltage amplitude was 10 mV and the frequency ranged between 1 Hz and
1 MHz. The membrane resistance R was determined from the high-frequency intersection
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of the impedance arc with the real axis in a Nyquist plot using NOVA software 2.0. Proton
conductivity, σ (S/cm) was calculated using the following Equation (4).

σ
(

S cm−1
)
=

l
Rel ∗ A

(4)

3. Results and Discussion
3.1. Morphological, Structural and Thermomechanical Properties

Morphological characterization of Nafion-based, sPEEK-based, and sPSU-membranes
was performed by Scanning Electron Microscopy (SEM), and the cross-sectional images
are reported in Figure 2. It is possible to see that all the pristine membranes (Figure 2a,c,e)
exhibit a dense, compact, and free-of-defect cross-section. Overall, the introduction of the
LDH nanoplatelets does not significantly alter the morphological features of the PEMs
(Figure 2b,d,f). However, while the plain membranes are characterized by a smooth and
plain morphology, the cross-section of the composite PEMs appears more wrinkled and
crumpled. Likely, the LDH platelets provide for nanosized cleavage planes during the
crio-fracturing of the samples. It is worth noting that no agglomerates are visible through
the cross-section of the Nafion/LDH, sPEEK/LDH, and sPSU/LDH nanocomposites. The
evidence indicates that the LDH platelets are homogeneously dispersed in each hosting
matrix, and thus maintain sub-micrometric dimensions.

To clarify the nature of the various composite membranes, i.e., conventional nanocompos-
ite with stacked nanoparticles, intercalated one, or exfoliated nanocomposite, X-ray diffraction
(XRD) analysis was carried out. XRD patterns of the various membranes are illustrated in
Figure 3a, in comparison with that of the Mg/Al-NO3

− LDH powder. Clearly, the spectra of
Nafion, sPEEK, and sPSU is characterized by the presence of a single broadband in the 2θ
range of 12–30 degree, indicating all the bare membranes are completely amorphous. Worth
noting, in all the nanocomposite membranes there is no evidence of the typical diffraction
peaks of staked LDH platelets (which exhibit a major diffraction peak at 2θ = 10.1◦), indicating
the nanolamellae lost their stacking. This provides clear evidence of the fact that the solution
intercalation procedure allows for obtaining completely exfoliated membranes.

Without adequate thermomechanical resistance, an electrolyte membrane could not
meet the needs for membrane electrode assembly (MEA) fabrication in the fuel cell. Con-
sequently, Dynamic Mechanical Analysis (DMA) was used to obtain crucial information
about the viscoelastic properties of the investigated membranes. In this regard, Figure 3b
illustrates the temperature variation of the storage modulus for the Nafion-based, sPEEK-
based, and sPSU-based PEMs. The mechanical resistance increases in the order of Nafion <
sPEEK < sPSU being their storage modulus 18.5 MPa, 79.1 MPa, and 390.8 MPa, respectively.
It is worth noting that the sPSU membrane is able to ensure impressive mechanical strength
(i.e., its storage modulus is 21-fold higher than Nafion) as well as outstanding thermal
resistance. Indeed, while E′ for Nafion starts decreasing at a temperature above 80 ◦C,
the storage modulus of sPSU remains almost stable until ca. 200 ◦C. The outcome holds
promise for the successful utilization of sPSU under PEM-FCs operating under very high
temperatures. Following the introduction of the LDH nanoplatelets, the storage modulus
increases with respect to the virgin polymers, no matter the hosting matrix. However, while
the enhancement is quite moderate in the case of Nafion/LDH, it became significant in
the case of sPEEK/LDH and sPSU/LDH. Noticeably, E′ increases to a similar extent for
the two nanocomposite membranes based on polyaromatic polymers: storage modulus
of the sPEEK/LDH and sPSU/LDH membranes is almost 80% higher with respect to the
bare polymers. Such an impressive increase in membrane resistance is quite typical for
nanocomposite membranes comprising 2D-layered materials [48,64,65]. The outcome can
be ascribed to the inherent capacity of this class of fillers to generate a nacre-like struc-
ture [66]. Indeed, the anionic clays experience strong electrostatic interaction with the
functional groups of the hosting matrix but also with the platelets themselves. Due to this
synergistic effect, the mechanical stress can be rapidly transferred from the polymer matrix
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to the high-strength LDH nanoparticles in a manner similar to nacre [58,67]. Last but not
least, the mutual interaction between LDH platelets and polymer backbone also provides
for better thermal resistance, thus further extending the operating temperature of the PEMs.
Indeed, the decrease in the storage moduli for nanocomposite membranes based on sPEEK
and sPSU is shifted at higher temperatures compared to the virgin membranes.
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Figure 3. (a) XRD patterns and (b) DMA thermograms for the Nafion-based, sPEEK-based, and
sPSU-based membranes.

3.2. Ion Exchange Capacity and Water Uptake Behavior

The ion exchange capacity (IEC, meq g−1) of a membrane relates to the number of
exchangeable ions contained in a membrane, consequently, it gives an estimation of the
number of functional groups available for proton conduction [46]. The IEC values for the
various Nafion-, sPEEK- and sPSU-based membranes are summarised in Table 1 together
with the water uptake at 20 ◦C. Comparatively, all the nanocomposite membranes exhibit
higher IEC values than the parental polymers. This can be clearly ascribed to the charged
nature of the anionic lamellae dispersed in the polymer matrices, which produces an
appreciable increase in the number of polar groups. The highest IEC value of 2.13 meq g−1

was achieved by the sPEEK/LDH membrane. The variation in IEC typically impacts the
water absorption capacity of the electrolyte: generally, the higher the IEC, the higher the
hydrophilicity and thus, the higher the water uptake. This is valid for the Nafion-based
PEMs, since the w.u. increases from ca. 25 wt.% in the bare polymer to 28.3% in the
Nafion/LDH. Contrariwise, the introduction of the LDH lamellae inside both polyaromatic
polymers produces a slight decrease in the maximum absorption capacity. This peculiar
outcome strongly suggests that the nanoclay impacts the microstructure of the hydrophilic
channels of both nanocomposites. Due to their positively charged surface, the LDH platelets
may act as physical crosslinkers between -SOH functional groups of adjacent polymers
chains, decreasing the overall free volume in sPSEEK/LDH and sPSU/LDH and thus
limiting their swelling capability.

Table 1. Ion Exchange Capacity (IEC) and water uptake (W.U.) values for the various pristine and
nanocomposite membranes.

Membrane IEC
[meq g−1]

W.U. @ 20 ◦C
[wt.%]

Nafion 0.93 24.8
Nafion/LDH 1.19 28.3

sPEEK 1.91 40.0
sPEEK/LDH 2.13 38.4

sPSU 1.39 26.5
sPSU/LDH 1.49 24.8
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To clarify the effect of the LDH introduction on the hydrolytic resistance of the vari-
ous nanocomposite membranes, their swelling behavior was investigated under variable
temperatures. In this regard, Figure 4 shows the temperature evolution of the water uptake
for the Nafion-based (Figure 3a), sPEEK-based (Figure 4b), and sPSU-based (Figure 4c)
membranes, in the temperature range 20–80 ◦C. Both Nafion and sPEEK membranes exhibit
a massive swelling during heating, with an increase of more than 50% in the water uptake
at 80 ◦C. This is predictive of low dimensional stability which typically leads to deteriora-
tion of mechanical resistance and, most importantly, to dimensional mismatch when the
membrane is assembled into a fuel cell [68]. Obviously, the highest swelling is reached by
bare sPEEK due to the very high IEC value. In the case of bare sPSU, the swelling tests
revealed the membrane has an excellent anti-swelling capability: its water uptake increases
from ca. 27 wt.% at 20 ◦C to 37 wt.% at 80 ◦C. Turning the attention to the nanocomposite
membranes, it can be clearly seen that the introduction of the LDH poorly impacts the
swelling features of Nafion. De facto, the filler particles simply increase the number of
hydrophilic sites in the PEM. On the other side, the anionic clays have a beneficial impact on
the dimensional stability of both sPEEK and sPSU due to the massive reduction in swelling
during heating. Such an outcome is very positive because it guarantees the dimensional
stability of the electrolyte membrane during the PEMFC operation.

Polymers 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

nanocomposite membranes, it can be clearly seen that the introduction of the LDH poorly 
impacts the swelling features of Nafion. De facto, the filler particles simply increase the 
number of hydrophilic sites in the PEM. On the other side, the anionic clays have a bene-
ficial impact on the dimensional stability of both sPEEK and sPSU due to the massive 
reduction in swelling during heating. Such an outcome is very positive because it guaran-
tees the dimensional stability of the electrolyte membrane during the PEMFC operation. 

  
(a) (b) 

 

 

(c)  

Figure 4. Temperature evolution of water uptake for (a) Nafion-based, (b) sPEEK-based and (c) 
sPSU-based membranes. 

This is further corroborated by the temperature evolution of the lambda (λ) or coor-
dination number, described as the number of water molecules per sulfonic acid group. 
The λ values provide crucial information concerning the microstructure of the electrolyte 
films. The values for the investigated membranes, for the temperature range 20–80 °C, are 
illustrated in Figure 5. The λ value increases (massively for Nafion and sPEEK whereas 
moderately for sPSU) with the temperature due to the softening of the polymer chains 
under the thermal energy, which can thus accommodate a larger amount of water. It is 
worth noting that, for all the hosting matrices, the λ value declined remarkably after the 
addition of LDH. As discussed above, the nanocomposite membranes exhibit higher IEC 

Figure 4. Temperature evolution of water uptake for (a) Nafion-based, (b) sPEEK-based and (c) sPSU-
based membranes.



Polymers 2023, 15, 502 10 of 19

This is further corroborated by the temperature evolution of the lambda (λ) or coordi-
nation number, described as the number of water molecules per sulfonic acid group. The λ

values provide crucial information concerning the microstructure of the electrolyte films. The
values for the investigated membranes, for the temperature range 20–80 ◦C, are illustrated
in Figure 5. The λ value increases (massively for Nafion and sPEEK whereas moderately for
sPSU) with the temperature due to the softening of the polymer chains under the thermal
energy, which can thus accommodate a larger amount of water. It is worth noting that, for all
the hosting matrices, the λ value declined remarkably after the addition of LDH. As discussed
above, the nanocomposite membranes exhibit higher IEC but similar water uptake compared
to the parental polymers. This means in the membranes containing the LDH nanoplatelets
there is a larger number of hydrophilic groups but a lower number of water molecules solvat-
ing them. Moreover, while the addition of LDH particles inside the Nafion matrix does not
impact the dimensional variation of the ionic clusters with the temperature, the number of
water molecules per sulfonic acid group barely increased during heating for both sPEEK and
sPSU nanocomposites. This definitely confirms that in these polymers the introduction of the
LDH minimizes the alteration of the cluster size during heating due to the aforementioned
crosslinking activity of the LDH lamellae.
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3.3. 1H Nuclear Magnetic Resonance (D and T1) Characterization
1H-NMR spectroscopy allowed study of the molecular dynamics (both long- and short-

range) of water confined inside the hydrophilic clusters of the prepared nanocomposite
membranes, through the direct measurements of the water self-diffusion coefficients (D)
and the longitudinal relaxation times (T1), respectively. Figure 6 shows the water self-
diffusion coefficients measured on completely swollen membranes (that is, at the maximum
water uptake) in the temperature range of 20–120 ◦C. Typically, water diffusivity in PEMs
increases with the temperature due to thermal energy, but then abruptly decreases once
the evaporation of mobile bulk water becomes massive. The crucial temperature for bare
Nafion is 100 ◦C, while it is shifted toward a lower temperature (80 ◦C) in the case of
sPEEK and sPSU. Above these temperatures, only water molecules solvating the acid
groups of the polymers contribute to D, but they are almost immobile. This is the reason
for such a drop in diffusivity, which de facto limits the performance of the corresponding
PEM-FCs operating under high temperatures. It can be clearly seen that the presence of the
LDH nanoplatelets improves the diffusivity of the resulting nanocomposite, no matter the
hosting matrix. Noteworthy, the beneficial impact of the filler becomes more appreciable in
the high-temperature region, i.e., above 80 ◦C. Indeed, D keeps on increasing for all the
nanocomposites till 120 ◦C, indicating the anionic platelets are able to retain a satisfactory
amount of mobile water even under a dehydrating environment. Comparatively, the best
performance was achieved by the sPSU/LDH membrane, which exhibits a self-diffusion
coefficient of ca. 1 × 10−5 cm2 s−1 at 120 ◦C which is almost two orders of magnitude
higher than the parental polymer. This holds promise for the successful implementation of
this kind of nanocomposite membrane into high-temperature PEM-FCs.

The analysis of spin-lattice relaxation times (T1) was able to shed light on molecular
interactions of water molecules inside the investigated membranes. Compared to D, T1
refers to more localized motions including both translation and rotation on a time scale
comparable to the reciprocal of the NMR angular frequency (a few nanoseconds). In a
nutshell, the larger the interactions between spin and lattice, the quicker the relaxation
(shorter T1), with T1 generally increasing with the temperature [69]. Figure 7 reports the
temperature behavior of T1 in the range of 20–120 ◦C. We can observe that T1 values
decrease for all the polymer matrices after the addition of the LDH lamellae, confirming
the filler provides for stronger dipolar interactions, and faster decays of longitudinal
magnetization (shorter T1), with the water molecules. Since the Grotthuss mechanism
relies on the creation of a highly-interconnected path for ion transport, stronger interactions
between the H+ ions and the lattice generally provides for higher proton conductivity [70].

3.4. Proton Conductivity

The Arrhenius plot of the proton conductivity (σ) measured on pristine and nanocom-
posite membranes is shown in Figure 8 at 90% relative humidity conditions in the tem-
perature range of 30–120 ◦C. Some representative values are also reported in Table 2. By
comparing the bare polymers, it is clear that Nafion exhibits superior performance in terms
of proton conductivity in spite of its very low IEC (i.e., 0.93 meq g−1). The membrane
possesses a peculiar microstructure where the hydrophobic PTFE backbone is well sep-
arated by the hydrophilic ion conducting clusters [71,72]. This clear phase segregation
provides for very high proton conductivity, at least under highly-humidified conditions:
the bare Nafion is able to yield 128 mS cm−1 at 120 ◦C. Even if less pronounced, a sort of
nanoscale segregation can be hypothesised also for the sPEEK membrane, but the ionic
clusters are narrower and poorly interconnected resulting in lower σ values with respect to
Nafion [73,74]. Contrariwise, sPSU lacks any phase separation, leading to the formation of
lamellar, very narrow, and highly branched hydrophilic clusters with a larger number of
dead-end “pockets” [75]. This is clearly corroborated by the Activation Energy (Ea) calcu-
lated for the proton conductivity in the three polymers, which increases from 11.2 kJ mol−1

in the case of Nafion, to 15.4 kJ mol−1 for sPEEK. sPSU exhibits the lowest conductivity as
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well as the highest Ea, i.e., 20.5 kJ mol−1, confirming the very low efficiency of the proton
transport in this membrane.
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Figure 6. Self-diffusion coefficients and as a function of the temperature (from 20 ◦C to 120 ◦C) of the
water confined in (a) Nafion and Nafion/LDH, (b) sPEEK and sPEEK/LDH and (c) sPSU and sPSU/LDH.

The appropriate nanodispersion of the anionic nanoclay boosts the proton conduction,
independently from the hosting matrix. Indeed, the LDH platelets provide for additional
sites that are directly involved in the proton conduction via the Grotthuss mechanism, as
confirmed by the impressive reduction in the Ea following the introduction of the nanofiller.
Quite surprisingly, the major improvement is observed in the case of the qPSU/LDH
membrane which reaches a σ of 122 mS cm−1 at 120 ◦C, almost attaining the performance
of the Nafion, which is the current benchmark for the application in PEM-FCs. The
sPSU/LDH membrane also shows the lowest activation energy (8.7 kJ mol−1) among the
investigated membranes. As mentioned above, acting as a physical crosslinker, the LDH
nanoplatelets are able to fill the gap between adjacent sulfonic acid groups, thus enabling
highly-efficient proton conduction even in sPSU.
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Table 2. Conductivity values at two representative temperatures (i.e., 30 and 120 ◦C) and humidifica-
tion conditions (30 and 90% RH) for the various PEMs.

Membrane
σ at 30 ◦C
[mS cm−1]

σ at 90 ◦C
[mS cm−1]

σ at 120 ◦C
[mS cm−1]

90% RH 30% RH 90% RH 90% RH

Nafion 44.52 2.51 91.08 127.91
Nafion/LDH 76.90 17.10 136.04 182.07

sPEEK 19.78 0.95 77.56 109.72
sPEEK/LDH 35.47 8.14 95.04 149.59

sPSU 11.21 0.49 46.3 71.60
sPSU/LDH 45.22 9.31 79.3 128.25
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Figure 8. Arrhenius plots of proton conductivities at 90% RH of (a) Nafion and Nafion/LDH,
(b) sPEEK and sPEEK/LDH and (c) sPSU and sPSU/LDH. Dash lines represent the linear fitting to
experimental data.

Finally, proton conductivity was also investigated at 90 ◦C and under different RH
conditions (from 30 to 90% RH). The results are shown in Figure 9. As expected, pristine
membranes exhibit a significant drop in conductivity as the relative humidity decreases
from 90% to 30%. In the “quasi-anhydrous” state, the performance of Nafion decreases
by one order of magnitude, while the drop in conductivity is even higher for both sPEEK
and sPSU: for these two polymers, σ at 30% RH is more than two orders of magnitude
lower than that achieved at 90% RH. It is worth noting that, as the booster of the proton
conductivity, the LDH plays a major role under low humidification conditions, where
progressive depletion of water molecules is partially compensated by the presence of the
anionic lamellae which are directly involved in the proton transport mechanism. Both
sPEEK/LDH and sPSU/LDH membranes yield a proton conductivity of ca. 10 mS cm−1

@ 90 ◦C and 30% RH, significantly exceeding the performance of Nafion. In a nutshell,
the introduction of LDH could be exploited to convert cost-effective but low-performing
polyaromatic polymers into PEMs able to ensure satisfactory proton conductivity even
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under dehydrating conditions. The latter is a very important requirement for the large-scale
development of high-temperature PEM-FCs.
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4. Conclusions

The preparation of nanocomposite membranes seems to represent, to date, the most
effective path to overcome the performance, safety, and cost limitation of conventional
perfluorosulfonic acid (PFSA) polymer for PEM-FCs applications. Among the multitude of
fillers, layered double hydroxides (LDHs) have been emerging as very promising materials
due to their peculiar physicochemical and electrochemical properties.

Herein, several nanocomposite membranes were prepared by LDHs nanoparticles
(Mg2+/Al3+ LDH with a metal ratio of 2:1 and NO3

− interlayer anions) in three different
polymer matrices: one perfluorosulfonic acid polymer, i.e., Nafion, and two polyaromatic
polymers such as sulfonated polyether ether ketone (sPEEK) and sulfonated polysulfone
(sPSU). The filler loading was kept at 3 wt.% for all the nanocomposite membranes. To
elucidate the effect of the filler introduction on the physical-chemical and electrochemical
properties of the nanocomposite membranes, the PEMs were then characterized in terms of
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microstructure, thermo-mechanical resistance, proton mobility, and electrochemical perfor-
mance. XRD revealed the solution intercalation procedure which allowed the production
of completely exfoliated membranes, that is, the nanoplatelets lose their staking, no matter
the hosting matrix. Under this circumstance, the anionic lamellae are able to massively
enhance the thermomechanical resistance (i.e., to 80% improvement of the storage modu-
lus) of the resulting membrane likely due to the formation of a nacre-like structure. Both
swelling tests and 1H NMR characterization confirmed that in the case of Nafion-based
membranes, the LDHs simply provide for additional hydrophilic sites that increase both
water adsorption and water retention capacity. Contrariwise, the introduction of LDH
into sPEEK and sPSU perhaps alters the microstructure of the ionic clusters leading to
improved proton transport properties but also to impressive anti-swelling capability. De
facto, the anionic clays act as a physical crosslinker between adjacent sulfonic acid groups,
both in sPEEK and sPSU. This also promotes the formation of highly-conductive paths
for proton transport that dramatically enhance the conductivity performance of the two
nanocomposites. Noteworthy, sPSU/LDH nanocomposite exhibited a peak conductivity
performance of 122 mS cm−1 at 120 ◦C and 90% RH, almost attaining the performance of
the Nafion, i.e., the current benchmark for the application in PEM-FCs. The results of this
study demonstrated that the nature of the interaction between the filler and the hosting
matrix plays a crucial role in determining the overall performance of the final composite
membrane. Additionally, due to the low-cost, ease of preparation, and eco-friendly nature
of the sPSU/LDH nanocomposite, it has tremendous potential as an alternative polymer
for large-scale application in PEM-FCs.
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