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Abstract 

Background  Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Active health screen-
ing for CRC yielded detection of an increasingly younger adults. However, current machine learning algorithms that 
are trained using older adults and smaller datasets, may not perform well in practice for large populations.

Aim  To evaluate machine learning algorithms using large datasets accounting for both younger and older adults 
from multiple regions and diverse sociodemographics.

Methods  A large dataset including 109,343 participants in a dietary-based colorectal cancer ase study from Canada, 
India, Italy, South Korea, Mexico, Sweden, and the United States was collected by the Center for Disease Control 
and Prevention. This global dietary database was augmented with other publicly accessible information from mul-
tiple sources. Nine supervised and unsupervised machine learning algorithms were evaluated on the aggregated 
dataset.

Results  Both supervised and unsupervised models performed well in predicting CRC and non-CRC phenotypes. A 
prediction model based on an artificial neural network (ANN) was found to be the optimal algorithm with CRC mis-
classification of 1% and non-CRC misclassification of 3%.

Conclusions  ANN models trained on large heterogeneous datasets may be applicable for both younger and older 
adults. Such models provide a solid foundation for building effective clinical decision support systems assisting 
healthcare providers in dietary-related, non-invasive screening that can be applied in large studies. Using optimal 
algorithms coupled with high compliance to cancer screening is expected to significantly improve early diagnoses 
and boost the success rate of timely and appropriate cancer interventions.
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Introduction
In the current twenty-first century, the re-emergence 
of machine learning (ML) and advancement in artificial 
intelligence (AI) through data science provide unique 
opportunities to go beyond traditional statistical and 
research limitations, and advance health data analytics in 

solving healthcare challenges and ultimately improve the 
delivery of health services [1, 2].

One of the contemporary healthcare challenges is colo-
rectal cancer (CRC). CRC is the third most commonly 
diagnosed malignancy after breast and lung cancers, and 
is also the second leading cause of cancer-related mortal-
ity worldwide [3, 4]. In 2020, an estimated 1.93 million 
new CRC cases were diagnosed, which accounts for 10% 
of the global cancer incidence [5]. The increasing num-
ber of global CRC cases could be attributed to successful 
population-based screening and surveillance programs 
that have been rapidly and actively implemented [6, 7]. 
Nonetheless, the number of CRC mortality is still high 
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where 0.94 million deaths were recorded in 2020 that 
accounts for 9.4% of cancer deaths globally [5]. Active 
health screening and prevention of CRC activities have 
yielded an increasingly younger generation (below 
50 years) of early-onset CRC in developed countries and 
overall increase in CRC incidence detection in developing 
and emerging economic nations [8, 9]. Increased patho-
physiological understanding of CRC progression and 
the advancement of treatment options, including endo-
scopic and surgical interventions, radiotherapy, immu-
notherapy, and targeted chemotherapy, have effectively 
prolonged survival years and improved quality of life of 
CRC patients [9, 10]. The prognosis after CRC therapy is 
generally good when CRC is detected at a younger age, 
however, there is still huge public health challenges and 
financial burden associated with CRC [9]. In 2015, the 
economic cost of CRC in Europe due to hospital-care 
costs, loss of productivity, premature death, and costs of 
informal care was estimated at 19 billion euros [11]. Fur-
thermore, the underlying mechanisms and risk factors of 
early-onset CRC pathological features are sporadic and 
not fully understood and require more research [9].

In this era of digital technology, the vast amount of 
high-quality CRC data (owing to an increase in the 
number of patients) can be rigorously collected through 
health information systems. This has enabled data sci-
ence to offer a new avenue of enhancing knowledge of 
CRC through research and development. Currently, the 
extant evidence using machine-learning models have 

made great strides in predicting CRC based on available 
genetic-based data, which have shown that some CRC 
cases have a component of hereditary predisposition [12, 
13]. However, genetic disorder is a permanent and non-
modifiable risk factor. In contrast, dietary control is one 
of the most effective protective measures against CRC 
that the population can modify [4, 14] especially because 
CRC susceptibility is mainly resulting from adopting die-
tary lifestyle associated with globalization [15, 16]. With 
the globalization of the food industry and supply chain, 
it is thus important data science research to look into 
global diet features in relation to CRC prediction. In this 
study, we obtained global dietary-based data from pub-
licly accessible databases and investigate the important 
dietary factors of predicting CRC labels using exploratory 
unsupervised and supervised ML-based models.

Methods
Dataset and data preprocessing
Several end-to-end procedures were systematically per-
formed, as illustrated in Fig. 1. Dietary-related colorectal 
cancer data was obtained from the Center for Disease 
Control and Prevention, Global Dietary database, and 
publicly accessible institutional sites [17, 18, 19, 20, 21, 
22, 23]. The initial combined data contained 25 coun-
tries consisting of Argentina, Bangladesh, Bulgaria, Can-
ada, China, Korea, Ecuador, Estonia, Ethiopia, Finland, 
Germany, India, Iran, Israel, Kenya, Malaysia, Mexico, 
Mozambique, Philippines, Portugal, Sweden, Tanzania, 

Fig. 1  A schematic of the procedures undertaken in this study to classify CRC labels
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Italy, Japan, and the United States. The data collection 
methodology of these data sets were similar, i.e., cross-
sectional and employed dietary questionnaires. The differ-
ent sets of data were then merged and extrapolated based 
on the same dietary characteristics. Features that were not 
common across the data sets were excluded. This study 
only includes data sets that are of the English language. 
Features with different units of measurements were con-
verted for standardization. A cleaning procedure was 
employed including removal of ineligible cases, duplicate 
characteristics, and features with more than 50% missing 
values (listwise deletion). At this stage, a total of 3,520,586 
valid data remained. Due to computational limitations, 
a multi-stage, proportionate random sample of 109,342 
were extracted for analysis, that maintains the percent-
age by country and CRC distribution, of which 7,326 
(6.7%) cases were positive colorectal cancer labels that 
are derived for seven countries that comprised of Canada, 
India, Italy, South Korea, Mexico, Sweden, and United 
States. A sample size of 5,000 cases was sufficient to 
achieve a power of 0.8 [24]. Considering the computation 
ability of our machine could handle up to 110,000 data 
points, we randomly selected the maximum data load for 
this study. Table 1 presents the characteristics of the data.

Missing data in these valid cases was handled using 
multiple imputation techniques—MICE (Multivariate 
Imputation via Chained Equations) set at 10 multiple 
imputations to replace missing with predicted values, 
using R package *mice* [25]. The data set also consists 
of textual elements that describe the ingredients used 
such as milk, salt, chicken, and so on. Texts were con-
verted into corpus objects and processed for stand-
ardization such as using English stop words, lower case, 

and removal of punctuation. The corpus item was then 
converted to a document term matrix to enable count-
ing of most frequent terms occurring (Fig.  2), which 
are illustrated as a Wordcloud (Fig.  3). The important 
terms are converted into a data frame that is subse-
quently merged with the full data set. The dataset also 
has unbalanced binary CRC outcome, which was then 
re-balanced using the Synthetic Minority Oversampling 
Technique (SMOTE) [26].

Feature selection
Two-step feature selection method was employed. Step 
one involves three separate procedures including Logis-
tic regression (LR), Boruta, and Knockoff selection. 
LR was used to screen each single index out to reduce 
redundant features by computing a stepwise iterative 
process of forward addition (adding important fea-
tures to a null set of features) and backward elimina-
tion (removing worst-performing features from the list 
of complete features) using the stepAIC function in the 
MASS package [27]. Variable selection was determined 
by the most significant features (p < 0.05) in the most 
parsimonious model with the lowest Akaike Informa-
tion Criterion (AIC). Next, a randomized wrapper 
method, Boruta, which iteratively removes features that 
are statistically not significant and relevant than that of 
random probes, was employed [28]. Finally, the Knock-
off selection based on the Benjamini–Hochberg False 
Discovery Rate method was implemented, that controls 
for expected proportion of false rejection of features 
in multiple significance testing [29], which could be 
expressed as follows:

Table 1  Data characteristics and sample statistics

Positive Negative Total

n % n % n %

Overall 7326 6.7 102,016 93.3 109,342 100

Country
  Canada 6014 5.5 103,328 94.5 31,381 28.7

  India 4702 4.3 104,640 95.7 18,807 17.2

  Italy 14,652 13.4 94,690 86.6 8966 8.2

  South Korea 2406 2.2 106,936 97.8 16,292 14.9

  Mexico 2406 2.2 106,936 97.8 10,387 9.5

  Sweden 17,604 16.1 91,738 83.9 10,497 9.6

  United States 11,153 10.2 98,189 89.8 12,902 11.8

Gender
  Male 7763 7.1 101,579 92.9 51,172 46.8

  Female 6998 6.4 102,344 93.6 58,170 53.2

Age (years) [Mean (SD)] 48.9 (16.7) 36.4 (23.3) 41.6 (21.7)
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which determines the final selection based on vari-
able importance using the Gini Index that is expressed as 
follows:

FDR
⏟⏟⏟

False Discovery Rate

= E
⏟⏟⏟

expectation

(

#FalsePositive

total number of selected Features

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

False DIscovery Proportion

GI =

k

pk(1− pk) = 1−

k

p2k ,

where k is the number of classes.
The data set with the finalized features then was further 

processed using data normalization to avoid effects of 
extreme numeric ranges and to help obtain higher clas-
sification accuracy [30, 31]. The features were scaled as 
follows:

where V ′ is the scale value corresponding to the origi-
nal value V , and Min and Max are the upper and lower 
range limits.

Finally, the features that intersect among the two-step 
variable selection procedures were selected as the most 
salient features to be used for unsupervised and super-
vised classifications.

Unsupervised techniques
Four types of unsupervised machine learning for non-
linear relationship were used to explore the dimensions 
of the data including t-distributed stochastic Neighbor 
embedding (t-SNE), uniform manifold approximation and 
projection (UMAP), Apriori association rules, principal 
component analysis (PCA), and factor analysis (FA) [31, 
32].

t-SNE technique is a machine learning strategy for 
nonlinear dimensionality reduction that is useful for 
embedding high-dimensional data into lower-dimen-
sional spaces. If the high dimensional data ( N  D) is 
x1, x2, ..., xN then, for each pair ( xi, xj ), t-SNE estimates 

V
′

=
V − Min

Max − Min
,

Fig. 2  Frequent text items (1,000 occurrences) of the data

Fig. 3  A word-cloud on the most frequent text items in the data set
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the probabilities pi,j that are proportional to their corre-
sponding similarities, pj|i:

t-SNE performs a binary search for the value σi that 
produces a predefined value perp . The perplexity ( perp ) 
of a discrete probability distribution, p , is defined as an 
exponential function of the entropy, H(p) , over all dis-
crete events: perp(x) = 2H(p) = 2−

∑

x p(x)log2p(x).
UMAP relies on local approximations of patches on 

the manifold to construct local fuzzy simplicial complex 
(topological) representations of the high dimensional 
data. For example, if S1 the set of all possible 1-simplexes, 
let’s denote by ω(e) and ω′(e) the weight functions of the 
1-simplex e in the high dimensional space and the cor-
responding lower dimensional counterpart. Then, the 
cross-entropy measure for the 1-simplexes is:

The iterative optimization process would minimize the 
objective function composed of all cross entropies for all 
simplicial complexes using a strategy like stochastic gra-
dient descent.

The optimization process balances the push–pull 
between the attractive forces between the points favoring 
larger values of ω′(e) (that correspond to small distances 
between the points), and the repulsive forces between the 
ends of e when ω(e) is small (that correspond to small 
values of ω′(e).

The Apriori algorithm is based on a simple apriori 
belief that all subsets of a frequent item-set must also be 
frequent. We can measure a rule’s importance by com-
puting its support and confidence metrics. The support 
and confidence represent two criteria useful in decid-
ing whether a pattern is “valuable.” By setting thresholds 
for these two criteria, we can easily limit the number of 
interesting rules or item-sets reported.

For item-sets X and Y  , the support of an item-set meas-
ures how (relatively) frequently it appears in the data:

where N is the total number of transactions in the data-
base and count(X) is the number of observations (trans-
actions) containing the item-set X.
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support(X) =
count(X)

N
,

In a set-theoretic sense, the union of item-sets is an 
item-set itself. In other words, if Z = X ,Y = X ∪ Y  , then

For a given rule X → Y  , the rule’s confidence measures 
the relative accuracy of the rule:

The confidence measures the joint occurrence of 
X and Y over the X domain. If whenever X appears 
Y tends to also be present, then we will have a high 
confidence(X → Y ).

Note that the ranges of the support and the confidence 
are 0 ≤ support, confidence ≤ 1.

PCA (principal component analysis) is a mathemati-
cal procedure that transforms a number of possibly 
correlated variables into a smaller number of uncorre-
lated variables through a process known as orthogonal 
transformation. In general, the formula for the first PC 
is pc1 = aT1 X =

∑N
i=1 ai,1Xi where Xi is a n× 1 vec-

tor representing a column of the matrix X (representing 
a total of n observations and N features). The weights 
a1 = {a1,1, a2,1, ..., aN ,1} are chosen to maximize the 
variance of pc1 . According to this rule, the kth PC is 
pck = aTk X =

∑N
i=1 ai,kXi . ak = {a1,k , a2,k , ..., aN ,k} has to 

be constrained by more conditions:

Variance of pck is maximized
Cov(pck , pcl) = 0 , ∀1 ≤ l < k

aTk ak = 1 (the weights vectors are unitary)

FA optimization relies on iterative perturbations with 
full-dimensional Gaussian noise and maximum-likeli-
hood estimation where every observation in the data 
represents a sample point in a higher dimensional space. 
Whereas PCA assumes the noise is spherical, Factor 
Analysis allows the noise to have an arbitrary diagonal 
covariance matrix and estimates the subspace as well as 
the noise covariance matrix.

Under FA, the centered data can be expressed in the 
following from:

where i ∈ 1, ..., p , j ∈ 1, ..., k , k < p and ǫi are indepen-
dently distributed error terms with zero mean and finite 
variance.

Supervised classifiers
The data was split into 80% for training and 20% for 
testing. The data was trained using machine learning 
(ML) algorithms including neural network (Neuralnet), 

support(Z) = support(X ,Y ).

confidence(X → Y ) =
support(X ,Y )

support(X)
.

xi − µi = li,1F1 + ...+ li,kFk + ǫi = LF + ǫi,
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k-nearest neighbors (kNN), generalized linear model 
(GLM), and recursive partitioning (Rpart).

Neuralnet model mimics the biological brain response 
to multisource stimuli (inputs). When we have three sig-
nals (or inputs) x1 , x2 and x3 , the first step is weighting 
the features ( w’s) according to their importance. Then, 
the weighted signals are summed by the “neuron cell” and 
this sum is passed on according to an activation function 
denoted by f. The last step is generating an output y at the 
end of the process. A typical output will have the follow-
ing mathematical relationship to the inputs.

kNN classifier performs two steps calculations. For a 
given k , a specific similarity metric d , and a new testing 
case x,

•	 Runs through the whole training dataset ( y ) comput-
ing d(x, y) . Let A represent the k closest points to x in 
the training data y.

•	 Estimates the conditional probability for each class, 
which corresponds to the fraction of points in A with 
that given class label. If I(z) is an indicator function

I(z) =

{
1 z = true
0 otherwise

 , then the testing data input x gets 

assigned to the class with the largest probability, 
P(y = j|X = x):

y(x) = f

(
n∑

i=1

wixi

)

.

P(y = j|X = x) =
1

k

∑

i∈A

I(y(i) = j).

Generalized linear model, specifically, logistic regres-
sion, is a linear probabilistic classifier. It takes in the 
probability values for binary classification, in this case, 
positive (0) and negative (0) mental well-being and esti-
mates class probabilities directly using the logit trans-
form function [33].

Recursive partitioning (Rpart) is a decision tree clas-
sification technique that works well with variables with 
definite ordering and unequal distances. The tree is 
built similarly as a random forest with a resultant com-
plex model, however, Rpart procedure also consists of 
a cross-validation stage to trim back the full tree into 
nested terminals. The final model of the sub-tree pro-
vides the decision with the ‘best’ or lowest estimated 
error [34].

Model validation and performance assessment
Unsupervised techniques were evaluated based on the 
model visualization, as the best way to determine suit-
ability of the models. Whereas, the ML-classifiers used 
specific parameters. The caret package was used for auto-
mated parameter tuning with repeatedcv method set at 
15-folded cross-validation re-sampling that was repeated 
with 10 iterations [35]. The k-fold validation results and 
values were then used to calculate the confusion matrix 
that determines the measures of sensitivity, specificity, 
kappa, and accuracy. These measures were used to evalu-
ate the performance of the ML-model classifiers. These 
measures were calculated as follows:

sensitivity =
TP

TP + FN
.

Fig. 4  Variable importance plot showing contribution of features to predicting colorectal cancer
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specificity =
TN

TN + FP
.

kappa =
P(a)− P(e)

1− P(e)
.

accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

Total number of observations

where, True Positive(TP) is the number of observations 
that are correctly classified as “yes” or “success.” True 
Negative(TN) is the number of observations that are cor-
rectly classified as “no” or “failure.” False Positive(FP) is 
the number of observations that are incorrectly classified 
as “yes” or “success.” False Negative(FN) is the number 
of observations that are incorrectly classified as “no” or 
“failure” (Dinov 2018).

Fig. 5  Stability of t-SNE 3D embedding (Perplexity = 50) with six repeated (Rep) computations of the classification of no- and yes- colorectal cancer 
(CRC) labels

Fig. 6  Uniform Manifold Approximation (UMAP) 2D embedding model (n-neighbor = 5) (L) and UMAP prediction on testing data (R) in the 
classification of no- and yes- colorectal cancer labels
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Results
Feature importance
The common features derived from the procedures of 
variable selection yielded ten salient variables (Fig. 4) that 
are important contributors of CRC including, by order 
of importance, fiber, total fat, cholesterol, age, vitamin E, 
saturated fats, monounsaturated fats, carbohydrates, and 
vitamin B12. These features were used in the next step of 
machine learning modeling.

Unsupervised learning
Among the unsupervised classifiers, t-SNE (Fig.  5) was 
the best performer. By visual inspection, t-SNE has main-
tained good stability of classifying positive CRC labels 

over several repeated computations. UMAP (Fig. 6) pre-
diction also appears to be able to distinguish positive and 
negative CRC labels. Apriori association rules (Fig.  7) 
were able to map the textual features correlated to posi-
tive CRC labels, and the text items, by order of count, are 
listed in Table  2. PCA (Fig.  8) and FA (Table  3) showed 
that the data could be reduced to two dimensions where 
CRC is negatively correlated with fiber and carbohydrates, 
and positively correlated with the rest of the features.

Supervised learning
Model evaluation
In supervised classifiers, all techniques performed very 
well where accuracy, kappa, sensitivity, and specificity 

Fig. 7  Apriori association rules of text features that are associated with the labelled yes colorectal cancer (“colrec_ca”) (See Supplementary 1 for this 
interactive html widget)
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Table 2  Summary description of apriori association rules of no colorectal cancer (“No_colrec_ca”) label

lhs rhs Support Count

{Shortening, household, unspecified vegetable oil} {colrec_ca} 0.062 3870

  {Margarine, tub, composite} {colrec_ca} 0.045 2818

  {Egg, chicken, whole, fresh or frozen, raw} {colrec_ca} 0.036 2277

  {Cheese, cheddar} {colrec_ca} 0.030 1903

  {Salad dressing, mayonnaise, commercial, regular} {colrec_ca} 0.029 1821

{HARD CHEESE FETT 28%} {colrec_ca} 0.029 1804

  {Butter, regular} {colrec_ca} 0.028 1777

{FAT BLEND FAT 75% FORTIFIED BREGOTT} {colrec_ca} 0.022 1360

  {Beef, ground, medium, broiled} {colrec_ca} 0.018 1150

  {Vegetable oil, canola and soybean} {colrec_ca} 0.018 1126

  {Egg, whole, fried, with fat (Scrambled egg, no milk added)} {colrec_ca} 0.016 998

  {Vegetable oil, olive} {colrec_ca} 0.015 971

  {Lettuce, salad with assorted vegetables including tomatoes and/or carrots, no dressing (Lettuce salad, NFS)} {colrec_ca} 0.014 905

  {Egg, whole, fried, with fat (Scrambled egg, no milk added)} =  > {Egg, chicken, whole, fresh or frozen, raw} {colrec_ca} 0.012 751

  {Egg, chicken, whole, fresh or frozen, raw} =  > {Egg, whole, fried, with fat (Scrambled egg, no milk added)} {colrec_ca} 0.012 751

  {colrec_ca,Egg, whole, fried, with fat (Scrambled egg, no milk added)} =  > {Egg, chicken, whole, fresh or frozen, raw} {colrec_ca} 0.012 751

  {colrec_ca,Egg, chicken, whole, fresh or frozen, raw} =  > {Egg, whole, fried, with fat (Scrambled egg, no milk added)} {colrec_ca} 0.012 751

  {Egg, chicken, whole, fresh or frozen, raw, Egg, whole, fried, with fat (Scrambled egg, no milk added)} {colrec_ca} 0.012 751

  {Salad dressing, oil and vinegar, homemade} {colrec_ca} 0.011 674

Fig. 8  A bi-plot of Principal component analysis on the most optimal number of dimensions in the data where Group 1 is no cancer label and 
Group 2 is the cancer label
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were above 0.90 (Fig.  9). It appeared that the neural 
network performed better than the rest. By accounting 
the weight decay, the neural network model was opti-
mal with a single layer of three hidden nodes, and we 
mapped out the schematic of the network, illustrated in 
Fig. 10. Sensitivity analysis also revealed seven features 
in the neural network model in future consideration 
(Fig. 11).

Discussion
Key findings
In this study, we show that colorectal cancer can be 
predicted based on a list of important dietary data 
using supervised and unsupervised machine learn-
ing approaches. The excellent level of prediction in 
the present study is congruent with previous findings 
where mis-classification only ranged from 1 to 2% [36, 
37]. These machine learning models can be used both 

as an early tool to identify individuals at risk as well 
as predicting the clinical outcomes of colorectal cancer 
[38, 39].

Dietary control is one of the most effective protec-
tive and modifiable measures that the population can 
adopt for cancer prevention. Dietary features can signal 
clues of the likelihood of early-onset of specific type of 
colorectal cancer such as distal colon and rectum [40]. 
In fact, a systematic review of studies over a period of 
17 years concluded that strong evidence linking dietary 
factors with CRC risk, however, specific food group 
components on this relationship, were limited [41]. The 
present study identified total fat, mono-unsaturated fats, 
linoleic acid, cholesterol, omega-6 as moderate to high 
correlated dietary features to positive colorectal cancer. 
In contrast, fiber and carbohydrates have negative cor-
relation with colorectal cancer cases. These features 
reflects the evidence from precision nutrition that a 
combination of dietary parameters, particularly those in 
the healthy eating index (such as whole fruit, saturated 
fats, grains) are more accurate than single dietary index 
(such as glycemic index) is important in the modifiable 
behavior for cancer prevention [39, 42]. In addition, 
our text mining and apriori algorithm also indicated 
that vegetables, eggs, margarine, and cheese have great 
impacts on colorectal cancer.

Although all classifiers were very good predictors of 
CRC labels, artificial neural networks had the best accu-
racy and true positives and true negatives. The advantage 
of using neural networks over, for example, general linear 
models in cancer prediction, is having much lower uncer-
tainty and better generalizability of the model [36, 43]. 
This is an important consideration since machine learn-
ing algorithms have increasingly been used in many med-
icine domains with varied success rates [44]. In addition, 
most or all data sets will have a clear imbalance between 
CRC and non-CRC labels. We used a smote technique 

Table 3  Two-factor model in the dimensionality reduction 
procedure of the colorectal cancer data

Factor Analysis Two-factor model

Factor1 Factor2

Age 0.178

Energy 0.433 0.525

carbohydrates -0.121 0.972

fiber -0.118 0.703

Total fat 0.990 0.123

Mono unsaturated fats 0.946 0.103

Omega-6 0.512

cholesterol 0.483

Vitamin B12 0.164 0.204

Linoleic acid 0.566

Colorectal cancer 0.655

Fig. 9  A schematic of a neural network with a single hidden layer with three hidden nodes (L) and weight decay of optimal hidden node 
parameter using repeated cross-validation (R)
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to balance the data set, which otherwise, the machine 
learning models will predict all cases as non-CRC. Future 
work may need to consider controlling the sampling pro-
cess to allow similar distribution of the two categories to 
minimize effects of down- or up- sampling. Another con-
sideration is the age group of which this model is appli-
cable. Unlike previous studies that account only for older 
people, this study includes younger adults in model train-
ing as well, therefore the models developed in this study 
may work well from young to older adults’ CRC predic-
tion. With early and regular screening assisted by an opti-
mal machine learning algorithm, the incidence of CRC 
can be reduced even further.

Limitations
The strength of this study lies in the large datasets con-
sisting of cases from seven major countries. Due to 
computational constraints, we randomly sampled obser-
vations to induce almost real-time estimates, model 

fits, and classification predictions. Some of the features 
that were not common had to be excluded from model 
development, which may result in confounding effects. 
The outcome label of CRC is based on detected cases 
and may not reflect early onset, new onset, or delayed 
onset of CRC as well as stratification of risk in different 
stages and types of CRC. Nevertheless, this study has 
narrowed down salient features that future researchers 
could consider in a more holistic approach, particularly, 
multi-dimensional that simultaneously accounts for diet, 
lifestyle, genetics, and related factors for CRC prediction.

Conclusion
In this study, we concluded that a combination of unsu-
pervised and supervised machine learning approaches 
can be used to explore the key dietary features for colo-
rectal cancer prediction. To help with feasibility and 
practicality, the artificial neural network was found to 

Fig. 10  Sensitivity analysis of the three hidden node neural network model in relation to the mean and standard deviation (top), mean square 
difference among the input variables (middle), and density plots (bottom)
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be the optimal algorithm with misclassification of CRC 
of 1% and misclassification of non-CRC of 3%, for more 
effective cancer screening procedures. Furthermore, 
screening through dietary information can be used as 
a non-invasive procedure that can be applied in large 
populations. Using optimal algorithms coupled with high 
compliance to cancer screening will therefore signifi-
cantly boost the success rate of cancer prevention.
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